|
1
|
Li Z, Liu P, Yin A, Zhang B, Xu J, Chen Z,
Zhang Z, Zhang Y, Wang S, Tang L, et al: Global landscape of
cervical cancer incidence and mortality in 2022 and predictions to
2030: The urgent need to address inequalities in cervical cancer.
Int J Cancer. 157:288–297. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49.
2024.PubMed/NCBI
|
|
3
|
Shahmoradi Z, Damgacioglu H, Clarke MA,
Wentzensen N, Montealegre J, Sonawane K and Deshmukh AA: Cervical
cancer incidence among US women, 2001–2019. JAMA. 328:2267–2269.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
de Visser KE and Joyce JA: The evolving
tumor microenvironment: From cancer initiation to metastatic
outgrowth. Cancer Cell. 41:374–403. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Karin N: The development and homing of
myeloid-derived suppressor cells: From a two-stage model to a
multistep narrative. Front Immunol. 11:5575862020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zheng Y, Liu J, Beeraka NM, Manogaran P,
Ramachandrappa HVP, Naga LDY, Suhail SM, Pradeepkumar B, Sinelnikov
MY, Venkata GM, et al: Inflammation and stem cell stochasticity of
HPV-induced cervical cancer: Epigenetics based biomarkers through
microbiome and metabolome for personalized medicine: A systematic
review. Curr Med Chem. 32:2390–2408. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kudela E, Liskova A, Samec M, Koklesova L,
Holubekova V, Rokos T, Kozubik E, Pribulova T, Zhai K, Busselberg
D, et al: The interplay between the vaginal microbiome and innate
immunity in the focus of predictive, preventive, and personalized
medical approach to combat HPV-induced cervical cancer. EPMA J.
12:199–220. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ma XY, Lu LL and Sun PF: Research progress
on the immune microenvironment in cervical cancer. Int J Oncol
(China). 50:47–50. 2023.(In Chinese).
|
|
9
|
Wu Y, Cheng Y, Wang X, Fan J and Gao Q:
Spatial omics: Navigating to the golden era of cancer research.
Clin Transl Med. 12:e6962022. View
Article : Google Scholar : PubMed/NCBI
|
|
10
|
Di Mauro F and Arbore G: Spatial
dissection of the immune landscape of solid tumors to advance
precision medicine. Cancer Immunol Res. 12:800–813. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Su Q, Tian X, Li F, Yu X, Gong W, Chen Y,
Wang J and Yang S, Zhang S, Zhang Q and Yang S: Integrated
multi-omics analysis of single-cell and spatial transcriptomics
reveals distinct hpv-associated immune microenvironment features
and prognostic signatures in cervical cancer. Front Immunol.
16:16126232025. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lin Z, Zhou Y, Liu Z, Nie W, Cao H, Li S,
Zhu L, Lin G, Ding Y, Jiang Y, et al: Deciphering the tumor immune
microenvironment: Single-cell and spatial transcriptomic insights
into cervical cancer fibroblasts. J Exp Clin Cancer Res.
44:1942025. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang Z, Liu M, An Y, Gao C, Wang T, Zhang
Z, Zhang G, Li S, Li W, Li M and Wang G: Targeting immune
microenvironment in cervical cancer: Current research and advances.
J Transl Med. 23:8882025. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Grant G and Ferrer CM: The role of the
immune tumor microenvironment in shaping metastatic dissemination,
dormancy, and outgrowth. Trends Cell Biol. Jul 4–2025.(Epub ahead
of print). View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yu J, Fu L, Wu R, Che L, Liu G, Ran Q, Xia
Z, Liang X and Zhao G: Immunocytes in the tumor microenvironment:
Recent updates and interconnections. Front Immunol. 16:15179592025.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li C, Yu X, Han X, Lian C, Wang Z, Shao S,
Shao F, Wang H, Ma S and Liu J: Innate immune cells in tumor
microenvironment: A new frontier in cancer immunotherapy. iScience.
27:1107502024. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zou R, Gu R, Yu X, Hu Y, Yu J, Xue X and
Zhu X: Characteristics of infiltrating immune cells and a
predictive immune model for cervical cancer. J Cancer.
12:3501–3514. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Maskey N, Thapa N, Maharjan M, Shrestha G,
Maharjan N, Cai H and Liu S: Infiltrating CD4 and CD8 lymphocytes
in HPV infected uterine cervical milieu. Cancer Manag Res.
11:7647–7655. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Anvar MT, Rashidan K, Arsam N,
Rasouli-Saravani A, Yadegari H, Ahmadi A, Asgari Z, Vanan AG,
Ghorbaninezhad F and Tahmasebi S: Th17 cell function in cancers:
Immunosuppressive agents or anti-tumor allies? Cancer Cell Int.
24:3552024. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ao C and Zeng K: The role of regulatory T
cells in pathogenesis and therapy of human papillomavirus-related
diseases, especially in cancer. Infect Genet Evol. 65:406–413.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li W, Zhang HL, Nie ZY, Wang Z, Kang Y,
Yang XS and Yuan F: The disease stage-associated imbalance of
Th1/Th2 and Th17/Treg in uterine cervical cancer patients and their
recovery with the reduction of tumor burden. BMC Womens Health.
20:1262020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhang J, Zhan J, Guan Z, Lin X, Li T, Li
M, Zhang C and Zhong L: The prognostic value of Th17/treg cell in
cervical cancer: A systematic review and meta-analysis. Front
Oncol. 14:14421032024. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang Q, Steger A, Mahner S, Jeschke U and
Heidegger H: The formation and therapeutic update of
tumor-associated macrophages in cervical cancer. Int J Mol Sci.
20:33102019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhu SY, Wu QY, Zhang CX, Wang Q, Ling J,
Huang XT, Sun X, Yuan M, Wu D and Yin HF: miR-20a inhibits the
killing effect of natural killer cells to cervical cancer cells by
downregulating RUNX1. Biochem Biophys Res Commun. 505:309–316.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhang S, Wang H, Liu Y, Tao T, Zeng Z,
Zhou Y and Wang M: Nocardia rubra cell-wall skeleton influences the
development of cervical carcinoma by promoting the antitumor effect
of macrophages and dendritic cells. Cancer Med. 11:1249–1268. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Choi Y, Lee D, Kim NY, Seo I, Park NJY and
Chong GO: Role of tumor-associated macrophages in cervical cancer:
Integrating classical perspectives with recent technological
advances. Life (Basel). 14:4432024.PubMed/NCBI
|
|
27
|
Guo L and Hua K: Cervical cancer: Emerging
immune landscape and treatment. Onco Targets Ther. 13:8037–8047.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Gutiérrez-Hoya A and Soto-Cruz I: NK cell
regulation in cervical cancer and strategies for immunotherapy.
Cells. 10:31042021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Venancio PA, Consolaro MEL, Derchain SF,
Boccardo E, Villa LL, Maria-Engler SS, Campa A and Discacciati MG:
Indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase
expression in HPV infection, SILs, and cervical cancer. Cancer
Cytopathol. 127:586–597. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhang B, Wang Z, Wu L, Zhang M, Li W, Ding
J, Zhu J, Wei H and Zhao K: Circulating and tumor-infiltrating
myeloid-derived suppressor cells in patients with colorectal
carcinoma. PLoS One. 8:e571142013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liang Y, Lü B, Zhao P and Lü W: Increased
circulating GrMyeloid-derived suppressor cells correlated with
tumor burden and survival in locally advanced cervical cancer
patients. J Cancer. 10:1341–1348. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Dysthe M and Parihar R: Myeloid-derived
suppressor cells in the tumor microenvironment. Adv Exp Med Biol.
1224:117–140. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wu L, Liu H, Guo H, Wu Q, Yu S, Qin Y,
Wang G, Wu Q, Zhang R, Wang L, et al: Circulating and
tumor-infiltrating myeloid-derived suppressor cells in cervical
carcinoma patients. Oncol Lett. 15:9507–9515. 2018.PubMed/NCBI
|
|
34
|
Bermudez-Morales VH, Gutierrez LX,
Alcocer-Gonzalez JM, Burguete A and Madrid-Marina V: Correlation
between IL-10 gene expression and HPV infection in cervical cancer:
A mechanism for immune response escape. Cancer Invest.
26:1037–1043. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zimmer N, Trzeciak ER, Graefen B, Satoh K
and Tuettenberg A: GARP as a therapeutic target for the modulation
of regulatory T cells in cancer and autoimmunity. Front Immunol.
13:9284502022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Haque S and Morris JC: Transforming growth
factor-β: A therapeutic target for cancer. Hum Vaccin Immunother.
13:1741–1750. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yi M, Li T, Niu M, Wu Y, Zhao Z and Wu K:
TGF-β: A novel predictor and target for anti-PD-1/PD-L1 therapy.
Front Immunol. 13:10613942022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wilson EB, El-Jawhari JJ, Neilson AL, Hall
GD, Melcher AA, Meade JL and Cook GP: Human tumour immune evasion
via TGF-β blocks NK cell activation but not survival allowing
therapeutic restoration of anti-tumour activity. PLoS One.
6:e228422011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
George N, Bhandari P, Shruptha P, Jayaram
P, Chaudhari S and Satyamoorthy K: Multidimensional outlook on the
pathophysiology of cervical cancer invasion and metastasis. Mol
Cell Biochem. 478:2581–2606. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhu C, Gu L, Liu Z, Li J, Yao M and Fang
C: Correlation between vascular endothelial growth factor pathway
and immune microenvironment in head and neck squamous cell
carcinoma. BMC Cancer. 21:8362021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Melincovici CS, Boşca AB, Şuşman S,
Mărginean M, Mihu C, Istrate M, Moldovan IM, Roman AL and Mihu CM:
Vascular endothelial growth factor (VEGF)-key factor in normal and
pathological angiogenesis. Rom J Morphol Embryol. 59:455–467.
2018.PubMed/NCBI
|
|
42
|
Zheng D, Hou X, Yu J and He X:
Combinatorial strategies with PD-1/PD-L1 immune checkpoint blockade
for breast cancer therapy: Mechanisms and clinical outcomes. Front
Pharmacol. 13:9283692022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang Y, Zhu W, Zhang X, Qu Q and Zhang L:
Expression and clinical significance of programmed death-1 on
lymphocytes and programmed death ligand-1 on monocytes in the
peripheral blood of patients with cervical cancer. Oncol Lett.
14:7225–7231. 2017.PubMed/NCBI
|
|
44
|
Feng X, Meng X, Tang D, Guo S, Liao Q,
Chen J, Xie Q, Liu F, Fang Y, Sun C, et al: Reversal of the
immunosuppressive tumor microenvironment via platinum-based
neoadjuvant chemotherapy in cervical cancer. Cancer Pathog Ther.
2:38–49. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ping Q, Yan R, Cheng X, Wang W, Zhong Y,
Hou Z, Shi Y, Wang C and Li R: Cancer-associated fibroblasts:
Overview, progress, challenges, and directions. Cancer Gene Ther.
28:984–999. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Walch-Rückheim B, Ströder R, Theobald L,
Pahne-Zeppenfeld J, Hegde S, Kim YJ, Bohle RM, Juhasz-Böss I,
Solomayer EF and Smola S: Cervical cancer-instructed stromal
fibroblasts enhance IL23 expression in dendritic cells to support
expansion of Th17 cells. Cancer Res. 79:1573–1586. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
de Freitas AC, de Oliveira THA, Barros MR
Jr and Venuti A: hrHPV E5 oncoprotein: Immune evasion and related
immunotherapies. J Exp Clin Cancer Res. 36:712017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yuan Y, Cai X, Shen F and Ma F: HPV
post-infection microenvironment and cervical cancer. Cancer Lett.
497:243–254. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lo Cigno I, Calati F, Girone C, Catozzo M
and Gariglio M: High-risk HPV oncoproteins E6 and E7 and their
interplay with the innate immune response: Uncovering mechanisms of
immune evasion and therapeutic prospects. J Med Virol.
96:e296852024. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Galazka K, Opławski M, Windorbska W,
Skret-Magierlo J, Koper K, Basta P, Mach P, Dutch-Wicherek M, Mazur
A and Wicherek L: The immunohistochemical analysis of antigens such
as RCAS1 and B7H4 in the cervical cancer nest and within the
fibroblasts and macrophages infiltrating the cancer
microenvironment. Am J Reprod Immunol. 68:85–93. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ronco LV, Karpova AY, Vidal M and Howley
PM: Human papillomavirus 16 E6 oncoprotein binds to interferon
regulatory factor-3 and inhibits its transcriptional activity.
Genes Dev. 12:2061–2072. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Park JS, Kim EJ, Kwon HJ, Hwang ES,
Namkoong SE and Um SJ: Inactivation of interferon regulatory
factor-1 tumor suppressor protein by HPV E7 oncoprotein.
Implication for the E7-mediated immune evasion mechanism in
cervical carcinogenesis. J Biol Chem. 275:6764–6769. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Manzo-Merino J, del-Toro-Arreola S,
Rocha-Zavaleta L, Peralta-Zaragoza Ó, Jiménez-Lima R and
Madrid-Marina V: Immunology of cervical cancer. Rev Invest Clin.
72:188–197. 2020.PubMed/NCBI
|
|
54
|
Ovestad IT, Gudlaugsson E, Skaland I,
Malpica A, Munk AC, Janssen EA and Baak JP: The impact of
epithelial biomarkers, local immune response and human
papillomavirus genotype in the regression of cervical
intraepithelial neoplasia grades 2–3. J Clin Pathol. 64:303–307.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hasan UA, Zannetti C, Parroche P, Goutagny
N, Malfroy M, Roblot G, Carreira C, Hussain I, Müller M,
Taylor-Papadimitriou J, et al: The human papillomavirus type 16 E7
oncoprotein induces a transcriptional repressor complex on the
Toll-like receptor 9 promoter. J Exp Med. 210:1369–1387. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hasan UA, Bates E, Takeshita F, Biliato A,
Accardi R, Bouvard V, Mansour M, Vincent I, Gissmann L, Iftner T,
et al: TLR9 expression and function is abolished by the cervical
cancer-associated human papillomavirus type 16. J Immunol.
178:3186–3197. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Campo MS, Graham SV, Cortese MS, Ashrafi
GH, Araibi EH, Dornan ES, Miners K, Nunes C and Man S: HPV-16 E5
down-regulates expression of surface HLA class I and reduces
recognition by CD8 T cells. Virology. 407:137–142. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Torres-Poveda K, Bahena-Román M,
Madrid-González C, Burguete-García AI, Bermúdez-Morales VH,
Peralta-Zaragoza O and Madrid-Marina V: Role of IL-10 and TGF-β1 in
local immunosuppression in HPV-associated cervical neoplasia. World
J Clin Oncol. 5:753–763. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sen P, Ganguly P and Ganguly N: Modulation
of DNA methylation by human papillomavirus E6 and E7 oncoproteins
in cervical cancer. Oncol Lett. 15:11–22. 2018.PubMed/NCBI
|
|
60
|
Jiménez-Wences H, Peralta-Zaragoza O and
Fernández-Tilapa G: Human papilloma virus, DNA methylation and
microRNA expression in cervical cancer (review). Oncol Rep.
31:2467–2476. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shamseddine AA, Burman B, Lee NY, Zamarin
D and Riaz N: Tumor immunity and immunotherapy for HPV-related
cancers. Cancer Discov. 11:896–1912. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Tumeh PC, Harview CL, Yearley JH, Shintaku
IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu
V, et al: PD-1 blockade induces responses by inhibiting adaptive
immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yadav C, Yadav R, Chabbra R, Nanda S,
Ranga S, Kadian L and Ahuja P: Overview of genetic and epigenetic
regulation of human papillomavirus and apoptosis in cervical
cancer. Apoptosis. 28:683–701. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
McLaughlin-Drubin ME, Crum CP and Münger
K: Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B
histone demethylase expression and causes epigenetic reprogramming.
Proc Natl Acad Sci USA. 108:2130–2135. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Dey T and Agrawal S: Immunotherapy in
cervical cancer: an innovative approach for better treatment
outcomes. Explor Target Antitumor Ther. 6:10022962025. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ogasawara A and Hasegawa K: Recent
advances in immunotherapy for cervical cancer. Int J Clin Oncol.
30:434–448. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Colombo N, Dubot C, Lorusso D, Caceres MV,
Hasegawa K, Shapira-Frommer R, Tewari KS, Salman P, Hoyos Usta E,
Yañez E, et al: Pembrolizumab for persistent, recurrent, or
metastatic cervical cancer. N Engl J Med. 385:1856–1867. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Naumann RW, Hollebecque A, Meyer T, Devlin
MJ, Oaknin A, Kerger J, López-Picazo JM, Machiels JP, Delord JP,
Evans TRJ, et al: Safety and efficacy of nivolumab monotherapy in
recurrent or metastatic cervical, vaginal, or vulvar carcinoma:
Results from the phase I/II CheckMate 358 trial. J Clin Oncol.
37:2825–2834. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Tewari KS, Monk BJ, Vergote I, Miller A,
de Melo AC, Kim HS, Kim YM, Lisyanskaya A, Samouëlian V, Lorusso D,
et al: Survival with cemiplimab in recurrent cervical cancer. N
Engl J Med. 386:544–555. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Stevanović S, Helman SR, Wunderlich JR,
Langhan MM, Doran SL, Kwong MLM, Somerville RPT, Klebanoff CA,
Kammula US, Sherry RM, et al: A phase II study of
tumor-infiltrating lymphocyte therapy for human
papillomavirus-associated epithelial cancers. Clin Cancer Res.
25:1486–1793. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Nagarsheth NB, Norberg SM, Sinkoe AL,
Adhikary S, Meyer TJ, Lack JB, Warner AC, Schweitzer C, Doran SL,
Korrapati S, et al: TCR-engineered T cells targeting E7 for
patients with metastatic HPV-associated epithelial cancers. Nat
Med. 27:419–425. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Draper LM, Kwong ML, Gros A, Stevanović S,
Tran E, Kerkar S, Raffeld M, Rosenberg SA and Hinrichs CS:
Targeting of HPV-16+ epithelial cancer cells by TCR gene engineered
T cells directed against E6. Clin Cancer Res. 21:4431–4439. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Łaniewski P, Barnes D, Goulder A, Cui H,
Roe DJ, Chase DM and Herbst-Kralovetz MM: Linking cervicovaginal
immune signatures, HPV and microbiota composition in cervical
carcinogenesis in non-hispanic and hispanic women. Sci Rep.
8:75932018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chung HC, Ros W, Delord JP, Perets R,
Italiano A, Shapira-Frommer R, Manzuk L, Piha-Paul SA, Xu L,
Zeigenfuss S, et al: Efficacy and safety of pembrolizumab in
previously treated advanced cervical cancer: Results from the phase
II KEYNOTE-158 study. J Clin Oncol. 37:1470–1478. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Marabelle A, Fakih M, Lopez J, Shah M,
Shapira-Frommer R, Nakagawa K, Chung HC, Kindler HL, Lopez-Martin
JA, Miller WH Jr, et al: Association of tumour mutational burden
with outcomes in patients with advanced solid tumours treated with
pembrolizumab: Prospective biomarker analysis of the multicohort,
open-label, phase 2 KEYNOTE-158 study. Lancet, Oncol. 21:1353–1365.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Le DT, Durham JN, Smith KN, Wang H,
Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et
al: Mismatch repair deficiency predicts response of solid tumors to
PD-1 blockade. Science. 357:409–413. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Bonneville R, Krook MA, Kautto EA, Miya J,
Wing MR, Chen HZ, Reeser JW, Yu L and Roychowdhury S: Landscape of
microsatellite instability across 39 cancer types. JCO Precis
Oncol. 2017.PO.17.00073. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Eksteen C, Riedemann J, van der Merwe FH,
Botha MH and Engelbrecht AM: Advancing personalized medicine in
LMICs: Predictive indicators for cervical cancer immunotherapy
response. Semin Oncol. 52:1523522025. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Stevanović S, Draper LM, Langhan MM,
Campbell TE, Kwong ML, Wunderlich JR, Dudley ME, Yang JC, Sherry
RM, Kammula US, et al: Complete regression of metastatic cervical
cancer after treatment with human papillomavirus-targeted
tumor-infiltrating T cells. J Clin Oncol. 33:1543–1550. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Cristescu R, Mogg R, Ayers M, Albright A,
Murphy E, Yearley J, Sher X, Liu XQ, Lu H, Nebozhyn M, et al:
Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based
immunotherapy. Science. 362:eaar35932018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ling J, Sun Q, Tian Q, Shi H, Yang H and
Ren J: Human papillomavirus 16 E6/E7 contributes to immune escape
and progression of cervical cancer by regulating miR-142-5p/PD-L1
axis. Arch Biochem Biophys. 731:1094492022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Romero D: Cadonilimab is effective and
safe in recurrent cervical cancer. Nat Rev Clin Oncol. 22:22025.
View Article : Google Scholar
|
|
83
|
De Jaeghere EA, Hamerlinck H, Tuyaerts S,
Lippens L, Van Nuffel AMT, Baiden-Amissah R, Vuylsteke P, Henry S,
Trinh XB, van Dam PA, et al: Associations of the gut microbiome
with outcomes in cervical and endometrial cancer patients treated
with pembrolizumab: Insights from the phase II PRIMMO trial.
Gynecol Oncol. 191:275–286. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Gore M, Kabekkodu SP and Chakrabarty S:
Exploring the metabolic alterations in cervical cancer induced by
HPV oncoproteins: From mechanisms to therapeutic targets. Biochim
Biophys Acta Rev Cancer. 1880:1892922025. View Article : Google Scholar : PubMed/NCBI
|