|
1
|
Chen DW, Lang BHH, McLeod DSA, Newbold K
and Haymart MR: Thyroid cancer. Lancet. 401:1531–1544. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI
|
|
3
|
Rahib L, Smith BD, Aizenberg R, Rosenzweig
AB, Fleshman JM and Matrisian LM: Projecting cancer incidence and
deaths to 2030: The unexpected burden of thyroid, liver, and
pancreas cancers in the United States. Cancer Res. 74:2913–2921.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhang L, Feng Q, Wang J, Tan Z, Li Q and
Ge M: Molecular basis and targeted therapy in thyroid cancer:
Progress and opportunities. Biochim Biophys Acta Rev Cancer.
1878:1889282023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Laha D, Nilubol N and Boufraqech M: New
therapies for advanced thyroid cancer. Front Endocrinol (Lausanne).
11:822020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Shen H, Zhu R, Liu Y, Hong Y, Ge J, Xuan
J, Niu W, Yu X, Qin JJ and Li Q: Radioiodine-refractory
differentiated thyroid cancer: Molecular mechanisms and therapeutic
strategies for radioiodine resistance. Drug Resist Updat.
72:1010132024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Pandian N and Kanneganti TD: PANoptosis: A
unique innate immune inflammatory cell death modality. J Immunol.
209:1625–1633. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Samir P, Malireddi RKS and Kanneganti TD:
The PANoptosome: A deadly protein complex driving pyroptosis,
apoptosis, and necroptosis (PANoptosis). Front Cell Infect
Microbiol. 10:2382020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Karki R and Kanneganti TD: PANoptosome
signaling and therapeutic implications in infection: Central role
for ZBP1 to activate the inflammasome and PANoptosis. Curr Opin
Immunol. 83:1023482023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Nozaki K, Li L and Miao EA: Innate sensors
trigger regulated cell death to combat intracellular infection.
Annu Rev Immunol. 40:469–498. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lee S, Karki R, Wang Y, Nguyen LN,
Kalathur RC and Kanneganti TD: AIM2 forms a complex with pyrin and
ZBP1 to drive PANoptosis and host defence. Nature. 597:415–419.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Liu LX, Heng JH, Deng DX, Zhao H, Zheng
ZY, Liao LD, Lin W, Xu XE, Li EM and Xu LY: Sulconazole induces
PANoptosis by triggering oxidative stress and inhibiting glycolysis
to increase radiosensitivity in esophageal cancer. Mol Cell
Proteomics. 22:1005512023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Karki R, Sundaram B, Sharma BR, Lee S,
Malireddi RKS, Nguyen LN, Christgen S, Zheng M, Wang Y, Samir P, et
al: ADAR1 restricts ZBP1-mediated immune response and PANoptosis to
promote tumorigenesis. Cell Rep. 37:1098582021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ren L, Yang Y, Li W, Zheng X, Liu J, Li S,
Yang H, Zhang Y, Ge B, Zhang S, et al: CDK1 serves as a therapeutic
target of adrenocortical carcinoma via regulating
epithelial-mesenchymal transition, G2/M phase transition, and
PANoptosis. J Transl Med. 20:4442022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cai Y, Chen X, Lu T, Fang X, Ding M, Yu Z,
Hu S, Liu J, Zhou X and Wang X: Activation of STING by SAMHD1
deficiency promotes PANoptosis and enhances efficacy of PD-L1
blockade in diffuse Large B-cell lymphoma. Int J Biol Sci.
19:4627–4643. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Karbakhsh Ravari F, Ghasemi Gorji M and
Rafiei A: From iron-driven cell death to clot formation: The
emerging role of ferroptosis in thrombogenesis. Biomed
Pharmacother. 189:1183282025. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Shi J, Wu P, Sheng L, Sun W and Zhang H:
Ferroptosis-related gene signature predicts the prognosis of
papillary thyroid carcinoma. Cancer Cell Int. 21:6692021.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yang D, Wang J, Li C, Shi L and Zhang M:
Ferroptosis-related gene model to predict overall survival of
papillary thyroid carcinoma. Am J Otolaryngol. 42:1031632021.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Huang Y, Du J, Li D, He W, Liu Z, Liu L,
Yang X, Cheng X, Chen R and Yang Y: LASS2 suppresses metastasis in
multiple cancers by regulating the ferroptosis signalling pathway
through interaction with TFRC. Cancer Cell Int. 24:872024.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhou X, Nie M, Xin X, Hua T, Zhang J, Shi
R, Dong K, Shu W, Yan B and Wang H: RAB17 promotes endometrial
cancer progression by inhibiting TFRC-dependent ferroptosis. Cell
Death Dis. 15:6552024. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wang X, Zhou Y, Ning L, Chen J, Chen H and
Li X: Knockdown of ANXA10 induces ferroptosis by inhibiting
autophagy-mediated TFRC degradation in colorectal cancer. Cell
Death Dis. 14:5882023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Guo S, Chen Y, Xue X, Yang Y, Wang Y, Qiu
S, Cui J, Zhang X, Ma L, Qiao Y and Wang J: TRIB2 desensitizes
ferroptosis via βTrCP-mediated TFRC ubiquitiantion in liver cancer
cells. Cell Death Discov. 7:1962021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lin Z, Zhong C, Shi M, Long Q, Jing L, Yu
Y, Chou J, Chen M, Lan M and Long F: Circular RNA TFRC/SCD1 mRNA
interaction regulates ferroptosis and metastasis in gastric cancer.
Cell Death Dis. 16:4362025. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wang WT, Duan ZW, Xing TY, Hua W, Du KX,
Shang CY, Wu YF, Wang L, Li JY, Gao R, et al: PTPN2 inhibition
disrupts mitochondrial renewal and blocks TFRC-Mediated mitophagy
to exert Anti-Tumor activities in ALK-Positive anaplastic large
cell lymphoma. Adv Sci (Weinh). 12:e142822025. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wang K, Shi X, Lin H, Xu T and Xu S:
Selenium deficiency exacerbates ROS/ER stress mediated pyroptosis
and ferroptosis induced by bisphenol A in chickens thymus. J
Environ Sci (China). 148:13–26. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang X, Xu W, Wang Z, Liu J, Gong H and
Zou W: Cross-talk between cuproptosis and ferroptosis to identify
immune landscape in cervical cancer for mRNA vaccines development.
Eur J Med Res. 29:6022024. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Liu J, Lichtenberg T, Hoadley KA, Poisson
LM, Lazar AJ, Cherniack AD, Kovatich AJ, Benz CC, Levine DA, Lee
AV, et al: An Integrated TCGA Pan-cancer clinical data resource to
drive High-quality survival outcome analytics. Cell.
173:400–416.e11. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z,
Feng T, Zhou L, Tang W, Zhan L, et al: clusterProfiler 4.0: A
universal enrichment tool for interpreting omics data. Innovation
(Camb). 2:1001412021.PubMed/NCBI
|
|
29
|
Szklarczyk D, Gable AL, Lyon D, Junge A,
Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork
P, et al: STRING v11: Protein-protein association networks with
increased coverage, supporting functional discovery in genome-wide
experimental datasets. Nucleic Acids Res. 47:D607–D613. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Otasek D, Morris JH, Bouças J, Pico AR and
Demchak B: Cytoscape Automation: Empowering workflow-based network
analysis. Genome Biol. 20:1852019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Bader GD and Hogue CW: An automated method
for finding molecular complexes in large protein interaction
networks. BMC Bioinformatics. 4:22003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lin H and Zelterman DJT: Modeling Survival
Data: Extending the Cox Model. Technometrics. 44:85–86. 2002.
View Article : Google Scholar
|
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wang L, Wang S and Li W: RSeQC: Quality
control of RNA-seq experiments. Bioinformatics. 28:2184–2185. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chen S, Zhou Y, Chen Y and Gu J: fastp: An
ultra-fast all-in-one FASTQ preprocessor. Bioinformatics.
34:i884–i890. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kim D, Langmead B and Salzberg SL: HISAT:
A fast spliced aligner with low memory requirements. Nat Methods.
12:357–360. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Anders S, Pyl PT and Huber W: HTSeq-a
Python framework to work with high-throughput sequencing data.
Bioinformatics. 31:166–169. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Love MI, Huber W and Anders S: Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ginestet C: ggplot2: Elegant graphics for
data analysis. J Royal Stat Soc Series A Statistics Soc.
174:245–246. 2011. View Article : Google Scholar
|
|
40
|
Wan Z, Wen M, Zheng C, Sun Y, Zhou Y, Tian
Y, Xin S, Wang X, Ji X, Yang J, et al: Centromere protein F in
tumor biology: Cancer's Achilles heel. Cancer Med. 14:e709492025.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Li RQ, Yang Y, Qiao L, Yang L, Shen DD and
Zhao XJ: KIF2C: An important factor involved in signaling pathways,
immune infiltration, and DNA damage repair in tumorigenesis. Biomed
Pharmacother. 171:1161732024. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Burns M and Borgal L: Asp/ASPM
phospho-regulation throughout the cell cycle. Genome. 68:1–10.
2025. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Marima R, Hull R, Penny C and Dlamini Z:
Mitotic syndicates Aurora Kinase B (AURKB) and mitotic arrest
deficient 2 like 2 (MAD2L2) in cohorts of DNA damage response (DDR)
and tumorigenesis. Mutat Res Rev Mutat Res. 787:1083762021.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Tokuzumi A, Fukushima S, Miyashita A,
Nakahara S, Kubo Y, Yamashita J, Harada M, Nakamura K, Kajihara I,
Jinnin M and Ihn H: Cell division cycle-associated protein 1 as a
new melanoma-associated antigen. J Dermatol. 43:1399–1405. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Malireddi RKS, Kesavardhana S and
Kanneganti TD: ZBP1 and TAK1: Master regulators of NLRP3
Inflammasome/Pyroptosis, apoptosis, and necroptosis (PAN-optosis).
Front Cell Infect Microbiol. 9:4062019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lin JF, Hu PS, Wang YY, Tan YT, Yu K, Liao
K, Wu QN, Li T, Meng Q, Lin JZ, et al: Phosphorylated NFS1 weakens
oxaliplatin-based chemosensitivity of colorectal cancer by
preventing PANoptosis. Signal Transduct Target Ther. 7:542022.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lin C, Lin P, Yao H, Liu S, Lin X, He R,
Teng Z, Zuo X, Li Y, Ye J and Zhu G: Modulation of YBX1-mediated
PANoptosis inhibition by PPM1B and USP10 confers chemoresistance to
oxaliplatin in gastric cancer. Cancer Lett. 587:2167122024.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tan YT, Li T, Wang RB, Liu ZK, Ma MY,
Huang RZ, Mo HY, Luo SY, Lin JF, Xu RH and Ju HQ: WTAP weakens
oxaliplatin chemosensitivity of colorectal cancer by preventing
PANoptosis. Cancer Lett. 604:2172542024. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Qi H, Li X, Ma J, Sun J, Liu Y, Wang X,
Fan K, Shu C and Wang C: Fullerenols hijack lysosomes to disrupt
inter-organellar crosstalk and block autophagy pre-activated by
mTOR inhibitors for cancer cell PANoptosis. Sci Bull (Beijing).
70:1275–1294. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Luo Y, Linghu M, Luo X, Li D, Wang J, Peng
S and Ma Y: Remodeling tumor immunosuppressive microenvironment
through dual activation of immunogenic panoptosis and ferroptosis
by H2S-amplified nanoformulation to enhance cancer immunotherapy.
Acta Pharm Sin B. 15:1242–1254. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang J, Chen Y, Xu Y, Zhang J, Yang S,
Zhou Y, Lei J, Ren R, Chen Y, Zhao H, et al: DNASE1L3-mediated
PANoptosis enhances the efficacy of combination therapy for
advanced hepatocellular carcinoma. Theranostics. 14:6798–6817.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang S, Song A, Xie J, Wang YY, Wang WD,
Zhang MJ, Wu ZZ, Yang QC, Li H, Zhang J and Sun ZJ: Fn-OMV
potentiates ZBP1-mediated PANoptosis triggered by oncolytic HSV-1
to fuel antitumor immunity. Nat Commun. 15:36692024. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Xing J, Ma X, Yu Y, Xiao Y, Chen L, Yuan
W, Wang Y, Liu K, Guo Z, Tang H, et al: A Cardiac-targeting and
anchoring bimetallic cluster nanozyme alleviates
Chemotherapy-induced cardiac ferroptosis and PANoptosis. Adv Sci
(Weinh). 12:e24055972025. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhang J, Chen S, Wei S, Cheng S, Shi R,
Zhao R, Zhang W, Zhang Q, Hua T, Feng D, et al: CircRAPGEF5
interacts with RBFOX2 to confer ferroptosis resistance by
modulating alternative splicing of TFRC in endometrial cancer.
Redox Biol. 57:1024932022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wei XB, Jiang WQ, Zeng JH, Huang LQ, Ding
HG, Jing YW, Han YL, Li YC and Chen SL: Exosome-derived lncRNA
NEAT1 exacerbates Sepsis-associated encephalopathy by promoting
ferroptosis through Regulating miR-9-5p/TFRC and GOT1 axis. Mol
Neurobiol. 59:1954–1969. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Feng G, Arima Y, Midorikawa K, Kobayashi
H, Oikawa S, Zhao W, Zhang Z, Takeuchi K and Murata M: Knockdown of
TFRC suppressed the progression of nasopharyngeal carcinoma by
downregulating the PI3K/Akt/mTOR pathway. Cancer Cell Int.
23:1852023. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Mu Y, Sun J, Li Z, Zhang W, Liu Z, Li C,
Peng C, Cui G, Shao H and Du Z: Activation of pyroptosis and
ferroptosis is involved in the hepatotoxicity induced by
polystyrene microplastics in mice. Chemosphere. 291:1329442022.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang Y, Hu M, Jia W, Liu G, Zhang J, Wang
B, Li J, Cui P, Li X, Lager S, et al: Hyperandrogenism and insulin
resistance modulate gravid uterine and placental ferroptosis in
PCOS-like rats. J Endocrinol. 246:247–263. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Urbańska K and Orzechowski A:
Unappreciated role of LDHA and LDHB to control apoptosis and
autophagy in tumor cells. Int J Mol Sci. 20:20852019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Shi X, Chen Y, Liu Q, Mei X, Liu J, Tang
Y, Luo R, Sun D, Ma Y, Wu W, et al: LDLR dysfunction induces LDL
accumulation and promotes pulmonary fibrosis. Clin Transl Med.
12:e7112022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yao X and Li C: Lactate dehydrogenase A
mediated histone lactylation induced the pyroptosis through
targeting HMGB1. Metab Brain Dis. 38:1543–1553. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lin S, Tan L, Luo D, Peng X, Zhu Y and Li
H: Linc01278 inhibits the development of papillary thyroid
carcinoma by regulating miR-376c-3p/DNM3 axis. Cancer Manag Res.
11:8557–8569. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Rong Y, Gao J, Kuang T, Chen J, Li JA,
Huang Y, Xin H, Fang Y, Han X, Sun LQ, et al: DIAPH3 promotes
pancreatic cancer progression by activating selenoprotein
TrxR1-mediated antioxidant effects. J Cell Mol Med. 25:2163–2175.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Han F, Cheng C, Xu Q, Chen J, Yang Z and
Liu J: DEPDC1B promotes colorectal cancer via facilitating cell
proliferation and migration while inhibiting apoptosis. Cell Cycle.
22:131–143. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Li C, Liu Z, Kong D, Li Z and Li L:
Lactylation: A novel driver of drug resistance in the tumor
microenvironment. Cancer Drug Resist. 8:392025.PubMed/NCBI
|
|
66
|
Yang Y, Wu Y, Chen H, Xu Z, Lu R, Zhang S,
Zhan R, Xi Q and Jin Y: Research progress on the interaction
between glucose metabolic reprogramming and lactylation in tumors.
Front Immunol. 16:15951622025. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
She H, Zheng J, Zhao G, Du Y, Tan L, Chen
ZS, Wu Y, Li Y, Liu Y, Sun Y, et al: Arginase 1 drives
mitochondrial cristae remodeling and PANoptosis in
ischemia/hypoxia-induced vascular dysfunction. Signal Transduct
Target Ther. 10:1672025. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Gong T, Wang QD, Loughran PA, Li YH, Scott
MJ, Billiar TR, Liu YT and Fan J: Mechanism of lactic
acidemia-promoted pulmonary endothelial cells death in sepsis: Role
for CIRP-ZBP1-PANoptosis pathway. Mil Med Res. 11:712024.PubMed/NCBI
|
|
69
|
Xu L, Ye Y, Gu W, Xu X, Chen N, Zhang L,
Cai W, Hu J, Wang T, Chao H, et al: Histone lactylation stimulated
upregulation of PSMD14 alleviates neuron PANoptosis through
deubiquitinating PKM2 to activate PINK1-mediated mitophagy after
traumatic brain injury. Autophagy. 21:1473–1491. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Peng X, He Z, Yuan D, Liu Z and Rong P:
Lactic acid: The culprit behind the immunosuppressive
microenvironment in hepatocellular carcinoma. Biochim Biophys Acta
Rev Cancer. 1879:1891642024. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Mi K, Chen Z, He J, Jiang C, Xia Y and
Peng J: P300-Mediated ARRB1 lactylation promotes mitochondrial
dysfunction and neuronal apoptosis in subarachnoid hemorrhage via
upregulating S100A9. Neurochem Res. 50:1742025. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Du S, Zhang X, Jia Y, Peng P, Kong Q,
Jiang S, Li Y, Li C, Ding Z and Liu L: Hepatocyte HSPA12A inhibits
macrophage chemotaxis and activation to attenuate liver
ischemia/reperfusion injury via suppressing glycolysis-mediated
HMGB1 lactylation and secretion of hepatocytes. Theranostics.
13:3856–3871. 2023. View Article : Google Scholar : PubMed/NCBI
|