|
1
|
Siegel R, Naishadham D and Jemal A: Cancer
Statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar
|
|
2
|
Cantley LC, Auger KR, Carpenter C, et al:
Oncogenes and signal transduction. Cell. 64:281–302. 1991.
View Article : Google Scholar
|
|
3
|
Levine AJ, Momand J and Finlay CA: The p53
tumour suppressor gene. Nature. 351:453–456. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chen K and Rajewsky N: The evolution of
gene regulation by transcription factors and microRNAs. Nat Rev
Genet. 8:93–103. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bartel DP: MicroRNAs: target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lu J, Getz G, Miska EA, et al: MicroRNA
expression profiles classify human cancers. Nature. 435:834–838.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
He L, Thomson JM, Hemann MT, et al: A
microRNA polycistron as a potential human oncogene. Nature.
435:828–833. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
He L, He XY, Lim LP, et al: A microRNA
component of the p53 tumour suppressor network. Nature.
447:U1130–U1116. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ugalde AP, Ramsay AJ, de la Rosa J, et al:
Aging and chronic DNA damage response activate a regulatory pathway
involving miR-29 and p53. EMBO J. 30:2219–2232. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhu Q, Wang ZM, Hu Y, et al: miR-21
promotes migration and invasion by the miR-21-PDCD4-AP-1 feedback
loop in human hepatocellular carcinoma. Oncol Rep. 27:1660–1668.
2012.PubMed/NCBI
|
|
11
|
Cimmino A, Calin GA, Fabbri M, et al:
miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl
Acad Sci USA. 102:13944–13949. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Boon RA, Seeger T, Heydt S, et al:
MicroRNA-29 in aortic dilation: implications for aneurysm
formation. Circ Res. 109:1115–1119. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Maurer B, Stanczyk J, Jungel A, et al:
MicroRNA-29, a key regulator of collagen expression in systemic
sclerosis. Arthritis Rheum. 62:1733–1743. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Li PF, Guo W, Du LL, et al: microRNA-29b
contributes to pre-eclampsia through its effects on apoptosis,
invasion and angiogenesis of trophoblast cells. Clin Sci.
124:27–40. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhou QQ, Souba WW, Croce CM and Verne GN:
MicroRNA-29a regulates intestinal membrane permeability in patients
with irritable bowel syndrome. Gut. 59:775–784. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Roderburg C, Urban GW, Bettermann K, et
al: Micro-RNA profiling reveals a role for miR-29 in human and
murine liver fibrosis. Hepatology. 53:209–218. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
van Rooij E, Sutherland LB, Thatcher JE,
et al: Dysregulation of microRNAs after myocardial infarction
reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci
USA. 105:13027–13032. 2008.PubMed/NCBI
|
|
18
|
Wang B, Komers R, Carew R, et al:
Suppression of microRNA-29 expression by TGF-β1 promotes collagen
expression and renal fibrosis. J Am Soc Nephrol. 23:252–265.
2012.
|
|
19
|
Ye YM, Hu ZY, Lin Y, Zhang CF and
Perez-Polo JR: Downregulation of microRNA-29 by antisense
inhibitors and a PPAR-γ agonist protects against myocardial
ischaemia-reperfusion injury. Cardiovasc Res. 87:535–544.
2010.PubMed/NCBI
|
|
20
|
Chang TC, Yu DN, Lee YS, et al: Widespread
microRNA repression by Myc contributes to tumorigenesis. Nat Genet.
40:43–50. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lagos-Quintana M, Rauhut R, Lendeckel W
and Tuschl T: Identification of novel genes coding for small
expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Mourelatos Z, Dostie J, Paushkin S, et al:
miRNPs: a novel class of ribonucleoproteins containing numerous
microRNAs. Genes Dev. 16:720–728. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Landgraf P, Rusu M, Sheridan R, et al: A
mammalian microRNA expression atlas based on small RNA library
sequencing. Cell. 129:1401–1414. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Yanaihara N, Caplen N, Bowman E, et al:
Unique microRNA molecular profiles in lung cancer diagnosis and
prognosis. Cancer Cell. 9:189–198. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Fabbri M, Garzon R, Cimmino A, et al:
MicroRNA-29 family reverts aberrant methylation in lung cancer by
targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA.
104:15805–15810. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Plaisier CL, Pan M and Baliga NS: A
miRNA-regulatory network explains how dysregulated miRNAs perturb
oncogenic processes across diverse cancers. Genome Res.
22:2302–2314. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Cortez MA, Nicoloso MS, Shimizu M, et al:
miR-29b and miR-125a regulate podoplanin and suppress invasion in
glioblastoma. Genes Chromosomes Cancer. 49:981–990. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Xu H, Cheung IY, Guo HF and Cheung NKV:
MicroRNA miR-29 modulates expression of immunoinhibitory molecule
B7-H3: potential implications for immune based therapy of human
solid tumors. Cancer Res. 69:6275–6281. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Namløs HM, Meza-Zepeda LA, Barøy T, et al:
Modulation of the osteosarcoma expression phenotype by microRNAs.
PLoS One. 7:e480862012.PubMed/NCBI
|
|
30
|
Wang XH, Tang S, Le SY, et al: Aberrant
expression of oncogenic and tumor-suppressive microRNAs in cervical
cancer is required for cancer cell growth. PloS One. 3:e25572008.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang W, Qian JX, Yi HL, et al: The
microRNA-29 plays a central role in osteosarcoma pathogenesis and
progression. Mol Biol. 46:622–627. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ratert N, Meyer HA, Jung M, et al:
Reference miRNAs for miRNAome analysis of urothelial carcinomas.
PLoS One. 7:e393092012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang G, Zhang HH, He HD, et al:
Up-regulation of microRNA in bladder tumor tissue is not common.
Int Urol Nephrol. 42:95–102. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ru P, Steele R, Newhall P, Phillips NJ,
Toth K and Ray RB: miRNA-29b suppresses prostate cancer metastasis
by regulating epithelial-mesenchymal transition signaling. Mol
Cancer Ther. 11:1166–1173. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Resnick KE, Alder H, Hagan JP, Richardson
DL, Croce CM and Cohn DE: The detection of differentially expressed
microRNAs from the serum of ovarian cancer patients using a novel
real-time PCR platform. Gynecol Oncol. 112:55–59. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Flavin R, Smyth P, Barrett C, et al:
miR-29b expression is associated with disease-free survival in
patients with ovarian serous carcinoma. Int J Gynecol Cancer.
19:641–647. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hiroki E, Akahira J, Suzuki F, et al:
Changes in microRNA expression levels correlate with
clinicopathological features and prognoses in endometrial serous
adenocarcinomas. Cancer Sci. 101:241–249. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Heinzelmann J, Henning B, Sanjmyatav J, et
al: Specific miRNA signatures are associated with metastasis and
poor prognosis in clear cell renal cell carcinoma. World J Urol.
29:367–373. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Garzon R, Garofalo M, Martelli MP, et al:
Distinctive microRNA signature of acute myeloid leukemia bearing
cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA.
105:3945–3950. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Garzon R, Volinia S, Liu CG, et al:
MicroRNA signatures associated with cytogenetics and prognosis in
acute myeloid leukemia. Blood. 111:3183–3189. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Calin GA, Ferracin M, Cimmino A, et al: A
microRNA signature associated with prognosis and progression in
chronic lymphocytic leukemia. N Engl J Med. 353:1793–1801. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhao JJ, Lin JH, Lwin T, et al: microRNA
expression profile and identification of miR-29 as a prognostic
marker and pathogenetic factor by targeting CDK6 in mantle cell
lymphoma. Blood. 115:2630–2639. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zanette DL, Rivadavia F, Molfetta GA, et
al: miRNA expression profiles in chronic lymphocytic and acute
lymphocytic leukemia. Braz J Med Biol Res. 40:1435–1440. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Sand M, Skrygan M, Sand D, et al:
Expression of microRNAs in basal cell carcinoma. Br J Dermatol.
167:847–855. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Sengupta S, den Boon JA, Chen IH, et al:
MicroRNA 29c is down-regulated in nasopharyngeal carcinomas,
up-regulating mRNAs encoding extracellular matrix proteins. Proc
Natl Acad Sci USA. 105:5874–5878. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zeng X, Xiang JJ, Wu MH, et al:
Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as
non-invasive biomarkers in nasopharyngeal carcinoma. PLoS One.
7:e463672012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wu Q, Wang C, Lu ZH, Guo L and Ge QY:
Analysis of serum genome-wide microRNAs for breast cancer
detection. Clin Chim Acta. 413:1058–1065. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Pass HI, Goparaju C, Ivanov S, et al:
hsa-miR-29c* is linked to the prognosis of malignant pleural
mesothelioma. Cancer Res. 70:1916–1924. 2010.
|
|
49
|
Fang C, Zhu DX, Dong HJ, et al: Serum
microRNAs are promising novel biomarkers for diffuse large B cell
lymphoma. Ann Hematol. 91:553–559. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Suzuki H, Saito Y and Hibi T: MicroRNAs in
Gastric Cancer. Springer; New York: 2011
|
|
51
|
Ding DP, Chen ZL, Zhao XH, et al: miR-29c
induces cell cycle arrest in esophageal squamous cell carcinoma by
modulating cyclin E expression. Carcinogenesis. 32:1025–1032. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Meng XZ, Zheng TS, Chen X, et al: microRNA
expression alteration after arsenic trioxide treatment in HepG-2
cells. J Gastroenterol Hepatol. 26:186–193. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Xiong YJ, Fang JH, Yun JP, et al: Effects
of microRNA-29 on apoptosis, tumorigenicity, and prognosis of
hepatocellular carcinoma. Hepatology. 51:836–845. 2010.PubMed/NCBI
|
|
54
|
Mott JL, Kobayashi S, Bronk SF and Gores
GJ: mir-29 regulates Mcl-1 protein expression and apoptosis.
Oncogene. 26:6133–6140. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Huang Z, Huang D, Ni S, Peng Z, Sheng W
and Du X: Plasma microRNAs are promising novel biomarkers for early
detection of colorectal cancer. Int J Cancer. 127:118–126. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang LG and Gu J: Serum microRNA-29a is a
promising novel marker for early detection of colorectal liver
metastasis. Cancer Epidemiol. 36:E61–E67. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sampath D, Liu CM, Vasan K, et al: Histone
deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b
in chronic lymphocytic leukemia. Blood. 119:1162–1172. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang XW, Zhao XH, Fiskus W, et al:
Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a
therapeutic target of histone modification in aggressive B-cell
lymphomas. Cancer Cell. 22:506–523. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Mott JL, Kurita S, Cazanave SC, Bronk SF,
Werneburg NW and Fernandez-Zapico ME: Transcriptional suppression
of mir-29b-1/mir-29a promoter by c-Myc, Hedgehog, and NF-kappaB. J
Cell Biochem. 110:1155–1164. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mishra A, Liu SJ, Sams GH, et al: Aberrant
overexpression of IL-15 initiates large granular lymphocyte
leukemia through chromosomal instability and DNA hypermethylation.
Cancer Cell. 22:645–655. 2012. View Article : Google Scholar
|
|
61
|
Wang H, Garzon R, Sun H, et al:
NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis
and rhabdomyosarcoma. Cancer Cell. 14:369–381. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Eyholzer M, Schmid S, Wilkens L, Mueller
BU and Pabst T: The tumour-suppressive miR-29a/b1 cluster is
regulated by CEBPA and blocked in human AML. Br J Cancer.
103:275–284. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Schmitt MJ, Philippidou D, Reinsbach SE,
et al: Interferon-gamma-induced activation of signal transducer and
activator of transcription 1 (STAT1) up-regulates the tumor
suppressing microRNA-29 family in melanoma cells. Cell Commun
Signal. 10:412012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chou J, Lin JH, Brenot A, Kim JW, Provot S
and Werb Z: GATA3 suppresses metastasis and modulates the tumour
microenvironment by regulating microRNA-29b expression. Nat Cell
Biol. 15:201–213. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Melo SA and Kalluri R: miR-29b moulds the
tumour microenvironment to repress metastasis. Nat Cell Biol.
15:139–140. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Muniyappa MK, Dowling P, Henry M, et al:
MiRNA-29a regulates the expression of numerous proteins and reduces
the invasiveness and proliferation of human carcinoma cell lines.
Eur J Cancer. 45:3104–3118. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Garzon R, Liu SJ, Fabbri M, et al:
MicroRNA-29b induces global DNA hypomethylation and tumor
suppressor gene reexpression in acute myeloid leukemia by targeting
directly DNMT3A and 3B and indirectly DNMT1. Blood. 113:6411–6418.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li G, Zhao JF, Peng XJ, Liang J, Deng X
and Chen YX: The mechanism involved in the loss of PTEN expression
in NSCLC tumor cells. Biochem Biophys Res Commun. 418:547–552.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang XW, Zhao JF, Huang JH, Tang HH, Yu SY
and Chen YX: The regulatory roles of miRNA and methylation on
oncogene and tumor suppressor gene expression in pancreatic cancer
cells. Biochem Biophys Res Commun. 425:51–57. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Bargaje R, Gupta S, Sarkeshik A, et al:
Identification of novel targets for miR-29a using miRNA proteomics.
PLoS One. 7:e432432012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Park SY, Lee JH, Ha M, Nam JW and Kim VN:
miR-29 miRNAs activate p53 by targeting p85a and CDC42. Nat Struct
Mol Biol. 16:23–29. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Garzon R, Heaphy CEA, Havelange V, et al:
MicroRNA 29b functions in acute myeloid leukemia. Blood.
114:5331–5341. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Pekarsky Y, Santanam U, Cimmino A, et al:
Tcl1 expression in chronic lymphocytic leukemia is regulated by
miR-29 and miR-181. Cancer Res. 66:11590–11593. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Rothschild SI, Tschan MP, Federzoni EA, et
al: MicroRNA-29b is involved in the Src-ID1 signaling pathway and
is dysregulated in human lung adenocarcinoma. Oncogene.
31:4221–4232. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wang C, Gao C, Zhuang JL, Ding C and Wang
Y: A combined approach identifies three mRNAs that are
down-regulated by microRNA-29b and promote invasion ability in the
breast cancer cell line MCF-7. J Cancer Res Clin Oncol.
138:2127–2136. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Cochrane DR, Jacobsen BM, Connaghan KD,
Howe EN, Bain DL and Richer JK: Progestin regulated miRNAs that
mediate progesterone receptor action in breast cancer. Mol Cell
Endocrinol. 355:15–24. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lee TY, Ezelle HJ, Venkataraman T, Lapidus
RG, Scheibner KA and Hassel BA: Regulation of human RNase-L by the
miR-29 family reveals a novel oncogenic role in chronic myelogenous
leukemia. J Interferon Cytokine Res. 33:34–42. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Gebeshuber CA, Zatloukal K and Martinez J:
miR-29a suppresses tristetraprolin, which is a regulator of
epithelial polarity and metastasis. EMBO Rep. 10:400–405. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Fang JH, Zhou HC, Zeng CX, et al:
MicroRNA-29b suppresses tumor angiogenesis, invasion, and
metastasis by regulating matrix metalloproteinase 2 expression.
Hepatology. 54:1729–1740. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Price KJ, Tsykin A, Giles KM, et al:
Matrigel basement membrane matrix influences expression of
microRNAs in cancer cell lines. Biochem Biophys Res Commun.
427:343–348. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang F, Wang XS, Yang GH, et al: miR-29a
and miR-142–3p downregulation and diagnostic implication in human
acute myeloid leukemia. Mol Biol Rep. 39:2713–2722. 2012.
|
|
82
|
Li H, Solomon E, Muggy SD, Sun DQ and
Zolkiewska A: Metalloprotease-disintegrin ADAM12 expression is
regulated by Notch signaling via microRNA-29. J Biol Chem.
286:21500–21510. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhi F, Zhou GX, Wang SN, et al: A microRNA
expression signature predicts meningioma recurrence. Int J Cancer.
132:128–136. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Weissmann-Brenner A, Kushnir M, Yanai GL,
et al: Tumor microRNA-29a expression and the risk of recurrence in
stage II colon cancer. Int J Oncol. 40:2097–2103. 2012.PubMed/NCBI
|
|
85
|
Blum W, Garzon R, Klisovic RB, et al:
Clinical response and miR-29b predictive significance in older AML
patients treated with a 10-day schedule of decitabine. Proc Natl
Acad Sci USA. 107:7473–7478. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Blum W, Schwind S, Tarighat SS, et al:
Clinical and pharmacodynamic activity of bortezomib and decitabine
in acute myeloid leukemia. Blood. 119:6025–6031. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Visone R, Rassenti LZ, Veronese A, et al:
Karyotype-specific microRNA signature in chronic lymphocytic
leukemia. Blood. 114:3872–3879. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhu CL, Wang YG, Kuai WX, Sun XZ, Chen HP
and Hong Z: Prognostic value of miR-29a expression in pediatric
acute myeloid leukemia. Clin Biochem. 46:49–53. 2013. View Article : Google Scholar : PubMed/NCBI
|