Glycine and succinic acid are effective indicators of the suppression of epithelial-mesenchymal transition by fucoxanthinol in colorectal cancer stem-like cells

  • Authors:
    • Masaru Terasaki
    • Masatoshi Mima
    • Satoki Kudoh
    • Tetsuya Endo
    • Hayato Maeda
    • Junichi Hamada
    • Kazumi Osada
    • Kazuo Miyashita
    • Michihiro Mutoh
  • View Affiliations

  • Published online on: April 24, 2018     https://doi.org/10.3892/or.2018.6398
  • Pages: 414-424
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Fucoxanthinol (FxOH) is a strong anticancer metabolite of fucoxanthin that accumulates in abundance in edible brown algae and promises human health benefits. FxOH has been shown to suppress tumorigenicity and sphere formation in human colorectal cancer stem cell (CCSC)-like spheroids (colonospheres, Csps). In the present study, we aimed to clarify the inhibitory activity of FxOH on epithelial-mesenchymal transition (EMT), which is essential for cancer recurrence and distant metastasis, and to identify intracellular low-molecular-weight metabolites that may be useful for evaluating the cellular effects of FxOH on CCSCs. FxOH significantly suppressed sphere-forming activity, migration and invasion in a dose-dependent manner. In addition, treatment with 50 µmol/l FxOH suppressed N-cadherin and vimentin expression and the activation of integrin signaling linked to EMT suppression by western blot analysis. MAPK signaling and STAT signaling related to cell growth and apoptosis in Csps derived from human CRC HT-29 and HCT116 cells were also altered. According to our metabolite profiling by GC-MS analysis, reduced glycine and succinic acid levels were correlated with EMT suppression and apoptosis induction in Csps. Our data indicate that simple amino acids such as glycine and succinic acid may be good prognostic indicators of physiological changes to CCSCs induced by FxOH treatment.

References

1 

Terasaki M, Hirose A, Narayan B, Baba Y, Kawagoe C, Yasui H, Saga N, Hosokawa M and Miyashita K: Evaluation of recoverable functional lipid components of several brown seaweeds (phaeophyta) from Japan with special reference to fucoxanthin and fucosterol contents. J Phycol. 45:974–980. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Terasaki M, Narayan B, Kamogawa H, Nomura M, Stephen NM, Kawagoe C, Hosokawa M and Miyashita K: Carotenoid profile of edible Japanese seaweeds: An improved HPLC method for separation of major carotenoids. J Aquat Food Prod Technol. 21:468–479. 2012. View Article : Google Scholar

3 

Beppu F, Niwano Y, Tsukui T, Hosokawa M and Miyashita K: Single and repeated oral dose toxicity study of fucoxanthin (FX), a marine carotenoid, in mice. J Toxicol Sci. 34:501–510. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Iio K, Okada Y and Ishikura M: Single and 13-week oral toxicity study of fucoxanthin oil from microalgae in rats. Shokuhin Eiseigaku Zasshi. 52:183–189. 2011.(In Japanese). View Article : Google Scholar : PubMed/NCBI

5 

Okuzumi J, Takahashi T, Yamane T, Kitao Y, Inagake M, Ohya K, Nishino H and Tanaka Y: Inhibitory effects of fucoxanthin, a natural carotenoid, on N-ethyl-N'-nitro-N-nitrosoguanidine-induced mouse duodenal carcinogenesis. Cancer Lett. 68:159–168. 1993. View Article : Google Scholar : PubMed/NCBI

6 

Kim JM, Araki S, Kim DJ, Park CB, Takasuka N, Baba-Toriyama H, Ota T, Nir Z, Khachik F, Shimidzu N, et al: Chemopreventive effects of carotenoids and curcumins on mouse colon carcinogenesis after 1,2-dimethylhydrazine initiation. Carcinogenesis. 19:81–85. 1998. View Article : Google Scholar : PubMed/NCBI

7 

Nishino H: Cancer prevention by carotenoids. Mutat Res. 402:159–163. 1998. View Article : Google Scholar : PubMed/NCBI

8 

Shiratori K, Ohgami K, Ilieva I, Jin XH, Koyama Y, Miyashita K, Yoshida K, Kase S and Ohno S: Effects of fucoxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Exp Eye Res. 81:422–428. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Nishikawa S, Hosokawa M and Miyashita K: Fucoxanthin promotes translocation and induction of glucose transporter 4 in skeletal muscles of diabetic/obese KK-Ay mice. Phytomedicine. 19:389–394. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Maeda H, Hosokawa M, Sashima T, Funayama K and Miyashita K: Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun. 332:392–397. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Hitoe S and Shimoda H: Seaweed fucoxanthin supplementation improves obesity parameters in mildly obese Japanese subjects. Funct Food Health Dis. 7:246–262. 2017.

12 

Hosokawa M, Kudo M, Maeda H, Kohno H, Tanaka T and Miyashita K: Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARgamma ligand, troglitazone, on colon cancer cells. Biochim Biophys Acta. 1675:113–119. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Das SK, Hashimoto T and Kanazawa K: Growth inhibition of human hepatic carcinoma HepG2 cells by fucoxanthin is associated with down-regulation of cyclin D. Biochim Biophys Acta. 1780:743–749. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Murakami C, Takemura M, Sugiyama Y, Kamisuki S, Asahara H, Kawasaki M, Ishidoh T, Linn S, Yoshida S, Sugawara F, et al: Vitamin A-related compounds, all-trans retinal and retinoic acids, selectively inhibit activities of mammalian replicative DNA polymerases. Biochim Biophys Acta. 1574:85–92. 2002. View Article : Google Scholar : PubMed/NCBI

15 

Okuzumi J, Nishino H, Murakoshi M, Iwashima A, Tanaka Y, Yamane T, Fujita Y and Takahashi T: Inhibitory effects of fucoxanthin, a natural carotenoid, on N-myc expression and cell cycle progression in human malignant tumor cells. Cancer Lett. 55:75–81. 1990. View Article : Google Scholar : PubMed/NCBI

16 

Kotake-Nara E, Terasaki M and Nagao A: Characterization of apoptosis induced by fucoxanthin in human promyelocytic leukemia cells. Biosci Biotechnol Biochem. 69:224–227. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Asai A, Sugawara T, Ono H and Nagao A: Biotransformation of fucoxanthinol into amarouciaxanthin A in mice and HepG2 cells: Formation and cytotoxicity of fucoxanthin metabolites. Drug Metab Dispos. 32:205–211. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Asai A, Yonekura L and Nagao A: Low bioavailability of dietary epoxyxanthophylls in humans. Br J Nutr. 100:273–277. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Hashimoto T, Ozaki Y, Mizuno M, Yoshida M, Nishitani Y, Azuma T, Komoto A, Maoka T, Tanino Y and Kanazawa K: Pharmacokinetics of fucoxanthinol in human plasma after the oral administration of kombu extract. Br J Nutr. 107:1566–1569. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Takahashi K, Hosokawa M, Kasajima H, Hatanaka K, Kudo K, Shimoyama N and Miyashita K: Anticancer effects of fucoxanthin and fucoxanthinol on colorectal cancer cell lines and colorectal cancer tissues. Oncol Lett. 10:1463–1467. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, et al: Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 104:10158–10163. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Alea Perez M, Richel DJ, Stassi G and Medema JP: Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA. 105:13427–13432. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Findlay VJ, Wang C, Watson DK and Camp ER: Epithelial-to-mesenchymal transition and the cancer stem cell phenotype: Insights from cancer biology with therapeutic implications for colorectal cancer. Cancer Gene Ther. 21:181–187. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Kanwar SS, Yu Y, Nautiyal J, Patel BB and Majumdar AP: The Wnt/beta-catenin pathway regulates growth and maintenance of colonospheres. Mol Cancer. 9:212–225. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Terasaki M, Maeda H, Miyashita K, Tanaka T, Miyamoto S and Mutoh M: A marine bio-functional lipid, fucoxanthinol, attenuates human colorectal cancer stem-like cell tumorigenicity and sphere formation. J Clin Biochem Nutr. 61:25–32. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Yoshida M, Hatano N, Nishiumi S, Irino Y, Izumi Y, Takenawa T and Azuma T: Diagnosis of gastroenterological diseases by metabolome analysis using gas chromatography-mass spectrometry. J Gastroenterol. 47:9–20. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Dazard JE, Sandlers Y, Doerner SK, Berger NA and Brunengraber H: Metabolomics of ApcMin/+ mice genetically susceptible to intestinal cancer. BMC Syst Biol. 8:722014. View Article : Google Scholar : PubMed/NCBI

29 

Yoshie T, Nishiumi S, Izumi Y, Sakai A, Inoue J, Azuma T and Yoshida M: Regulation of the metabolite profile by an APC gene mutation in colorectal cancer. Cancer Sci. 103:1010–1021. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Han XY, Wei B, Fang JF, Zhang S, Zhang FC, Zhang HB, Lan TY, Lu HQ and Wei HB: Epithelial-mesenchymal transition associates with maintenance of stemness in spheroid-derived stem-like colon cancer cells. PLoS One. 8:e733412013. View Article : Google Scholar : PubMed/NCBI

31 

Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI

32 

Sato M, Kawana K, Adachi K, Fujimoto A, Yoshida M, Nakamura H, Nishida H, Inoue T, Taguchi A, Takahashi J, et al: Spheroid cancer stem cells display reprogrammed metabolism and obtain energy by actively running the tricarboxylic acid (TCA) cycle. Oncotarget. 7:33297–33305. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Vermeersch KA, Wang L, Mezencev R, McDonald JF and Styczynski MP: OVCAR-3 spheroid-derived cells display distinct metabolic profiles. PLoS One. 10:e01182622015. View Article : Google Scholar : PubMed/NCBI

34 

Penkert J, Ripperger T, Schieck M, Schlegelberger B, Steinemann D and Illig T: On metabolic reprogramming and tumor biology: A comprehensive survey of metabolism in breast cancer. Oncotarget. 7:67626–67649. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Lin SH, Liu T, Ming X, Tang Z, Fu L, Schmitt-Kopplin P, Kanawati B, Guan XY and Cai Z: Regulatory role of hexosamine biosynthetic pathway on hepatic cancer stem cell marker CD133 under low glucose conditions. Sci Rep. 6:211842016. View Article : Google Scholar : PubMed/NCBI

36 

Chen KY, Liu X, Bu P, Lin CS, Rakhilin N, Locasale JW and Shen X: A metabolic signature of colon cancer initiating cells. Conf Proc IEEE Eng Med Biol Soc. 2014:4759–4762. 2014.PubMed/NCBI

37 

Küntzer J, Eggle D, Lenhof HP, Burtscher H and Klostermann S: The roche cancer genome database (RCGDB). Hum Mutat. 31:407–413. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Matsuda Y, Miura K, Yamane J, Shima H, Fujibuchi W, Ishida K, Fujishima F, Ohnuma S, Sasaki H, Nagao M, et al: SERPINI1 regulates epithelial-mesenchymal transition in an orthotopic implantation model of colorectal cancer. Cancer Sci. 107:619–628. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Russo P, Malacarne D, Falugi C, Trombino S and O'Connor PM: RPR-115135, a farnesyltransferase inhibitor, increases 5-FU-cytotoxicity in ten human colon cancer cell lines: Role of p53. Int J Cancer. 100:266–275. 2002. View Article : Google Scholar : PubMed/NCBI

40 

Hara K, Hamada C, Wakabayashi K, Kanda R, Kaneko K, Horikoshi S, Tomino Y and Suzuki Y: Scavenging of reactive oxygen species by astaxanthin inhibits epithelial-mesenchymal transition in high glucose-stimulated mesothelial cells. PLoS One. 12:e01843322017. View Article : Google Scholar : PubMed/NCBI

41 

Festuccia C, Mancini A, Gravina GL, Scarsella L, Llorens S, Alonso GL, Tatone C, Di Cesare E, Jannini EA, Lenzi A, et al: Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. BioMed Res Int. 2014:1350482014. View Article : Google Scholar : PubMed/NCBI

42 

Mondul AM, Sampson JN, Moore SC, Weinstein SJ, Evans AM, Karoly ED, Virtamo J and Albanes D: Metabolomic profile of response to supplementation with β-carotene in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Am J Clin Nutr. 98:488–493. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Qin XY, Tatsukawa H, Hitomi K, Shirakami Y, Ishibashi N, Shimizu M, Moriwaki H and Kojima S: Metabolome analyses uncovered a novel inhibitory effect of acyclic retinoid on aberrant lipogenesis in a mouse diethylnitrosamine-induced hepatic tumorigenesis model. Cancer Prev Res. 9:205–214. 2016. View Article : Google Scholar

44 

Huang YT, Lin YW, Chiu HM and Chiang BH: Curcumin induces apoptosis of colorectal cancer stem cells by coupling with CD44 marker. J Agric Food Chem. 64:2247–2253. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Amelio I, Cutruzzolá F, Antonov A, Agostini M and Melino G: Serine and glycine metabolism in cancer. Trends Biochem Sci. 39:191–198. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

July 2018
Volume 40 Issue 1

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Terasaki, M., Mima, M., Kudoh, S., Endo, T., Maeda, H., Hamada, J. ... Mutoh, M. (2018). Glycine and succinic acid are effective indicators of the suppression of epithelial-mesenchymal transition by fucoxanthinol in colorectal cancer stem-like cells. Oncology Reports, 40, 414-424. https://doi.org/10.3892/or.2018.6398
MLA
Terasaki, M., Mima, M., Kudoh, S., Endo, T., Maeda, H., Hamada, J., Osada, K., Miyashita, K., Mutoh, M."Glycine and succinic acid are effective indicators of the suppression of epithelial-mesenchymal transition by fucoxanthinol in colorectal cancer stem-like cells". Oncology Reports 40.1 (2018): 414-424.
Chicago
Terasaki, M., Mima, M., Kudoh, S., Endo, T., Maeda, H., Hamada, J., Osada, K., Miyashita, K., Mutoh, M."Glycine and succinic acid are effective indicators of the suppression of epithelial-mesenchymal transition by fucoxanthinol in colorectal cancer stem-like cells". Oncology Reports 40, no. 1 (2018): 414-424. https://doi.org/10.3892/or.2018.6398