Upregulation of microRNA‑300 induces the proliferation of liver cancer by downregulating transcription factor FOXO1

  • Authors:
    • Yuanhong Chang
    • Cancan Zhou
    • Lin Fan
    • Guanglin Qiu
    • Guanghui Wang
    • Guangbing Wei
    • Xinming Chang
    • Xuqi Li
  • View Affiliations

  • Published online on: September 21, 2018     https://doi.org/10.3892/or.2018.6727
  • Pages: 3561-3572
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

In the present study, we investigated whether miRNA‑300 (miR‑300) is an oncogene in human liver cancer and sought to determine the mechanism underlying its activity. We also investigated the effect of miRNA‑300 on the growth in liver cancer. To identify its target molecule, we performed luciferase assays. The downstream signaling pathway was detected by immunohistochemical (IHC) analysis in human HCC tissues, and the protein levels of AKT, 4E‑BP1, S6K1, SNAIL and MMP2 were determined using western blotting. miR‑300 levels were higher in patients with high‑stage HCC, and miR‑300 promoted cell growth both in vitro and in vivo. miRNA‑300 inhibited the luciferase activity of FOXO1 by targeting its 3'‑untranslated region (UTR), and overexpression of miR‑300 upregulated the protein levels of phospho‑AKT, phospho‑4E‑BP1, phospho‑S6K1, SNAIL and MMP2. These data revealed that miRNA‑300 functions as an oncogene in liver cancer by inhibiting FOXO1 and interacting with the AKT/mTOR signaling pathway.

References

1 

El-Serag HB and Rudolph KL: Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology. 132:2557–2576. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Maluccio M and Covey A: Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J Clin. 62:394–399. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Altomare DA and Testa JR: Perturbations of the AKT signaling pathway in human cancer. Oncogene. 24:7455–7464. 2005. View Article : Google Scholar : PubMed/NCBI

5 

Cui SX, Shi WN, Song ZY, Wang SQ, Yu XF, Gao ZH and Qu XJ: Des-gamma-carboxy prothrombin antagonizes the effects of Sorafenib on human hepatocellular carcinoma through activation of the Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways. Oncotarget. 7:36767–36782. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

7 

He L and Hannon GJ: MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004. View Article : Google Scholar : PubMed/NCBI

8 

Liu Z, Dou C, Yao B, Xu M, Ding L, Wang Y, Jia Y, Li Q, Zhang H, Tu K, et al: Methylation-mediated repression of microRNA-129-2 suppresses cell aggressiveness by inhibiting high mobility group box 1 in human hepatocellular carcinoma. Oncotarget. 7:36909–36923. 2016.PubMed/NCBI

9 

Yang W, Dou C, Wang Y, Jia Y, Li C, Zheng X and Tu K: MicroRNA-92a contributes to tumor growth of human hepatocellular carcinoma by targeting FBXW7. Oncol Rep. 34:2576–2584. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Lu CY, Lin KY, Tien MT, Wu CT, Uen YH and Tseng TL: Frequent DNA methylation of MiR-129-2 and its potential clinical implication in hepatocellular carcinoma. Genes Chromosomes Cancer. 52:636–643. 2013.PubMed/NCBI

11 

Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I and Inazawa J: miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis. 31:766–776. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Liu Y, Ren F, Rong M, Luo Y, Dang Y and Chen G: Association between underexpression of microrna-203 and clinicopathological significance in hepatocellular carcinoma tissues. Cancer Cell Int. 15:622015. View Article : Google Scholar : PubMed/NCBI

13 

Alpini G, Glaser SS, Zhang JP, Francis H, Han Y, Gong J, Stokes A, Francis T, Hughart N, Hubble L, et al: Regulation of placenta growth factor by microRNA-125b in hepatocellular cancer. J Hepatol. 55:1339–1345. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Coulouarn C, Factor VM, Andersen JB, Durkin ME and Thorgeirsson SS: Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 28:3526–3536. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, Calin GA, Giovannini C, Ferrazzi E, Grazi GL, et al: Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res. 67:6092–6099. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Lin CJ, Gong HY, Tseng HC, Wang WL and Wu JL: miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun. 375:315–320. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Greer EL and Brunet A: FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 24:7410–7425. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Hartmann W, Küchler J, Koch A, Friedrichs N, Waha A, Endl E, Czerwitzki J, Metzger D, Steiner S, Wurst P, et al: Activation of phosphatidylinositol-3′-kinase/AKT signaling is essential in hepatoblastoma survival. Clin Cancer Res. 15:4538–4545. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Nogueira V, Park Y, Chen CC, Xu PZ, Chen ML, Tonic I, Unterman T and Hay N: Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell. 14:458–470. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Gospodarowicz MK, Brierley JD and Wittekind C: TNM classifcation of malignant tumours. 8th edition. John Wiley & Sons; Oxford, UK: 2017

21 

Sinicrope FA, Ruan SB, Cleary KR, Stephens LC, Lee JJ and Levin B: Bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis. Cancer Res. 55:237–241. 1995.PubMed/NCBI

22 

Miyoshi A, Kitajima Y, Sumi K, Sato K, Hagiwara A, Koga Y and Miyazaki K: Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer. 90:1265–1273. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Xiang ZL, Zhao XM, Zhang L, Yang P, Fan J, Tang ZY and Zeng ZC: MicroRNA-34a expression levels in serum and intratumoral tissue can predict bone metastasis in patients with hepatocellular carcinoma. Oncotarget. 7:87246–87256. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Dou C, Wang Y, Li C, Liu Z, Jia Y, Li Q, Yang W, Yao Y, Liu Q and Tu K: MicroRNA-212 suppresses tumor growth of human hepatocellular carcinoma by targeting FOXA1. Oncotarget. 6:13216–13228. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Calin GA and Croce CM: MicroRNA-cancer connection: The beginning of a new tale. Cancer Res. 66:7390–7394. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Machida S, Spangenburg EE and Booth FW: Forkhead transcription factor FoxO1 transduces insulin-like growth factor's signal to p27Kip1 in primary skeletal muscle satellite cells. J Cell Physiol. 196:523–531. 2003. View Article : Google Scholar : PubMed/NCBI

27 

Kim SJ, Winter K, Nian C, Tsuneoka M, Koda Y and McIntosh CH: Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J Biol Chem. 280:22297–22307. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Grinius L, Kessler C, Schroeder J and Handwerger S: Forkhead transcription factor FOXO1A is critical for induction of human decidualization. J Endocrinol. 189:179–187. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Xie L, Ushmorov A, Leithäuser F, Guan H, Steidl C, Färbinger J, Pelzer C, Vogel MJ, Maier HJ, Gascoyne RD, et al: FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood. 119:3503–3511. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Wu Y, Elshimali Y, Sarkissyan M, Mohamed H, Clayton S and Vadgama JV: Expression of FOXO1 is associated with GATA3 and Annexin-1 and predicts disease-free survival in breast cancer. Am J Cancer Res. 2:104–115. 2012.PubMed/NCBI

31 

Rena G, Guo S, Cichy SC, Unterman TG and Cohen P: Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem. 274:17179–17183. 1999. View Article : Google Scholar : PubMed/NCBI

32 

Morgan TM, Koreckij TD and Corey E: Targeted therapy for advanced prostate cancer: Inhibition of the PI3K/Akt/mTOR pathway. Curr Cancer Drug Targets. 9:237–249. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Dong XY, Chen C, Sun X, Guo P, Vessella RL, Wang RX, Chung LW, Zhou W and Dong JT: FOXO1A is a candidate for the 13q14 tumor suppressor gene inhibiting androgen receptor signaling in prostate cancer. Cancer Res. 66:6998–7006. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Calnan DR and Brunet A: The FoxO code. Oncogene. 27:2276–2288. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Huang H and Tindall DJ: FOXO factors: A matter of life and death. Future Oncol. 2:83–89. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Furukawa-Hibi Y, Yoshida-Araki K, Ohta T, Ikeda K and Motoyama N: FOXO forkhead transcription factors induce G2-M checkpoint in response to oxidative stress. J Biol Chem. 277:26729–26732. 2002. View Article : Google Scholar : PubMed/NCBI

37 

Arden KC: FoxOs in tumor suppression and stem cell maintenance. Cell. 128:235–237. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Ichiyama K, Gonzalez-Martin A, Kim BS, Jin HY, Jin W, Xu W, Sabouri-Ghomi M, Xu S, Zheng P, Xiao C and Dong C: The MicroRNA-183-96-182 cluster promotes T helper 17 cell pathogenicity by negatively regulating transcription factor Foxo1 expression. Immunity. 44:1284–1298. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Haflidadóttir BS, Larne O, Martin M, Persson M, Edsjö A, Bjartell A and Ceder Y: Upregulation of miR-96 enhances cellular proliferation of prostate cancer cells through FOXO1. PLoS One. 8:e724002013. View Article : Google Scholar : PubMed/NCBI

40 

Wu Z, Sun H, Zeng W, He J and Mao X: Upregulation of MircoRNA-370 induces proliferation in human prostate cancer cells by downregulating the transcription factor FOXO1. PLoS One. 7:e458252012. View Article : Google Scholar : PubMed/NCBI

41 

López-Terrada D, Cheung SW, Finegold MJ and Knowles BB: Hep G2 is a hepatoblastoma-derived cell line. Hum Pathol. 40:1512–1515. 2009. View Article : Google Scholar

Related Articles

Journal Cover

December 2018
Volume 40 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chang, Y., Zhou, C., Fan, L., Qiu, G., Wang, G., Wei, G. ... Li, X. (2018). Upregulation of microRNA‑300 induces the proliferation of liver cancer by downregulating transcription factor FOXO1. Oncology Reports, 40, 3561-3572. https://doi.org/10.3892/or.2018.6727
MLA
Chang, Y., Zhou, C., Fan, L., Qiu, G., Wang, G., Wei, G., Chang, X., Li, X."Upregulation of microRNA‑300 induces the proliferation of liver cancer by downregulating transcription factor FOXO1". Oncology Reports 40.6 (2018): 3561-3572.
Chicago
Chang, Y., Zhou, C., Fan, L., Qiu, G., Wang, G., Wei, G., Chang, X., Li, X."Upregulation of microRNA‑300 induces the proliferation of liver cancer by downregulating transcription factor FOXO1". Oncology Reports 40, no. 6 (2018): 3561-3572. https://doi.org/10.3892/or.2018.6727