Inhibition of PIKfyve using YM201636 suppresses the growth of liver cancer via the induction of autophagy

  • Authors:
    • Jiu‑Zhou Hou
    • Zhuo‑Qing Xi
    • Jie Niu
    • Wei Li
    • Xiao Wang
    • Chao Liang
    • Hua Sun
    • Dong Fang
    • Song‑Qiang Xie
  • View Affiliations

  • Published online on: December 12, 2018     https://doi.org/10.3892/or.2018.6928
  • Pages: 1971-1979
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Liver cancer is among the most common types of cancer worldwide. The aim of the present study was to investigate whether the phosphatidylinositol‑3‑phosphate 5‑kinase (PIKfyve) inhibitor, YM201636, exerts anti‑proliferative effects on liver cancer. The methods used in the present study included MTT assay, flow cytometry, western blot analysis and an allograft mouse model of liver cancer. The results revealed that YM201636 inhibited the proliferation of HepG2 and Huh‑7 cells in a dose‑dependent manner. HepG2 and Huh‑7 cells exhibited strong monodansylcadaverine staining following treatment with YM201636. Accordingly, YM201636 treatment increased the expression of the autophagosome‑associated marker protein microtubule‑associated 1A/1B light chain 3‑II in HepG2 and Huh‑7 cells. The autophagy inhibitor 3‑methyladenine attenuated the inhibitory effects of YM201636 on liver cancer cell proliferation. Further in vivo analysis revealed that YM201636 (2 mg/kg) inhibited tumor growth without notable systemic toxicity. Mechanistic experiments demonstrated that YM201636 induced‑autophagy is dependent upon epidermal growth factor receptor (EGFR) overexpression in HepG2 and Huh‑7 cells. Collectively, these results suggested that the PIKfyve inhibitor YM201636 may inhibit tumor growth by promoting EGFR expression. This indicates that PIKfyve may be a potential therapeutic target for the treatment of liver cancer.

References

1 

Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, et al: Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the global burden of disease study 2010. Lancet. 380:2095–2128. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Yang Y, Nagano H, Ota H, Morimoto O, Nakamura M, Wada H, Noda T, Damdinsuren B, Marubashi S, Miyamoto A, et al: Patterns and clinicopathologic features of extrahepatic recurrence of hepatocellular carcinoma after curative resection. Surgery. 141:196–202. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Sbrissa D, Ikonomov OC and Shisheva A: PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin. J Biol Chem. 274:21589–21597. 1999. View Article : Google Scholar : PubMed/NCBI

4 

Shisheva A: PIKfyve: The road to PtdIns 5-P and PtdIns 3,5-P2. Cell Biol Int. 25:1201–1206. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Takasuga S and Sasaki T: Phosphatidylinositol-3,5-bisphosphate: Metabolism and physiological functions. J Biochem. 154:211–218. 2013. View Article : Google Scholar : PubMed/NCBI

6 

McCartney AJ, Zolov SN, Kauffman EJ, Zhang Y, Strunk BS, Weisman LS and Sutton MA: Activity-dependent PI(3,5)P2 synthesis controls AMPA receptor trafficking during synaptic depression. Proc Natl Acad Sci USA. 111:E4896–E4905. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Kim J, Jahng WJ, Di Vizio D, Lee JS, Jhaveri R, Rubin MA, Shisheva A and Freeman MR: The phosphoinositide kinase PIKfyve mediates epidermal growth factor receptor trafficking to the nucleus. Cancer Res. 67:9229–9237. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Oppelt A, Haugsten EM, Zech T, Danielsen HE, Sveen A, Lobert VH, Skotheim RI and Wesche J: PIKfyve, MTMR3 and their product PtdIns5P regulate cancer cell migration and invasion through activation of Rac1. Biochem J. 461:383–390. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Ikonomov OC, Filios C, Sbrissa D, Chen X and Shisheva A: The PIKfyve-ArPIKfyve-Sac3 triad in human breast cancer: Functional link between elevated Sac3 phosphatase and enhanced proliferation of triple negative cell lines. Biochem Biophys Res Commun. 440:342–347. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Oppelt A, Lobert VH, Haglund K, Mackey AM, Rameh LE, Liestol K, Schink KO, Pedersen NM, Wenzel EM, Haugsten EM, et al: Production of phosphatidylinositol 5-phosphate via PIKfyve and MTMR3 regulates cell migration. EMBO Rep. 14:57–64. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Dupuis-Coronas S, Lagarrigue F, Ramel D, Chicanne G, Saland E, Gaits-Iacovoni F, Payrastre B and Tronchere H: The nucleophosmin-anaplastic lymphoma kinase oncogene interacts, activates, and uses the kinase PIKfyve to increase invasiveness. J Biol Chem. 286:32105–32114. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Sano O, Kazetani K, Funata M, Fukuda Y, Matsui J and Iwata H: Vacuolin-1 inhibits autophagy by impairing lysosomal maturation via PIKfyve inhibition. FEBS Lett. 590:1576–1585. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Hessvik NP, Overbye A, Brech A, Torgersen ML, Jakobsen IS, Sandvig K and Llorente A: PIKfyve inhibition increases exosome release and induces secretory autophagy. Cell Mol Life Sci. 73:4717–4737. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI, et al: Molecular definitions of autophagy and related processes. EMBO J. 36:1811–1836. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Lee YK and Lee JA: Role of the mammalian ATG8/LC3 family in autophagy: Differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Rep. 49:424–430. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Bhat P, Kriel J, Shubha Priya B, Basappa, Shivananju NS and Loos B: Modulating autophagy in cancer therapy: Advancements and challenges for cancer cell death sensitization. Biochem Pharmacol. 147:170–182. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Heckmann BL, Yang X, Zhang X and Liu J: The autophagic inhibitor3-methyladenine potently stimulates PKA-dependent lipolysis in adipocytes. Br J Pharmacol. 168:163–171. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Er EE, Mendoza MC, Mackey AM, Rameh LE and Blenis J: AKT facilitates EGFR trafficking and degradation by phosphorylating and activating PIKfyve. Sci Signal. 6:ra452013. View Article : Google Scholar : PubMed/NCBI

19 

Tan X, Thapa N, Sun Y and Anderson RA: A kinase-independent role for EGF receptor in autophagy initiation. Cell. 160:145–160. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Hirano T, Munnik T and Sato MH: Inhibition of phosphatidylinositol 3,5-bisphosphate production has pleiotropic effects on various membrane trafficking routes in Arabidopsis. Plant cell Physiol. 58:120–129. 2017.PubMed/NCBI

21 

Ikonomov OC, Fligger J, Sbrissa D, Dondapati R, Mlak K, Deeb R and Shisheva A: Kinesin adapter JLP links PIKfyve to microtubule-based endosome-to-trans-Golgi network traffic of furin. J Biol Chem. 284:3750–3761. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Jin N, Jin Y and Weisman LS: Early protection to stress mediated by CDK-dependent PI3,5P2 signaling from the vacuole/lysosome. J Cell Biol. 216:2075–2090. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Bissig C, Hurbain I, Raposo G and van Niel G: PIKfyve activity regulates reformation of terminal storage lysosomes from endolysosomes. Traffic. 18:747–757. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Dayam RM, Sun CX, Choy CH, Mancuso G, Glogauer M and Botelho RJ: The lipid kinase PIKfyve coordinates the neutrophil immune response through the activation of the Rac GTPase. J Immunol. 199:2096–2105. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Du Z and Lovly CM: Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 17:582018. View Article : Google Scholar : PubMed/NCBI

26 

Ye QH, Zhu WW, Zhang JB, Qin Y, Lu M, Lin GL, Guo L, Zhang B, Lin ZH, Roessler S, et al: GOLM1 modulates EGFR/RTK cell-surface recycling to drive hepatocellular carcinoma metastasis. Cancer Cell. 30:444–458. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Sainsbury JR, Farndon JR, Needham GK, Malcolm AJ and Harris AL: Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet. 1:1398–1402. 1987.PubMed/NCBI

28 

Li X and Fan Z: The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1alpha and Bcl-2 and activating the beclin 1/hVps34 complex. Cancer Res. 70:5942–5952. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Li H, You L, Xie J, Pan H and Han W: The roles of subcellularly located EGFR in autophagy. Cell Signal. 35:223–230. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Chen Y, Henson ES, Xiao W, Huang D, McMillan-Ward EM, Israels SJ and Gibson SB: Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia. Autophagy. 12:1029–1046. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Jacob JA, Salmani JMM, Jiang Z, Feng L, Song J, Jia X and Chen B: Autophagy: An overview and its roles in cancer and obesity. Clin Chim Acta. 468:85–89. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Sato H, Yamamoto H, Sakaguchi M, Shien K, Tomida S, Shien T, Ikeda H, Hatono M, Torigoe H, Namba K, et al: Combined inhibition of MEK and PI3K pathways overcomes acquired resistance to EGFR-TKIs in non-small cell lung cancer. Cancer Sci. 109:3183–3196. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Lanaya H, Natarajan A, Komposch K, Li L, Amberg N, Chen L, Wculek SK, Hammer M, Zenz R, Peck-Radosavljevic M, et al: EGFR has a tumour-promoting role in liver macrophages during hepatocellular carcinoma formation. Nature Cell Biol. 16:972–977. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Zhang Y, Wang L, Zhang M, Jin M, Bai C and Wang X: Potential mechanism of interleukin-8 production from lung cancer cells: An involvement of EGF-EGFR-PI3K-Akt-Erk pathway. J Cell Physiol. 227:35–43. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Zhang L, Li Y, Lan L, Liu R, Wu Y, Qu Q and Wen K: Tamoxifen has a proliferative effect in endometrial carcinoma mediated via the GPER/EGFR/ERK/cyclin D1 pathway: A retrospective study and an in vitro study. Mol Cell Endocrinol. 437:51–61. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

March 2019
Volume 41 Issue 3

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Hou, J., Xi, Z., Niu, J., Li, W., Wang, X., Liang, C. ... Xie, S. (2019). Inhibition of PIKfyve using YM201636 suppresses the growth of liver cancer via the induction of autophagy. Oncology Reports, 41, 1971-1979. https://doi.org/10.3892/or.2018.6928
MLA
Hou, J., Xi, Z., Niu, J., Li, W., Wang, X., Liang, C., Sun, H., Fang, D., Xie, S."Inhibition of PIKfyve using YM201636 suppresses the growth of liver cancer via the induction of autophagy". Oncology Reports 41.3 (2019): 1971-1979.
Chicago
Hou, J., Xi, Z., Niu, J., Li, W., Wang, X., Liang, C., Sun, H., Fang, D., Xie, S."Inhibition of PIKfyve using YM201636 suppresses the growth of liver cancer via the induction of autophagy". Oncology Reports 41, no. 3 (2019): 1971-1979. https://doi.org/10.3892/or.2018.6928