PTEN downregulates WD repeat‑containing protein 66 in salivary adenoid cystic carcinoma

  • Authors:
    • Yu Cao
    • Han Liu
    • Shi‑Lin Xia
    • Xi Zhang
    • Han Bai
    • Qian Yang
    • Jiang Li
    • Liwei Gao
    • Feng Jin
    • Min‑Jie Wei
    • Shi‑Long Lu
    • Jing Xiao
  • View Affiliations

  • Published online on: December 13, 2018     https://doi.org/10.3892/or.2018.6931
  • Pages: 1827-1836
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Salivary adenoid cystic carcinoma (SACC) is one of the most common types of salivary gland cancer that causes substantial morbidity and mortality. Despite the substantial health burden of SACC, the molecular mechanisms underlying its development and progression remain poorly understood. We previously reported the loss of phosphatase and tensin homolog (PTEN) expression to be common among SACC tumors, and the PTEN deficiency to be correlated with enrichment of epithelial‑mesenchymal transition (EMT) genes based on expression array analysis. The aim of the present study was to investigate further the functional function of WD repeat‑containing protein 66 (WDR66), one of the enriched EMT genes, in the context of PTEN deficiency and SACC pathogenesis. WDR66 was identified to be required to maintain the EMT phenotype and the expression of cancer stem cell genes in the context of PTEN deficiency. Furthermore, knockdown of WDR66 decreased cellular proliferation, migration and invasion. Finally, WDR66 expression was identified to be inversely associated with PTEN expression and negatively correlated with the overall survival of patients with SACC. Collectively, the results of the present study revealed a novel function of WDR66 in mediating the progression of PTEN‑deficient SACCs, thereby suggesting WDR66 inhibition to be a potential therapeutic approach towards successful management of SACC disease progression, particularly against tumors with decreased PTEN expression levels.

References

1 

Seethala RR: Salivary gland tumors: Current concepts and controversies. Surg Pathol Clin. 10:155–176. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Dunn LA, Ho AL, Laurie SA and Pfister DG: Unmet needs for patients with salivary gland cancer. Oral Oncol. 60:142–145. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Adelstein DJ, Koyfman SA, El-Naggar AK and Hanna EY: Biology and management of salivary gland cancers. Semin Radiat Oncol. 22:245–253. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Keller G, Steinmann D, Quaas A, Grunwald V, Janssen S and Hussein K: New concepts of personalized therapy in salivary gland carcinomas. Oral Oncol. 68:103–113. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Seethala RR and Stenman G: Update from the 4th edition of the world health organization classification of head and neck tumours: Tumors of the salivary gland. Head Neck Pathol. 11:55–67. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Dillon PM, Chakraborty S, Moskaluk CA, Joshi PJ and Thomas CY: Adenoid cystic carcinoma: A review of recent advances, molecular targets, and clinical trials. Head Neck. 38:620–627. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Liu J, Shao C, Tan ML, Mu D, Ferris RL and Ha PK: Molecular biology of adenoid cystic carcinoma. Head Neck. 34:1665–1677. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Moskaluk CA: Adenoid cystic carcinoma: Clinical and molecular features. Head Neck Pathol. 7:17–22. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Coca-Pelaz A, Rodrigo JP, Bradley PJ, Vander Poorten V, Triantafyllou A, Hunt JL, Strojan P, Rinaldo A, Haigentz M Jr, Takes RP, et al: Adenoid cystic carcinoma of the head and neck-an update. Oral Oncol. 51:652–661. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Bell D and Hanna EY: Head and neck adenoid cystic carcinoma: What is new in biological markers and treatment? Curr Opin Otolaryngol Head Neck Surg. 21:124–129. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Bell D and Hanna EY: Salivary gland cancers: Biology and molecular targets for therapy. Curr Oncol Rep. 14:166–174. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Ho AS, Kannan K, Roy DM, Morris LG, Ganly I, Katabi N, Ramaswami D, Walsh LA, Eng S, Huse JT, et al: The mutational landscape of adenoid cystic carcinoma. Nat Genet. 45:791–798. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Stephens PJ, Davies HR, Mitani Y, Van Loo P, Shlien A, Tarpey PS, Papaemmanuil E, Cheverton A, Bignell GR, Butler AP, et al: Whole exome sequencing of adenoid cystic carcinoma. J Clin Invest. 123:2965–2968. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Rettig EM, Talbot CC Jr, Sausen M, Jones S, Bishop JA, Wood LD, Tokheim C, Niknafs N, Karchin R, Fertig EJ, et al: Whole-genome sequencing of salivary gland adenoid cystic carcinoma. Cancer Prev Res. 9:265–274. 2016.

15 

Drier Y, Cotton MJ, Williamson KE, Gillespie SM, Ryan RJ, Kluk MJ, Carey CD, Rodig SJ, Sholl LM, Afrogheh AH, et al: An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma. Nat Genet. 48:265–272. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Yin LX and Ha PK: Genetic alterations in salivary gland cancers. Cancer. 122:1822–1831. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Mitani Y, Liu B, Rao PH, Borra VJ, Zafereo M, Weber RS, Kies M, Lozano G, Futreal PA, Caulin C, et al: Novel MYBL1 gene rearrangements with recurrent MYBL1-NFIB fusions in salivary adenoid cystic carcinomas lacking t(6;9) translocations. Clin Cancer Res. 22:725–733. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Ferrarotto R, Heymach JV and Glisson BS: MYB-fusions and other potential actionable targets in adenoid cystic carcinoma. Curr Opin Oncol. 28:195–200. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Grünewald I, Vollbrecht C, Meinrath J, Meyer MF, Heukamp LC, Drebber U, Quaas A, Beutner D, Hüttenbrink KB, Wardelmann E, et al: Targeted next generation sequencing of parotid gland cancer uncovers genetic heterogeneity. Oncotarget. 6:18224–18237. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Wang K, Russell JS, McDermott JD, Elvin JA, Khaira D, Johnson A, Jennings TA, Ali SM, Murray M, Marshall C, et al: Profiling of 149 salivary duct carcinomas, carcinoma ex pleomorphic adenomas, and adenocarcinomas, not otherwise specified reveals actionable genomic alterations. Clin Cancer Res. 22:6061–6068. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Ettl T, Schwarz-Furlan S, Haubner F, Müller S, Zenk J, Gosau M, Reichert TE and Zeitler K: The PI3K/AKT/mTOR signalling pathway is active in salivary gland cancer and implies different functions and prognoses depending on cell localisation. Oral Oncol. 48:822–830. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Ettl T, Baader K, Stiegler C, Müller M, Agaimy A, Zenk J, Kühnel T, Gosau M, Zeitler K, Schwarz S and Brockhoff G: Loss of PTEN is associated with elevated EGFR and HER2 expression and worse prognosis in salivary gland cancer. Br J Cancer. 106:719–726. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Griffith CC, Seethala RR, Luvison A, Miller M and Chiosea SI: PIK3CA mutations and PTEN loss in salivary duct carcinomas. Am J Surg Pathol. 37:1201–1207. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Liu H, Du L, Wang R, Wei C, Liu B, Zhu L, Liu P, Liu Q, Li J, Lu SL, et al: High frequency of loss of PTEN expression in human solid salivary adenoid cystic carcinoma and its implication for targeted therapy. Oncotarget. 6:11477–11491. 2015.PubMed/NCBI

25 

Cong W, Liu B, Liu S, Sun M, Liu H, Yang Y, Wang R and Xiao J: Implications of the Wnt5a/CaMKII pathway in retinoic acid-induced myogenic tongue abnormalities of developing mice. Sci Rep. 4:60822014. View Article : Google Scholar : PubMed/NCBI

26 

He W, Li AG, Wang D, Han S, Zheng B, Goumans MJ, Ten Dijke P and Wang XJ: Overexpression of Smad7 results in severe pathological alterations in multiple epithelial tissues. EMBO J. 21:2580–2590. 2002. View Article : Google Scholar : PubMed/NCBI

27 

Puisieux A, Brabletz T and Caramel J: Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 16:488–494. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Xu J, Lamouille S and Derynck R: TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19:156–172. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Song MS, Salmena L and Pandolfi PP: The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 13:283–296. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Li D and Roberts R: WD-repeat proteins: Structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci. 58:2085–2097. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Adams A, Warner K and Nör JE: Salivary gland cancer stem cells. Oral Oncol. 49:845–853. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Takada M, Zhang W, Suzuki A, Kuroda TS, Yu Z, Inuzuka H, Gao D, Wan L, Zhuang M, Hu L, et al: FBW7 loss promotes chromosomal instability and tumorigenesis via cyclin E1/CDK2-mediated phosphorylation of CENP-A. Cancer Res. 77:4881–4893. 2017.PubMed/NCBI

34 

Kitagawa K and Kitagawa M: The SCF-type E3 ubiquitin ligases as cancer targets. Curr Cancer Drug Targets. 16:119–129. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Wu Y, Diao P, Li Z, Zhang W, Wang D, Wang Y and Cheng J: Overexpression of WD repeat domain 5 associates with aggressive clinicopathological features and unfavorable prognosis in head neck squamous cell carcinoma. J Oral Pathol Med. 47:502–510. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Sun Y, Cao L, Sheng X, Chen J, Zhou Y, Yang C, Deng T, Ma H, Feng P, Liu J, et al: WDR79 promotes the proliferation of non-small cell lung cancer cells via USP7-mediated regulation of the Mdm2-p53 pathway. Cell Death Dis. 8:e27432017. View Article : Google Scholar : PubMed/NCBI

37 

Meisinger C, Prokisch H, Gieger C, Soranzo N, Mehta D, Rosskopf D, Lichtner P, Klopp N, Stephens J, Watkins NA, et al: A genome-wide association study identifies three loci associated with mean platelet volume. Am J Hum Genet. 84:66–71. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Wang Q, Ma C and Kemmner W: Wdr66 is a novel marker for risk stratification and involved in epithelial-mesenchymal transition of esophageal squamous cell carcinoma. BMC Cancer. 13:1372013. View Article : Google Scholar : PubMed/NCBI

39 

Nieto MA: Epithelial plasticity: A common theme in embryonic and cancer cells. Science. 342:12348502013. View Article : Google Scholar : PubMed/NCBI

40 

De Craene B and Berx G: Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 13:97–110. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Bowen KA, Doan HQ, Zhou BP, Wang Q, Zhou Y, Rychahou PG and Evers BM: PTEN loss induces epithelial - mesenchymal transition in human colon cancer cells. Anticancer Res. 29:4439–4449. 2009.PubMed/NCBI

42 

Labelle M, Begum S and Hynes RO: Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 20:576–590. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Gay LJ and Felding-Habermann B: Contribution of platelets to tumour metastasis. Nat Rev Cancer. 11:123–134. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Hollander MC, Blumenthal GM and Dennis PA: PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer. 11:289–301. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

March 2019
Volume 41 Issue 3

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Cao, Y., Liu, H., Xia, S., Zhang, X., Bai, H., Yang, Q. ... Xiao, J. (2019). PTEN downregulates WD repeat‑containing protein 66 in salivary adenoid cystic carcinoma. Oncology Reports, 41, 1827-1836. https://doi.org/10.3892/or.2018.6931
MLA
Cao, Y., Liu, H., Xia, S., Zhang, X., Bai, H., Yang, Q., Li, J., Gao, L., Jin, F., Wei, M., Lu, S., Xiao, J."PTEN downregulates WD repeat‑containing protein 66 in salivary adenoid cystic carcinoma". Oncology Reports 41.3 (2019): 1827-1836.
Chicago
Cao, Y., Liu, H., Xia, S., Zhang, X., Bai, H., Yang, Q., Li, J., Gao, L., Jin, F., Wei, M., Lu, S., Xiao, J."PTEN downregulates WD repeat‑containing protein 66 in salivary adenoid cystic carcinoma". Oncology Reports 41, no. 3 (2019): 1827-1836. https://doi.org/10.3892/or.2018.6931