CDCA3 is a potential prognostic marker that promotes cell proliferation in gastric cancer

  • Authors:
    • Yan Zhang
    • Wei Yin
    • Wei Cao
    • Peisheng Chen
    • Longjun Bian
    • Qingfeng Ni
  • View Affiliations

  • Published online on: February 12, 2019     https://doi.org/10.3892/or.2019.7008
  • Pages: 2471-2481
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Gastric cancer (GC) is an aggressive and highly lethal gastrointestinal cancer, with an exceedingly poor prognosis. In the present study, the carcinogenic mechanism of human GC and the role of cell division cycle‑associated 3 (CDCA3) were investigated. The expression levels of CDCA3 were investigated in GC samples and matched, peritumoral tissues by reverse transcription‑quantitative polymerase chain reaction and immunohistochemical analysis. The effects of CDCA3 on cell proliferation were explored by Cell Counting Kit‑8, colony formation, flow cytometric analysis and western blotting in vitro, and in vivo tumorigenesis in nude mice. The results demonstrated that CDCA3 expression was increased in human GC tissues compared with those in adjacent non‑tumor tissues. Evaluation of the clinicopathological significance indicated that CDCA3 was closely associated with features of GC and patients with unfavorable overall survival times. CDCA3 overexpression resulted in the stimulation of cell growth and colony formation in vitro and xenograft tumors in vivo. Conversely, knockdown of CDCA3 inhibited these effects. Furthermore, the ectopic expression of CDCA3 in SGC7901 cells consistently promoted the cell cycle transition from the G0/G1 phase to the S phase; whereas knockdown of CDCA3 in BGC823 cells blocked the transition from the G0/G1 phase. Additionally, the present study revealed that the Ras signaling pathway was involved in CDCA3‑mediated regulation of GC cell proliferation. CDCA3 activated the Ras signaling pathway to promote cell proliferation in vitro and in vivo in GC cells. Levels of CDCA3 greatly accelerated the progression of human GC. CDCA3 served as an oncogene, and may be a significant prognostic predictor and a novel therapeutic target for patients with GC.

References

1 

Tao J, Zhi X, Zhang X, Fu M, Huang H, Fan Y, Guan W and Zou C: miR-27b-3p suppresses cell proliferation through targeting receptor tyrosine kinase like orphan receptor 1 in gastric cancer. J Exp Clin Cancer Res. 34:1392015. View Article : Google Scholar : PubMed/NCBI

2 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Lee YY and Derakhshan MH: Environmental and lifestyle risk factors of gastric cancer. Arch Iran Med. 16:358–365. 2013.PubMed/NCBI

4 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Cheng XJ, Lin JC and Tu SP: Etiology and prevention of gastric cancer. Gastrointest Tumors. 3:25–36. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Hartgrink HH, Jansen EP, van Grieken NC and van de Velde CJ: Gastric cancer. Lancet. 374:477–490. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Pennathur A, Farkas A, Krasinskas AM, Ferson PF, Gooding WE, Gibson MK, Schuchert MJ, Landreneau RJ and Luketich JD: Esophagectomy for T1 esophageal cancer: Outcomes in 100 patients and implications for endoscopic therapy. Ann Thorac Surg. 87:1048–1055. 2009. View Article : Google Scholar : PubMed/NCBI

8 

GASTRIC (Global Advanced/Adjuvant Stomach Tumor Research International Collaboration) Group, ; Paoletti X, Oba K, Burzykowski T, Michiels S, Ohashi Y, Pignon JP, Rougier P, Sakamoto J, Sargent D, et al: Benefit of adjuvant chemotherapy for resectable gastric cancer: A meta-analysis. JAMA. 303:1729–1737. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Ahn JY, Hwang HS, Park YS, Kim HR, Jung HY, Kim JH, Lee SE and Kim MA: Endoscopic and pathologic findings associated with clinical outcomes of melanoma in the upper gastrointestinal tract. Ann Surg Oncol. 21:2532–2539. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Smith A, Simanski S, Fallahi M and Ayad NG: Redundant ubiquitin ligase activities regulate wee1 degradation and mitotic entry. Cell Cycle. 6:2795–2759. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Yoshida K: Cell-cycle-dependent regulation of the human and mouse Tome-1 promoters. FEBS Lett. 579:1488–1492. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Lim HH and Surana U: Tome-1, wee1, and the onset of mitosis: Coupled destruction for timely entry. Mol Cell. 11:845–546. 2003. View Article : Google Scholar : PubMed/NCBI

13 

Kim YJ and Bahk YY: A study of substrate specificity for a CTD phosphatase, SCP1, by proteomic screening of binding partners. Biochem Biophys Res Commun. 448:189–194. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, et al: Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 416:703–709. 2002. View Article : Google Scholar : PubMed/NCBI

15 

Itzel T, Scholz P, Maass T, Krupp M, Marquardt JU, Strand S, Becker D, Staib F, Binder H, Roessler S, et al: Translating bioinformatics in oncology: Guilt-by-profiling analysis and identification of KIF18B and CDCA3 as novel driver genes in carcinogenesis. Bioinformatics. 31:216–224. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Adams MN, Burgess JT, He Y, Gately K, Snell C, Zhang SD, Hooper JD, Richard DJ and O'Byrne KJ: Expression of CDCA3 is a prognostic biomarker and potential therapeutic target in non-small cell lung cancer. J Thorac Oncol. 12:1071–1084. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Chen J, Zhu S, Jiang N, Shang Z, Quan C and Niu Y: HoxB3 promotes prostate cancer cell progression by transactivating CDCA3. Cancer Lett. 330:217–224. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Hu Q, Fu J, Luo B, Huang M, Guo W, Lin Y, Xie X and Xiao S: OY-TES-1 may regulate the malignant behavior of liver cancer via NANOG, CD9, CCND2 and CDCA3: A bioinformatic analysis combine with RNAi and oligonucleotide microarray. Oncol Rep. 33:1965–1975. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Pérez-Peña J, Alcaraz-Sanabria A, Nieto-Jiménez C, Páez R, Corrales-Sánchez V, Serrano-Oviedo L, Wali VB, Patwardhan GA, Amir E, Győrffy B, et al: Mitotic read-out genes confer poor outcome in luminal A breast cancer tumors. Oncotarget. 8:21733–21740. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Uchida F, Uzawa K, Kasamatsu A, Takatori H, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H and Bukawa H: Overexpression of cell cycle regulator CDCA3 promotes oral cancer progression by enhancing cell proliferation with prevention of G1 phase arrest. BMC Cancer. 12:3212012. View Article : Google Scholar : PubMed/NCBI

21 

O'Byrne K, Adams M, Burgess J and Richard D: 24P CDCA3 regulates the cell cycle and modulates cisplatin sensitivity in non-small cell lung cancer. J Thorac Oncol. 11 (Suppl):S652016. View Article : Google Scholar

22 

Su P, Wen S, Zhang Y, Li Y, Xu Y, Zhu Y, Lv H, Zhang F, Wang M and Tian Z: Identification of the key genes and pathways in esophageal carcinoma. Gastroenterol Res Pract. 2016:29681062016. View Article : Google Scholar : PubMed/NCBI

23 

Zhou J and Hsieh JT: The inhibitory role of DOC- 2/DAB2 in growth factor receptor-mediated signal cascade. DOC-2/DAB2-mediated inhibition of ERK phosphorylation via binding to Grb2. J Biol Chem. 276:27793–27798. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Wang Z, Tseng CP, Pong RC, Chen H, McConnell JD, Navone N and Hsieh JT: The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate cancer. Characterization of a novel GTPase-activating protein associated with N-terminal domain of DOC-2/DAB2. J Biol Chem. 277:12622–12631. 2002. View Article : Google Scholar : PubMed/NCBI

25 

Chen H, Pong RC, Wang Z and Hsieh JT: Differential regulation of the human gene DAB2IP in normal and malignant prostatic epithelia: Cloning and characterization. Genomics. 79:573–581. 2002. View Article : Google Scholar : PubMed/NCBI

26 

Wu K, Liu J, Tseng SF, Gore C, Ning Z, Sharifi N, Fazli L, Gleave M, Kapur P, Xiao G, et al: The role of DAB2IP in androgen receptor activation during prostate cancer progression. Oncogene. 33:1954–1963. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Valentino E, Bellazzo A, Di Minin G, Sicari D, Apollonio M, Scognamiglio G, Di Bonito M, Botti G, Del Sal G and Collavin L: Mutant p53 potentiates the oncogenic effects of insulin by inhibiting the tumor suppressor DAB2IP. Proc Natl Acad Sci USA. 114:7623–7628. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Ren G, Baritaki S, Marathe H, Feng J, Park S, Beach S, Bazeley PS, Beshir AB, Fenteany G, Mehra R, et al: Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer. Cancer Res. 72:3091–3104. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Hsieh JT, Karam JA and Min W: Genetic and biologic evidence that implicates a gene in aggressive prostate cancer. J Natl Cancer Inst. 99:1823–1824. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Dote H, Toyooka S, Tsukuda K, Yano M, Ouchida M, Doihara H, Suzuki M, Chen H, Hsieh JT, Gazdar AF and Shimizu N: Aberrant promoter methylation in human DAB2 interactive protein (hDAB2IP) gene in breast cancer. Clin Cancer Res. 10:2082–2089. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Xie D, Gore C, Liu J, Pong RC, Mason R, Hao G, Long M, Kabbani W, Yu L, Zhang H, et al: Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proc Natl Acad Sci USA. 107:2485–2490. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Xie D, Gore C, Zhou J, Pong RC, Zhang H, Yu L, Vessella RL, Min W and Hsieh JT: DAB2IP coordinates both PI3K-Akt and ASK1 pathways for cell survival and apoptosis. Proc Natl Acad Sci USA. 106:19878–19883. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Ryan MB, Finn AJ, Pedone KH, Thomas NE, Der CJ and Cox AD: ERK/MAPK signaling drives overexpression of the Rac-GEF, PREX1, in BRAF- and NRAS-mutant melanoma. Mol Cancer Res. 14:1009–1018. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Vial E, Sahai E and Marshall CJ: ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell. 4:67–79. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Widmann C, Gibson S, Jarpe MB and Johnson GL: Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol Rev. 79:143–180. 1999. View Article : Google Scholar : PubMed/NCBI

36 

Robinson MJ and Cobb MH: Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 9:180–186. 1997. View Article : Google Scholar : PubMed/NCBI

37 

Datta A, Kim H, Lal M, McGee L, Johnson A, Moustafa AA, Jones JC, Mondal D, Ferrer M and Abdel-Mageed AB: Manumycin A suppresses exosome biogenesis and secretion via targeted inhibition of Ras/Raf/ERK1/2 signaling and hnRNP H1 in castration-resistant prostate cancer cells. Cancer Lett. 408:73–81. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Zhang X, Liu G, Ding L, Jiang T, Shao S, Gao Y and Lu Y: HOXA3 promotes tumor growth of human colon cancer through activating EGFR/Ras/Raf/MEK/ERK signaling pathway. J Cell Biochem. 119:2864–2874. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2019
Volume 41 Issue 4

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhang, Y., Yin, W., Cao, W., Chen, P., Bian, L., & Ni, Q. (2019). CDCA3 is a potential prognostic marker that promotes cell proliferation in gastric cancer. Oncology Reports, 41, 2471-2481. https://doi.org/10.3892/or.2019.7008
MLA
Zhang, Y., Yin, W., Cao, W., Chen, P., Bian, L., Ni, Q."CDCA3 is a potential prognostic marker that promotes cell proliferation in gastric cancer". Oncology Reports 41.4 (2019): 2471-2481.
Chicago
Zhang, Y., Yin, W., Cao, W., Chen, P., Bian, L., Ni, Q."CDCA3 is a potential prognostic marker that promotes cell proliferation in gastric cancer". Oncology Reports 41, no. 4 (2019): 2471-2481. https://doi.org/10.3892/or.2019.7008