|
1
|
Catalano V, Labianca R, Beretta GD, Gatta
G, de Braud F and Van Cutsem E: Gastric cancer. Crit Rev Oncol
Hematol. 71:127–164. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Balakrishnan M, George R, Sharma A and
Graham DY: Changing trends in stomach cancer throughout the world.
Curr Gastroenterol Rep. 19:362017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Thiel A and Ristimäki A: Gastric cancer:
Basic aspects. Helicobacter. 17 (Suppl 1):S26–S29. 2012. View Article : Google Scholar
|
|
6
|
Tian L, Zhao Z, Xie L and Zhu J:
miR-361-5p inhibits the mobility of gastric cancer cells through
suppressing epithelial-mesenchymal transition via the Wnt/β-catenin
pathway. Gene. 675:102–109. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Xie SS, Jin J, Xu X, Zhuo W and Zhou TH:
Emerging roles of non-coding RNAs in gastric cancer: Pathogenesis
and clinical implications. World J Gastroenterol. 22:1213–1223.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhang M and Du X: Noncoding RNAs in
gastric cancer: Research progress and prospects. World J
Gastroenterol. 22:6610–6618. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhang S, Chen L, Cui B, Chuang HY, Yu J,
Wang-Rodriguez J, Tang L, Chen G, Basak GW and Kipps TJ: ROR1 is
expressed in human breast cancer and associated with enhanced
tumor-cell growth. PLoS One. 7:e311272012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
O'Brien CA, Pollett A, Gallinger S and
Dick JE: A human colon cancer cell capable of initiating tumour
growth in immunodeficient mice. Nature. 445:106–110. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO,
Zheng BJ and Guan XY: Identification and characterization of
tumorigenic liver cancer stem/progenitor cells. Gastroenterology.
132:2542–2556. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Nagy TA, Wroblewski LE, Wang D, Piazuelo
MB, Delgado A, Romero-Gallo J, Noto J, Israel DA, Ogden SR, Correa
P, et al: β-catenin and p120 mediate PPARδ-dependent proliferation
induced by Helicobacter pylori in human and rodent
epithelia. Gastroenterology. 141:553–564. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ahn HJ and Lee DS: Helicobacter
pylori in gastric carcinogenesis. World J Gastrointest Oncol.
7:455–465. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Valenzuela MA, Canales J, Corvalán AH and
Quest AF: Helicobacter pylori-induced inflammation and
epigenetic changes during gastric carcinogenesis. World J
Gastroenterol. 21:12742–12756. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Baker NE: Molecular cloning of sequences
from wingless, a segment polarity gene in Drosophila: The
spatial distribution of a transcript in embryos. EMBO J.
6:1765–1773. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Baker NE: Transcription of the
segment-polarity gene wingless in the imaginal discs of
Drosophila, and the phenotype of a pupal-lethal wg mutation.
Development. 102:489–497. 1988.PubMed/NCBI
|
|
17
|
Peifer M and Wieschaus E: The segment
polarity gene armadillo encodes a functionally modular protein that
is the Drosophila homolog of human plakoglobin. Cell.
63:1167–1176. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Phillips RG, Roberts IJ, Ingham PW and
Whittle JR: The Drosophila segment polarity gene patched is
involved in a position-signalling mechanism in imaginal discs.
Development. 110:105–114. 1990.PubMed/NCBI
|
|
19
|
Therond P, Busson D, Guillemet E,
Limbourg-Bouchon B, Preat T, Terracol R, Tricoire H and
Lamour-Isnard C: Molecular organisation and expression pattern of
the segment polarity gene fused of Drosophila melanogaster.
Mech Dev. 44:65–80. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Semenov MV, Habas R, Macdonald BT and He
X: SnapShot: Noncanonical Wnt signaling pathways. Cell.
131:13782007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
MacDonald BT, Tamai K and He X:
Wnt/beta-catenin signaling: Components, mechanisms, and diseases.
Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Nusse R and Clevers H: Wnt/β-catenin
signaling, disease, and emerging therapeutic modalities. Cell.
169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Rao TP and Kühl M: An updated overview on
Wnt signaling pathways: A prelude for more. Circ Res.
106:1798–1806. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Schulte G: International union of basic
and clinical pharmacology. LXXX. The class Frizzled receptors.
Pharmacol Rev. 62:632–667. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Shang S, Hua F and Hu ZW: The regulation
of β-catenin activity and function in cancer: Therapeutic
opportunities. Oncotarget. 8:33972–33989. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Duchartre Y, Kim YM and Kahn M: The Wnt
signaling pathway in cancer. Crit Rev Oncol Hematol. 99:141–149.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhan T, Rindtorff N and Boutros M: Wnt
signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Sato N, Meijer L, Skaltsounis L, Greengard
P and Brivanlou AH: Maintenance of pluripotency in human and mouse
embryonic stem cells through activation of Wnt signaling by a
pharmacological GSK-3-specific inhibitor. Nat Med. 10:55–63. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ooi CH, Ivanova T, Wu J, Lee M, Tan IB,
Tao J, Ward L, Koo JH, Gopalakrishnan V, Zhu Y, et al: Oncogenic
pathway combinations predict clinical prognosis in gastric cancer.
PLoS Genet. 5:e10006762009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Gomes AQ, Nolasco S and Soares H:
Non-coding RNAs: Multi-tasking molecules in the cell. Int J Mol
Sci. 14:16010–16039. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li PF, Chen SC, Xia T, Jiang XM, Shao YF,
Xiao BX and Guo JM: Non-coding RNAs and gastric cancer. World J
Gastroenterol. 20:5411–5419. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Taft RJ, Pang KC, Mercer TR, Dinger M and
Mattick JS: Non-coding RNAs: Regulators of disease. J Pathol.
220:126–139. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Qiu MT, Hu JW, Yin R and Xu L: Long
noncoding RNA: An emerging paradigm of cancer research. Tumour
Biol. 34:613–620. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lin F, Li Y, Yan S, Liu S, Qian W, Shen D,
Lin Q and Mao W: MicroRNA-181a inhibits tumor proliferation,
invasiveness, and metastasis and is downregulated in gastric
cancer. Oncol Res. 22:75–84. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Shin VY and Chu KM: miRNA as potential
biomarkers and therapeutic targets for gastric cancer. World J
Gastroenterol. 20:10432–10439. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jiang C, Chen X, Alattar M, Wei J and Liu
H: MicroRNAs in tumorigenesis, metastasis, diagnosis and prognosis
of gastric cancer. Cancer Gene Ther. 22:291–301. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chen S, Zhu J, Yu F, Tian Y, Ma S and Liu
X: Combination of miRNA and RNA functions as potential biomarkers
for gastric cancer. Tumour Biol. 36:9909–9918. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Miyashita K, Nakada M, Shakoori A,
Ishigaki Y, Shimasaki T, Motoo Y, Kawakami K and Minamoto T: An
emerging strategy for cancer treatment targeting aberrant glycogen
synthase kinase 3 beta. Anticancer Agents Med Chem. 9:1114–1122.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sahin I, Eturi A, De Souza A, Pamarthy S,
Tavora F, Giles FJ and Carneiro BA: Glycogen synthase kinase-3 beta
inhibitors as novel cancer treatments and modulators of antitumor
immune responses. Cancer Biol Ther. 20:1047–1056. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Xu Y, Zhang G, Zou C, Qi W, Gong Z, Zhang
G, Ma G, Zhang W and Jiang P: Long non-coding RNA LINC01225
promotes proliferation, invasion and migration of gastric cancer
via Wnt/β-catenin signalling pathway. J Cell Mol Med. 23:7581–7591.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Liu J, Liu L, Wan JX and Song Y: Long
noncoding RNA SNHG20 promotes gastric cancer progression by
inhibiting p21 expression and regulating the GSK-3β/β-catenin
signaling pathway. Oncotarget. 8:80700–80708. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li ZT, Zhang X, Wang DW, Xu J, Kou KJ,
Wang ZW, Yong G, Liang DS and Sun XY: Overexpressed lncRNA
GATA6-AS1 inhibits LNM and EMT via FZD4 through the Wnt/β-catenin
signaling pathway in GC. Mol Ther Nucleic Acids. 19:827–840. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang H, Wu M, Lu Y, He K, Cai X, Yu X, Lu
J and Teng L: lncRNA MIR4435-2HG targets desmoplakin and promotes
growth and metastasis of gastric cancer by activating Wnt/β-catenin
signaling. Aging (Albany NY). 11:6657–6673. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhang F, Li Y, Xu W, He L, Tan Y and Xu H:
Long non-coding RNA ZFAS1 regulates the malignant progression of
gastric cancer via the microRNA-200b-3p/Wnt1 axis. Biosci
Biotechnol Biochem. 83:1289–1299. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wu X, Zhang P, Zhu H, Li S, Chen X and Shi
L: Long noncoding RNA FEZF1-AS1 indicates a poor prognosis of
gastric cancer and promotes tumorigenesis via activation of Wnt
signaling pathway. Biomed Pharmacother. 96:1103–1108. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Tang L, Wen JB, Wen P, Li X, Gong M and Li
Q: Long non-coding RNA LINC01314 represses cell migration,
invasion, and angiogenesis in gastric cancer via the Wnt/β-catenin
signaling pathway by down-regulating KLK4. Cancer Cell Int.
19:942019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gu W, Ren JH, Zheng X, Hu XY and Hu MJ:
Comprehensive analysis of expression profiles of long non-coding
RNAs with associated ceRNA network involved in gastric cancer
progression. Mol Med Rep. 20:2209–2218. 2019.PubMed/NCBI
|
|
48
|
Qi X, Zhang DH, Wu N, Xiao JH, Wang X and
Ma W: ceRNA in cancer: Possible functions and clinical
implications. J Med Genet. 52:710–718. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Liu Y, Zhu J, Ma X, Han S, Xiao D, Jia Y
and Wang Y: ceRNA network construction and comparison of gastric
cancer with or without Helicobacter pylori infection. J Cell
Physiol. 234:7128–7140. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Karreth FA and Pandolfi PP: ceRNA
cross-talk in cancer: When ce-bling rivalries go awry. Cancer
Discov. 3:1113–1121. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Xu J, Li Y, Lu J, Pan T, Ding N, Wang Z,
Shao T, Zhang J, Wang L and Li X: The mRNA related ceRNA-ceRNA
landscape and significance across 20 major cancer types. Nucleic
Acids Res. 43:8169–8182. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Guo T, Yuan X, Liu DF, Peng SH and Xu AM:
lncRNA HOXA11-AS promotes migration and invasion through modulating
miR-148a/WNT1/β-catenin pathway in gastric cancer. Neoplasma.
67:492–500. 2020.PubMed/NCBI
|
|
53
|
Luo Y, Tan W, Jia W, Liu Z, Ye P, Fu Z, Lu
F, Xiang W, Tang L, Yao L, et al: The long non-coding RNA LINC01606
contributes to the metastasis and invasion of human gastric cancer
and is associated with Wnt/β-catenin signaling. Int J Biochem Cell
Biol. 103:125–134. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yang XZ, Cheng TT, He QJ, Lei ZY, Chi J,
Tang Z, Liao QX, Zhang H, Zeng LS and Cui SZ: LINC01133 as ceRNA
inhibits gastric cancer progression by sponging miR-106a-3p to
regulate APC expression and the Wnt/β-catenin pathway. Mol Cancer.
17:1262018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Jiang K, Zhi XH, Ma YY and Zhou LQ: Long
non-coding RNA TOB1-AS1 modulates cell proliferation, apoptosis,
migration and invasion through miR-23a/NEU1 axis via Wnt/β-catenin
pathway in gastric cancer. Eur Rev Med Pharmacol Sci. 23:9890–9899.
2019.PubMed/NCBI
|
|
56
|
Li HL, Liang S, Cui JH and Han GY:
Targeting of GSK-3β by miR-214 to facilitate gastric cancer cell
proliferation and decrease of cell apoptosis. Eur Rev Med Pharmacol
Sci. 22:127–134. 2018.PubMed/NCBI
|
|
57
|
Fan D, Ren B, Yang X, Liu J and Zhang Z:
Upregulation of miR-501-5p activates the wnt/β-catenin signaling
pathway and enhances stem cell-like phenotype in gastric cancer. J
Exp Clin Cancer Res. 35:1772016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Willert K and Nusse R: Wnt proteins. Cold
Spring Harb Perspect Biol. 4:a0078642012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Alok A, Lei Z, Jagannathan NS, Kaur S,
Harmston N, Rozen SG, Tucker-Kellogg L and Virshup DM: Wnt proteins
synergize to activate β-catenin signaling. J Cell Sci.
130:1532–1544. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cha Y, He Y, Ouyang K, Xiong H, Li J and
Yuan X: MicroRNA-140-5p suppresses cell proliferation and invasion
in gastric cancer by targeting WNT1 in the WNT/β-catenin signaling
pathway. Oncol Lett. 16:6369–6376. 2018.PubMed/NCBI
|
|
61
|
Tang H, Kong Y, Guo J, Tang Y and Xie X,
Yang L, Su Q and Xie X: Diallyl disulfide suppresses proliferation
and induces apoptosis in human gastric cancer through Wnt-1
signaling pathway by up-regulation of miR-200b and miR-22. Cancer
Lett. 340:72–81. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Su B, Su J, Zeng Y, Ding E, Liu F, Tan T,
Xia H, Wu YH, Zeng X, Ling H, et al: Diallyl disulfide inhibits
TGF-β1-induced upregulation of Rac1 and β-catenin in
epithelial-mesenchymal transition and tumor growth of gastric
cancer. Oncol Rep. 39:2797–2806. 2018.PubMed/NCBI
|
|
63
|
Xiang SL, Xiao XL, Ling H, Liao QJ, Zhou
XT, Dong L and Su Q: Antitumor effect of diallyl disulfide on human
gastric cancer MGC803 cells xenograft in nude mice. Ai Zheng.
24:940–944. 2005.(In Chinese). PubMed/NCBI
|
|
64
|
Sun R, Liu Z, Tong D, Yang Y, Guo B, Wang
X, Zhao L and Huang C: miR-491-5p, mediated by Foxi1, functions as
a tumor suppressor by targeting Wnt3a/β-catenin signaling in the
development of gastric cancer. Cell Death Dis. 8:e27142017.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Song J, Guan Z, Li M, Sha S, Song C, Gao Z
and Zhao Y: MicroRNA-154 inhibits the growth and invasion of
gastric cancer cells by targeting DIXDC1/WNT signaling. Oncol Res.
26:847–856. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Song B, Lin HX, Dong LL, Ma JJ and Jiang
ZG: MicroRNA-338 inhibits proliferation, migration, and invasion of
gastric cancer cells by the Wnt/β-catenin signaling pathway. Eur
Rev Med Pharmacol Sci. 22:1290–1296. 2018.PubMed/NCBI
|
|
67
|
Li W, Li J, Mu H, Guo M and Deng H:
miR-503 suppresses cell proliferation and invasion of gastric
cancer by targeting HMGA2 and inactivating WNT signaling pathway.
Cancer Cell Int. 19:1642019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cong N, Du P, Zhang A, Shen F, Su J, Pu P,
Wang T, Zjang J, Kang C and Zhang Q: Downregulated microRNA-200a
promotes EMT and tumor growth through the wnt/β-catenin pathway by
targeting the E-cadherin repressors ZEB1/ZEB2 in gastric
adenocarcinoma. Oncol Rep. 29:1579–1587. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Conde-Perez A, Gros G, Longvert C,
Pedersen M, Petit V, Aktary Z, Viros A, Gesbert F, Delmas V, Rambow
F, et al: A caveolin-dependent and PI3K/AKT-independent role of
PTEN in β-catenin transcriptional activity. Nat Commun. 6:80932015.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
de Araujo WM, Robbs BK, Bastos LG, de
Souza WF, Vidal FC, Viola JP and Morgado-Diaz JA: PTEN
overexpression cooperates with lithium to reduce the malignancy and
to increase cell death by apoptosis via PI3K/Akt suppression in
colorectal cancer cells. J Cell Biochem. 117:458–469. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jang H, Lee OH, Lee Y, Yoon H, Chang EM,
Park M, Lee JW, Hong K, Kim JO, Kim NK, et al: Melatonin prevents
cisplatin-induced primordial follicle loss via suppression of
PTEN/AKT/FOXO3a pathway activation in the mouse ovary. J Pineal
Res. 60:336–347. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Perumal E, So Youn K, Sun S, Seung-Hyun J,
Suji M, Jieying L and Yeun-Jun C: PTEN inactivation induces
epithelial-mesenchymal transition and metastasis by intranuclear
translocation of β-catenin and snail/slug in non-small cell lung
carcinoma cells. Lung Cancer. 130:25–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ma J, Guo X, Zhang J, Wu D, Hu X, Li J,
Lan Q, Liu Y and Dong W: PTEN gene induces cell invasion and
migration via regulating AKT/GSK-3β/β-catenin signaling pathway in
human gastric cancer. Dig Dis Sci. 62:3415–3425. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Li Y, Yan X, Shi J, He Y, Xu J, Lin L,
Chen W and Lin X and Lin X: Aberrantly expressed miR-188-5p
promotes gastric cancer metastasis by activating Wnt/β-catenin
signaling. BMC Cancer. 19:5052019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Katoh Y and Katoh M: Hedgehog signaling
pathway and gastrointestinal stem cell signaling network (Review).
Int J Mol Med. 18:1019–1023. 2006.PubMed/NCBI
|
|
76
|
Katoh Y and Katoh M: Hedgehog target
genes: Mechanisms of carcinogenesis induced by aberrant hedgehog
signaling activation. Curr Mol Med. 9:873–886. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Katoh M: Genomic testing, tumor
microenvironment and targeted therapy of hedgehog-related human
cancers. Clin Sci (Lond). 133:953–970. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Maniatis T: A ubiquitin ligase complex
essential for the NF-kappaB, Wnt/Wingless, and hedgehog signaling
pathways. Genes Dev. 13:505–510. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Min TH, Kriebel M, Hou S and Pera EM: The
dual regulator Sufu integrates hedgehog and Wnt signals in the
early xenopus embryo. Dev Biol. 358:262–276. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Taylor MD, Zhang X, Liu L, Hui CC,
Mainprize TG, Scherer SW, Wainwright B, Hogg D and Rutka JT:
Failure of a medulloblastoma-derived mutant of SUFU to suppress WNT
signaling. Oncogene. 23:4577–4583. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yang L, Huang S, Bian Y, Ma X, Zhang H and
Xie J: Identification of signature genes for detecting hedgehog
signaling activation in gastric cancer. Mol Med Rep. 3:473–478.
2010.PubMed/NCBI
|
|
82
|
Yan R, Peng X, Yuan X, Huang D, Chen J, Lu
Q, Lv N and Luo S: Suppression of growth and migration by blocking
the hedgehog signaling pathway in gastric cancer cells. Cell Oncol
(Dordr). 36:421–435. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Katoh Y and Katoh M: Hedgehog signaling
pathway and gastric cancer. Cancer Biol Ther. 4:1050–1054. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Peng Y, Zhang X, Ma Q, Yan R, Qin Y, Zhao
Y, Cheng Y, Yang M, Wang Q, Feng X, et al: miRNA-194 activates the
Wnt/β-catenin signaling pathway in gastric cancer by targeting the
negative Wnt regulator, SUFU. Cancer Lett. 385:117–127. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Peng Y, Zhang X, Lin H, Deng S, Huang Y,
Qin Y, Feng X, Yan R, Zhao Y, Cheng Y, et al: Inhibition of miR-194
suppresses the Wnt/β-catenin signalling pathway in gastric cancer.
Oncol Rep. 40:3323–3334. 2018.PubMed/NCBI
|
|
86
|
Sun GL, Li Z, Wang WZ, Chen Z, Zhang L, Li
Q, Wei S, Li BW, Xu JH, Chen L, et al: miR-324-3p promotes gastric
cancer development by activating Smad4-mediated Wnt/beta-catenin
signaling pathway. J Gastroenterol. 53:725–739. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li C, Dong J, Han Z and Zhang K:
MicroRNA-219-5p represses the proliferation, migration, and
invasion of gastric cancer cells by targeting the
LRH-1/Wnt/β-catenin signaling pathway. Oncol Res. 25:617–627. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Huang J, He Y, Mcleod HL, Xie Y, Xiao D,
Hu H, Chen P, Shen L, Zeng S, Yin X, et al: miR-302b inhibits
tumorigenesis by targeting EphA2 via Wnt/β-catenin/EMT signaling
cascade in gastric cancer. BMC Cancer. 17:8862017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Xu K and Zhao YC: MEF2D/Wnt/β-catenin
pathway regulates the proliferation of gastric cancer cells and is
regulated by microRNA-19. Tumour Biol. 37:9059–9069. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Fang Z, Zhong M, Wang Y, Yuan X, Guo H,
Yao Y, Feng M, Chen J, Xiong J and Xiang X: miR-381 and miR-489
suppress cell proliferation and invasion by targeting CUL4B via the
Wnt/β-catenin pathway in gastric cancer. Int J Oncol. 54:733–743.
2019.PubMed/NCBI
|
|
91
|
Arnold M, Park JY, Camargo MC, Lunet N,
Forman D and Soerjomataram I: Is gastric cancer becoming a rare
disease? A global assessment of predicted incidence trends to 2035.
Gut. 69:823–829. 2020. View Article : Google Scholar : PubMed/NCBI
|