|
1
|
Enders G: Paramyxoviruses. Medical
Microbiology. Baron S: 4th. University of Texas Medical Branch at
Galveston; Galveston, TX: 1996
|
|
2
|
Enders JF and Peebles TC: Propagation in
tissue cultures of cytopathogenic agents from patients with
measles. Proc Soc Exp Biol Med. 86:277–286. 1954. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Grote D, Russell SJ, Cornu TI, Cattaneo R,
Vile R, Poland GA and Fielding AK: Live attenuated measles virus
induces regression of human lymphoma xenografts in immunodeficient
mice. Blood. 97:3746–3754. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chen A, Zhang Y, Meng G, Jiang D, Zhang H,
Zheng M, Xia M, Jiang A, Wu J, Beltinger C and Wei J: Oncolytic
measles virus enhances antitumour responses of adoptive CD8+NKG2D+
cells in hepatocellular carcinoma treatment. Sci Rep. 7:51702017.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Msaouel P, Opyrchal M, Domingo Musibay E
and Galanis E: Oncolytic measles virus strains as novel anticancer
agents. Expert Opin Biol Ther. 13:483–502. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Allen C, Opyrchal M, Aderca I, Schroeder
MA, Sarkaria JN, Domingo E, Federspiel MJ and Galanis E: Oncolytic
measles virus strains have significant antitumor activity against
glioma stem cells. Gene Ther. 20:444–449. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Galanis E, Hartmann LC, Cliby WA, Long HJ,
Peethambaram PP, Barrette BA, Kaur JS, Haluska PJ Jr, Aderca I,
Zollman PJ, et al: Phase I trial of intraperitoneal administration
of an oncolytic measles virus strain engineered to express
carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res.
70:875–882. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hutzen B, Raffel C and Studebaker AW:
Advances in the design and development of oncolytic measles
viruses. Oncolytic Virother. 4:109–118. 2015.PubMed/NCBI
|
|
9
|
Iankov ID, Kurokawa CB, D'Assoro AB, Ingle
JN, Domingo-Musibay E, Allen C, Crosby CM, Nair AA, Liu MC, Aderca
I, et al: Inhibition of the Aurora A kinase augments the anti-tumor
efficacy of oncolytic measles virotherapy. Cancer Gene Ther.
22:438–444. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Patel S: Breast cancer: Lesser-known
facets and hypotheses. Biomed Pharmacother. 98:499–506. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
DeSantis CE, Ma J, Gaudet MM, Newman LA,
Miller KD, Goding Sauer A, Jemal A and Siegel RL: Breast cancer
statistics, 2019. CA Cancer J Clin. 69:438–451. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rivera E and Gomez H: Chemotherapy
resistance in metastatic breast cancer: The evolving role of
ixabepilone. Breast Cancer Res. 12 (Suppl 2):S22010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sun J, Guo Y, Fu X, Wang Y, Liu Y, Huo B,
Sheng J and Hu X: Dendrobium candidum inhibits MCF-7 cells
proliferation by inducing cell cycle arrest at G2/M phase and
regulating key biomarkers. Onco Targets Ther. 9:21–30.
2015.PubMed/NCBI
|
|
14
|
Cheung-Ong K, Giaever G and Nislow C:
DNA-damaging agents in cancer chemotherapy: Serendipity and
chemical biology. Chem Biol. 20:648–659. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Khanna A: DNA damage in cancer
therapeutics: A boon or a curse? Cancer Res. 75:2133–2138. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Gao D, Herman JG and Guo M: The clinical
value of aberrant epigenetic changes of DNA damage repair genes in
human cancer. Oncotarget. 7:37331–37346. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
O'Connor MJ: Targeting the DNA damage
response in cancer. Mol Cell. 60:547–560. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Cannan WJ and Pederson DS: Mechanisms and
consequences of double-strand DNA break formation in chromatin. J
Cell Physiol. 231:3–14. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Jeggo PA and Löbrich M: DNA double-strand
breaks: Their cellular and clinical impact? Oncogene. 26:7717–7719.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Haber JE: Partners and pathwaysrepairing a
double-strand break. Trends Genet. 16:259–264. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Rothkamm K, Krüger I, Thompson LH and
Löbrich M: Pathways of DNA double-strand break repair during the
mammalian cell cycle. Mol Cell Biol. 23:5706–5715. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hinz JM, Yamada NA, Salazar EP, Tebbs RS
and Thompson LH: Influence of double-strand-break repair pathways
on radiosensitivity throughout the cell cycle in CHO cells. DNA
Repair (Amst). 4:782–792. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Duprex WP, McQuaid S, Hangartner L,
Billeter MA and Rima BK: Observation of measles virus cell-to-cell
spread in astrocytoma cells by using a green fluorescent
protein-expressing recombinant virus. J Virol. 73:9568–9575. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ramakrishnan MA: Determination of 50%
endpoint titer using a simple formula. World J Virol. 5:85–86.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
McDonald CJ, Erlichman C, Ingle JN,
Rosales GA, Allen C, Greiner SM, Harvey ME, Zollman PJ, Russell SJ
and Galanis E: A measles virus vaccine strain derivative as a novel
oncolytic agent against breast cancer. Breast Cancer Res Treat.
99:177–184. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Guo Y, Fu X, Huo B, Wang Y, Sun J, Meng L,
Hao T, Zhao ZJ and Hu X: GATA2 regulates GATA1 expression through
LSD1-mediated histone modification. Am J Transl Res. 8:2265–2274.
2016.PubMed/NCBI
|
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Guo Y, Fu X, Jin Y, Sun J, Liu Y, Huo B,
Li X and Hu X: Histone demethylase LSD1-mediated repression of
GATA-2 is critical for erythroid differentiation. Drug Des Devel
Ther. 9:3153–3162. 2015.PubMed/NCBI
|
|
29
|
Meng Y, Chen CW, Yung MMH, Sun W, Sun J,
Li Z, Li J, Li Z, Zhou W, Liu SS, et al: DUOXA1-mediated ROS
production promotes cisplatin resistance by activating ATR-Chk1
pathway in ovarian cancer. Cancer Lett. 428:104–116. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Daley JM and Sung P: 53BP1, BRCA1, and the
choice between recombination and end joining at DNA double-strand
breaks. Mol Cell Biol. 34:1380–1388. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Sledge GW, Mamounas EP, Hortobagyi GN,
Burstein HJ, Goodwin PJ and Wolff AC: Past, present, and future
challenges in breast cancer treatment. J Clin Oncol. 32:1979–1986.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Russell SJ and Peng KW: Measles virus for
cancer therapy. Curr Top Microbiol Immunol. 330:213–241.
2009.PubMed/NCBI
|
|
33
|
Laksono BM, de Vries RD, McQuaid S, Duprex
WP and de Swart RL: Measles virus host invasion and pathogenesis.
Viruses. 8:2102016. View Article : Google Scholar
|
|
34
|
Msaouel P, Iankov ID, Dispenzieri A and
Galanis E: Attenuated oncolytic measles virus strains as cancer
therapeutics. Curr Pharm Biotechnol. 13:1732–1741. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sugiyama T, Yoneda M, Kuraishi T, Hattori
S, Inoue Y, Sato H and Kai C: Measles virus selectively blind to
signaling lymphocyte activation molecule as a novel oncolytic virus
for breast cancer treatment. Gene Ther. 20:338–347. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Noris M and Remuzzi G: Overview of
complement activation and regulation. Semin Nephrol. 33:479–492.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Maciejczyk A, Szelachowska J,
Szynglarewicz B, Szulc R, Szulc A, Wysocka T, Jagoda E, Lage H and
Surowiak P: CD46 expression is an unfavorable prognostic factor in
breast cancer cases. Appl Immunohistochem Mol Morphol. 19:540–546.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Surowiak P, Materna V, Maciejczyk A,
Kaplenko I, Spaczynski M, Dietel M, Lage H and Zabel M: CD46
expression is indicative of shorter revival-free survival for
ovarian cancer patients. Anticancer Res. 26:4943–4948.
2006.PubMed/NCBI
|
|
39
|
Su Y, Liu Y, Behrens CR, Bidlingmaier S,
Lee NK, Aggarwal R, Sherbenou DW, Burlingame AL, Hann BC, Simko JP,
et al: Targeting CD46 for both adenocarcinoma and neuroendocrine
prostate cancer. JCI Insight. 3:e1214972018. View Article : Google Scholar
|
|
40
|
Sherbenou DW, Aftab BT, Su Y, Behrens CR,
Wiita A, Logan AC, Acosta-Alvear D, Hann BC, Walter P, Shuman MA,
et al: Antibody-drug conjugate targeting CD46 eliminates multiple
myeloma cells. J Clin Invest. 126:4640–4653. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cho YS, Do MH, Kwon SY, Moon C, Kim K, Lee
K, Lee SJ, Hemmi S, Joo YE, Kim MS and Jung C: Efficacy of
CD46-targeting chimeric Ad5/35 adenoviral gene therapy for
colorectal cancers. Oncotarget. 7:38210–38223. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Geekiyanage H and Galanis E: MiR-31 and
miR-128 regulates poliovirus receptor-related 4 mediated measles
virus infectivity in tumors. Mol Oncol. 10:1387–1403. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Carlson SK, Classic KL, Hadac EM, Dingli
D, Bender CE, Kemp BJ and Russell SJ: Quantitative molecular
imaging of viral therapy for pancreatic cancer using an engineered
measles virus expressing the sodium-iodide symporter reporter gene.
AJR Am J Roentgenol. 192:279–287. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Peng KW, TenEyck CJ, Galanis E, Kalli KR,
Hartmann LC and Russell SJ: Intraperitoneal therapy of ovarian
cancer using an engineered measles virus. Cancer Res. 62:4656–4662.
2002.PubMed/NCBI
|
|
45
|
Shoji K, Yoneda M, Fujiyuki T, Amagai Y,
Tanaka A, Matsuda A, Ogihara K, Naya Y, Ikeda F, Matsuda H, Sato H
and Kai C: Development of new therapy for canine mammary cancer
with recombinant measles virus. Mol Ther Oncolytics. 3:150222016.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Russell SJ: Replicating vectors for cancer
therapy: A question of strategy. Semin Cancer Biol. 5:437–443.
1994.PubMed/NCBI
|
|
47
|
Delpeut S, Sisson G, Black KM and
Richardson CD: Measles virus enters breast and colon cancer cell
lines through a PVRL4-mediated macropinocytosis pathway. J Virol.
91:e02191–16. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Baldo A, Galanis E, Tangy F and Herman P:
Biosafety considerations for attenuated measles virus vectors used
in virotherapy and vaccination. Hum Vaccin Immunother.
12:1102–1116. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Phuong LK, Allen C, Peng KW, Giannini C,
Greiner S, TenEyck CJ, Mishra PK, Macura SI, Russell SJ and Galanis
EC: Use of a vaccine strain of measles virus genetically engineered
to produce carcinoembryonic antigen as a novel therapeutic agent
against glioblastoma multiforme. Cancer Res. 63:2462–2469.
2003.PubMed/NCBI
|
|
50
|
Peng KW, Frenzke M, Myers R, Soeffker D,
Harvey M, Greiner S, Galanis E, Cattaneo R, Federspiel MJ and
Russell SJ: Biodistribution of oncolytic measles virus after
intraperitoneal administration into Ifnar-CD46Ge transgenic mice.
Hum Gene Ther. 14:1565–1577. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Myers R, Harvey M, Kaufmann TJ, Greiner
SM, Krempski JW, Raffel C, Shelton SE, Soeffker D, Zollman P,
Federspiel MJ, et al: Toxicology study of repeat intracerebral
administration of a measles virus derivative producing
carcinoembryonic antigen in rhesus macaques in support of a phase
I/II clinical trial for patients with recurrent gliomas. Hum Gene
Ther. 19:690–698. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Myers RM, Greiner SM, Harvey ME, Griesmann
G, Kuffel MJ, Buhrow SA, Reid JM, Federspiel M, Ames MM, Dingli D,
et al: Preclinical pharmacology and toxicology of intravenous
MV-NIS, an oncolytic measles virus administered with or without
cyclophosphamide. Clin Pharmacol Ther. 82:700–710. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Heinzerling L, Künzi V, Oberholzer PA,
Kündig T, Naim H and Dummer R: Oncolytic measles virus in cutaneous
T-cell lymphomas mounts antitumor immune responses in vivo and
targets interferon-resistant tumor cells. Blood. 106:2287–2294.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ruf B and Lauer UM: Assessment of current
virotherapeutic application schemes: ‘hit hard and early’ versus
‘killing softly’? Mol Ther Oncolytics. 2:150182015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Calton CM, Kelly KR, Anwer F, Carew JS and
Nawrocki ST: Oncolytic viruses for multiple myeloma therapy.
Cancers (Basel). 10:1982018. View Article : Google Scholar
|
|
56
|
Robinson S and Galanis E: Potential and
clinical translation of oncolytic measles viruses. Expert Opin Biol
Ther. 17:353–363. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Achard C, Surendran A, Wedge ME,
Ungerechts G, Bell J and Ilkow CS: Lighting a fire in the tumor
microenvironment using oncolytic immunotherapy. EBioMedicine.
31:17–24. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Galanis E, Atherton PJ, Maurer MJ, Knutson
KL, Dowdy SC, Cliby WA, Haluska P Jr, Long HJ, Oberg A, Aderca I,
et al: Oncolytic measles virus expressing the sodium iodide
symporter to treat drug-resistant ovarian cancer. Cancer Res.
75:22–30. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Robertson KA, Nalepa G, Yang FC, Bowers
DC, Ho CY, Hutchins GD, Croop JM, Vik TA, Denne SC, Parada LF, et
al: Imatinib mesylate for plexiform neurofibromas in patients with
neurofibromatosis type 1: A phase 2 trial. Lancet Oncol.
13:1218–1224. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Msaouel P, Opyrchal M, Dispenzieri A, Peng
KW, Federspiel MJ, Russell SJ and Galanis E: Clinical trials with
oncolytic measles virus: Current status and future prospects. Curr
Cancer Drug Targets. 18:177–187. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Russell SJ, Federspiel MJ, Peng KW, Tong
C, Dingli D, Morice WG, Lowe V, O'Connor MK, Kyle RA, Leung N, et
al: Remission of disseminated cancer after systemic oncolytic
virotherapy. Mayo Clin Proc. 89:926–933. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Gauvrit A, Brandler S, Sapede-Peroz C,
Boisgerault N, Tangy F and Gregoire M: Measles virus induces
oncolysis of mesothelioma cells and allows dendritic cells to
cross-prime tumor-specific CD8 response. Cancer Res. 68:4882–4892.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sishc BJ and Davis AJ: The role of the
core non-homologous end joining factors in carcinogenesis and
cancer. Cancers (Basel). 9:812017. View Article : Google Scholar
|
|
64
|
Mao Z, Jiang Y, Liu X, Seluanov A and
Gorbunova V: DNA repair by homologous recombination, but not by
nonhomologous end joining, is elevated in breast cancer cells.
Neoplasia. 11:683–691. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lees-Miller SP, Beattie TL and Tainer JA:
Noncoding RNA joins Ku and DNA-PKcs for DNA-break resistance in
breast cancer. Nat Struct Mol Biol. 23:509–510. 2016. View Article : Google Scholar : PubMed/NCBI
|