|
1
|
Araghi M, Soerjomataram I, Jenkins M,
Brierley J, Morris E, Bray F and Arnold M: Global trends in
colorectal cancer mortality: Projections to the year 2035. Int J
Cancer. 144:2992–3000. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yaghoubi N, Soltani A, Ghazvini K,
Hassanian SM and Hashemy SI: PD-1/PD-L1 blockade as a novel
treatment for colorectal cancer. Biomed Pharmacother. 110:312–318.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gandini S, Massi D and Mandalà M: PD-L1
expression in cancer patients receiving anti PD-1/PD-L1 antibodies:
A systematic review and meta-analysis. Crit Rev Oncol Hematol.
100:88–98. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lee HT, Lee SH and Heo YS: Molecular
interactions of antibody drugs targeting PD-1, PD-L1, and CTLA-4 in
immuno-oncology. Molecules. 24:11902019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Le DT, Uram JN, Wang H, Bartlett BR,
Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et
al: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl
J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Overman MJ, McDermott R, Leach JL, Lonardi
S, Lenz HJ, Morse MA, Desai J, Hill A, Axelson M, Moss RA, et al:
Nivolumab in patients with metastatic DNA mismatch repair-deficient
or microsatellite instability-high colorectal cancer (CheckMate
142): An open-label, multicentre, phase 2 study. Lancet Oncol.
18:1182–1191. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ishida Y, Agata Y, Shibahara K and Honjo
T: Induced expression of PD-1, a novel member of the immunoglobulin
gene superfamily, upon programmed cell death. EMBO J. 11:3887–3895.
1992. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Keir ME, Butte MJ, Freeman GJ and Sharpe
AH: PD-1 and its ligands in tolerance and immunity. Annu Rev
Immunol. 26:677–704. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Nishimura H, Okazaki T, Tanaka Y, Nakatani
K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N
and Honjo T: Autoimmune dilated cardiomyopathy in PD-1
receptor-deficient mice. Science. 291:319–322. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Akbay EA, Koyama S, Carretero J, Altabef
A, Tchaicha JH, Christensen CL, Mikse OR, Cherniack AD, Beauchamp
EM, Pugh TJ, et al: Activation of the PD-1 pathway contributes to
immune escape in EGFR-driven lung tumors. Cancer Discov.
3:1355–1363. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Flies DB and Chen L: Modulation of immune
response by B7 family molecules in tumor microenvironments. Immunol
Invest. 35:395–418. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Black M, Barsoum IB, Truesdell P,
Cotechini T, Macdonald-Goodfellow SK, Petroff M, Siemens DR, Koti
M, Craig AW and Graham CH: Activation of the PD-1/PD-L1 immune
checkpoint confers tumor cell chemoresistance associated with
increased metastasis. Oncotarget. 7:10557–10567. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Valentini AM, Pinto FDi, Cariola F, Guerra
V, Giannelli G, Caruso ML and Pirrelli M: PD-L1 expression in
colorectal cancer defines three subsets of tumor immune
microenvironments. Oncotarget. 9:8584–8596. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Taube JM, Klein A, Brahmer JR, Xu H, Pan
X, Kim JH, Chen L, Pardoll DM, Topalian SL and Anders RA:
Association of PD-1, PD-1 ligands, and other features of the tumor
immune microenvironment with response to anti-PD-1 therapy. Clin
Cancer Re. 20:5064–5074. 2014. View Article : Google Scholar
|
|
16
|
Patel SP and Kurzrock R: PD-L1 Expression
as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther.
14:847–856. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L
and Liu X: Application of PD-1 blockade in cancer immunotherapy.
Comput Struct Biotechnol J. 17:661–674. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wang HB, Yao H, Li CS, Liang LX, Zhang Y,
Chen YX, Fang JY and Xu J: Rise of PD-L1 expression during
metastasis of colorectal cancer: Implications for immunotherapy. J
Dig Dis. 18:574–581. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Koelzer VH, Lugli A, Dawson H, Hädrich M,
Berger MD, Borner M, Mallaev M, Galván JA, Amsler J, Schnüriger B,
et al: CD8/CD45RO T-cell infiltration in endoscopic biopsies of
colorectal cancer predicts nodal metastasis and survival. J Transl
Med. 12:812014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Huang CY, Chiang SF, Ke TW, Chen TW, You
YS, Chen WT and Chao KSC: Clinical significance of programmed death
1 ligand-1 (CD274/PD-L1) and intra-tumoral CD8+ T-cell
infiltration in stage II–III colorectal cancer. Sci Rep.
8:156582018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bupathi M and Wu C: Biomarkers for immune
therapy in colorectal cancer: Mismatchrepair deficiency and others.
J Gastrointest Oncol. 7:713–720. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Galon J, Costes A, Sanchez-Cabo F,
Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M,
Berger A, Wind P, et al: Type, density, and location of immune
cells within human colorectal tumors predict clinical outcome.
Science. 313:1960–1964. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Alexander J, Watanabe T, Wu TT, Rashid A,
Li S and Hamilton SR: Histopathological identification of colon
cancer with microsatellite instability. Am J Pathol. 158:527–535.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ward R, Meagher A, Tomlinson I, O'Connor
T, Norrie M, Wu R and Hawkins N: Microsatellite instability and the
clinicopathological features of sporadic colorectal cancer. Gut.
48:821–829. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Liang JT, Huang KC, Cheng AL, Jeng YM, Wu
MS and Wang SM: Clinicopathological and molecular biological
features of colorectal cancer in patients less than 40 years of
age. Br J Surg. 90:205–214. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lin CC, Lin JK, Lin TC, Chen WS, Yang SH,
Wang HS, Lan YT, Jiang JK, Yang MH and Chang SC: The prognostic
role of microsatellite instability, codon-specific KRAS, and BRAF
mutations in colon cancer. J Surg Oncol. 110:451–457. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Gryfe R, Kim H, Hsieh ET, Aronson MD,
Holowaty EJ, Bull SB, Redston M and Gallinger S: Tumor
microsatellite instability and clinical outcome in young patients
with colorectal cancer. N Engl J Med. 342:69–77. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Llosa NJ, Cruise M, Tam A, Wicks EC,
Hechenbleikner EM, Taube JM, Blosser RL, Fan H, Wang H, Luber BS,
et al: The vigorous immune microenvironment of microsatellite
instable colon cancer is balanced by multiple counter-inhibitory
checkpoints. Cancer Discov. 5:43–51. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Rosenbaum MW, Bledsoe JR, Morales-Oyarvide
V, Huynh TG and Mino-Kenudson M: PD-L1 expression in colorectal
cancer is associated with microsatellite instability, BRAF
mutation, medullary morphology and cytotoxic tumor-infiltrating
lymphocytes. Mod Pathol. 29:1104–1112. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wyss J, Dislich B, Koelzer VH, Galván JA,
Dawson H, Hädrich M, Inderbitzin D, Lugli A, Zlobec I and Berger
MD: Stromal PD-1/PD-L1 expression predicts outcome in colon cancer
patients. Clin Colorectal Cancer. 18:e20–e38. 2019. View Article : Google Scholar
|
|
31
|
Song M, Chen D, Lu B, Wang C, Zhang J,
Huang L, Wang X, Timmons CL, Hu J, Liu B, et al: PTEN loss
increases PD-L1 protein expression and affects the correlation
between PD-L1 expression and clinical parameters in colorectal
cancer. PLoS One. 8:e658212013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Topalian SL, Hodi FS, Brahmer JR,
Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD,
Sosman JA, Atkins MB, et al: Safety, activity, and immune
correlates of anti-PD-1 antibody in cancer. N Engl J Med.
366:2443–2454. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Tykodi SS: PD-1 as an emerging therapeutic
target in renal cell carcinoma: Current evidence. Onco Targets
Ther. 7:1349–1359. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Massari F, Santoni M, Ciccarese C, Santini
D, Alfieri S, Martignoni G, Brunelli M, Piva F, Berardi R,
Montironi R, et al: PD-1 blockade therapy in renal cell carcinoma:
Current studies and future promises. Cancer Treat Rev. 41:114–121.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ivashko IN and Kolesar JM: Pembrolizumab
and nivolumab: PD-1 inhibitors for advanced melanoma. Am J Health
Syst Pharm. 73:193–201. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Martin-Liberal J, Kordbacheh T and Larkin
J: Safety of pembrolizumab for the treatment of melanoma. Expert
Opin Drug Saf. 14:957–964. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sui H, Ma N, Wang Y, Li H, Liu X, Su Y and
Yang J: Anti-PD-1/PD-L1 therapy for non-small-cell lung cancer:
Toward personalized medicine and combination strategies. J Immunol
Res. 2018:69849482018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Xia L, Liu Y and Wang Y: PD-1/PD-L1
blockade therapy in advanced non-small-cell lung cancer: Current
status and future directions. Oncologist. 24 (Suppl 1):S31–S41.
2019. View Article : Google Scholar
|
|
39
|
Myint ZW and Goel G: Role of modern
immunotherapy in gastrointestinal malignancies: A review of current
clinical progress Ahmed Tarhini; Timothy Burns; Rahul Parikh;
Guarvel Goel; Annie im. J Hematol Oncol. 10:1–12. 2017. View Article : Google Scholar
|
|
40
|
Marabelle A, Le DT, Ascierto PA, Di
Giacomo AM, de Jesus-Acosta A, Delord JP, Geva R, Gottfried M,
Penel N, Hansen AR, et al: Efficacy of pembrolizumab in patients
with noncolorectal high microsatellite instability/mismatch
repair-deficient cancer: Results from the phase II KEYNOTE-158
study. J Clin Oncol. 38:1–10. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Morihiro T, Kuroda S, Kanaya N, Kakiuchi
Y, Kubota T, Aoyama K, Tanaka T, Kikuchi S, Nagasaka T, Nishizaki
M, et al: PD-L1 expression combined with microsatellite
instability/CD8+ tumor infiltrating lymphocytes as a
useful prognostic biomarker in gastric cancer. Sci Rep. 9:46332019.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Huang B, Chen L, Bao C, Sun C, Li J, Wang
L and Zhang X: The expression status and prognostic significance of
programmed cell death 1 ligand 1 in gastrointestinal tract cancer:
A systematic review and meta-analysis. Onco Targets Ther.
8:2617–2625. 2015.PubMed/NCBI
|
|
43
|
Ko YS and Pyo JS: Clinicopathological
significance and prognostic role of tumor-infiltrating lymphocytes
in colorectal cancer. Int J Biol Markers. 34:132–138. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Droeser RA, Hirt C, Viehl CT, Frey DM,
Nebiker C, Huber X, Zlobec I, Eppenberger-Castori S, Tzankov A,
Rosso R, et al: Clinical impact of programmed cell death ligand 1
expression in colorectal cancer. Eur J Cancer. 49:2233–2242. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li Y, Liang L, Dai W, Cai G, Xu Y, Li X,
Li Q and Cai S: Prognostic impact of programed cell death-1 (PD-1)
and PD-ligand 1 (PD-L1) expression in cancer cells and tumor
infiltrating lymphocytes in colorectal cancer. Mol Cancer.
15:552016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Enkhbat T, Nishi M, Takasu C, Yoshikawa K,
Jun H, Tokunaga T, Kashihara H, Ishikawa D and Shimada M:
Programmed cell death ligand 1 expression is an independent
prognostic factor in colorectal cancer. Anticancer Res.
38:3367–3373. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Udager AM, Liu TY, Skala SL, Magers MJ,
McDaniel AS, Spratt DE, Feng FY, Siddiqui J, Cao X, Fields KL, et
al: Frequent PD-L1 expression in primary and metastatic penile
squamous cell carcinoma: Potential opportunities for
immunotherapeutic approaches. Ann Oncol. 27:1706–1712. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Slater NA and Googe PB: PD-L1 expression
in cutaneous squamous cell carcinoma correlates with risk of
metastasis. J Cutan Pathol. 43:663–670. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Eriksen AC, Sørensen FB, Lindebjerg J,
Hager H, dePont Christensen R, Kjær-Frifeldt S and Hansen TF:
Programmed death ligand-1 expression in stage II colon
cancer-experiences from a nationwide populationbased cohort. BMC
Cancer. 19:1422019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kim JH, Park HE, Cho NY, Lee HS and Kang
GH: Characterisation of PD-L1-positive subsets of
microsatellite-unstable colorectal cancers. Br J Cancer.
115:490–496. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Koganemaru S, Inoshita N, Miura Y, Miyama
Y, Fukui Y, Ozaki Y, Tomizawa K, Hanaoka Y, Toda S, Suyama K, et
al: Prognostic value of programmed death-ligand 1 expression in
patients with stage III colorectal cancer. Cancer Sci. 108:853–858.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lee KS, Kwak Y, Ahn S, Shin E, Oh HK, Kim
DW, Kang SB, Choe G, Kim WH and Lee HS: Prognostic implication of
CD274 (PD-L1) protein expression in tumor-infiltrating immune cells
for microsatellite unstable and stable colorectal cancer. Cancer
Immunol Immunother. 66:927–939. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Mehta KR, Nakao K, Zuraek MB, Ruan DT,
Bergsland EK, Venook AP, Moore DH, Tokuyasu TA, Jain AN, Warren RS,
et al: Fractional genomic alteration detected by array-based
comparative genomic hybridization independently predicts survival
after hepatic resection for metastatic colorectal cancer. Clin
Cancer Res. 11:1791–1797. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang H, Liang L, Fang JY and Xu J: Somatic
gene copy number alterations in colorectal cancer: New quest for
cancer drivers and biomarkers. Oncogene. 35:2011–2019. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo
CW, Khoo KH, Chang SS, Cha JH, Kim T, et al: Glycosylation and
stabilization of programmed death ligand-1 suppresses T-cell
activity. Nat Commun. 7:126322016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wu P, Wu D, Li L, Chai Y and Huang J:
PD-L1 and survival in solid tumors: A meta-analysis. PLoS One.
10:e01314032015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Shi SJ, Wang LJ, Wang GD, Guo ZY, Wei M,
Meng YL, Yang AG and Wen WH: B7-H1 Expression is associated with
poor prognosis in colorectal carcinoma and regulates the
proliferation and invasion of HCT116 colorectal cancer cells. PLoS
One. 8:e760122013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhu J, Chen L, Zou L, Yang P, Wu R, Mao Y,
Zhou H, Li R, Wang K, Wang W, et al: miR-20b, −21, and −130b
inhibit PTEN expression resulting in B7-H1 over-expression in
advanced colorectal cancer. Hum Immunol. 75:348–353. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Shen Z, Gu L, Mao D, Chen M and Jin R:
Clinicopathological and prognostic significance of PD-L1 expression
in colorectal cancer: A systematic review and meta-analysis. World
J Surg Oncol. 17:42019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yang Y, Ahn YH, Chen Y, Tan X, Guo L,
Gibbons DL, Ungewiss C, Peng DH, Liu X, Lin SH, et al: ZEB1
sensitizes lung adenocarcinoma to metastasis suppression by PI3K
antagonism. J Clin Invest. 124:2696–2708. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Cao H, Wang Q, Gao Z, Yu Z, Wu Y and Lu Q:
Programmed death-ligand 1 and survival in colorectal cancers: A
meta-analysis. Int J Biol Markers. 34:356–363. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li Y, He M, Zhou Y, Yang C, Wei S, Bian X,
Christopher O and Xie L: The Prognostic and clinicopathological
roles of PD-L1 expression in colorectal cancer: A systematic review
and meta-analysis. Front Pharmacol. 10:1392019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Gopalakrishnan V, Spencer CN, Nezi L,
Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman
K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1
immunotherapy in melanoma patients. Science. 359:97–103. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Helmink BA, Khan MAW, Hermann A,
Gopalakrishnan V and Wargo JA: The microbiome, cancer, and cancer
therapy. Nat Med. 25:377–388. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Goldstein NS, Bhanot P, Odish E and Hunter
S: Hyperplastic-like colon polyps that preceded
microsatellite-unstable adenocarcinomas. Am J Clin Pathol.
119:778–796. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Iino H, Jass JR, Simms LA, Young J,
Leggett B, Ajioka Y and Watanabe H: DNA microsatellite instability
in hyperplastic polyps, serrated adenomas, and mixed polyps: A mild
mutator pathway for colorectal cancer? J Clin Pathol. 52:5–9. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tuppurainen K, Mäkinen JM, Junttila O,
Liakka A, Kyllönen AP, Tuominen H, Karttunen TJ and Mäkinen MJ:
Morphology and microsatellite instability in sporadic serrated and
non-serrated colorectal cancer. J Pathol. 207:285–294. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhu H, Qin H, Huang Z, Li S, Zhu X, He J,
He J, Yang J, Yu X and Yi X: Clinical significance of programmed
death ligand-1 (PD-L1) in colorectal serrated adenocarcinoma. Int J
Clin Exp Pathol. 8:9351–9359. 2015.PubMed/NCBI
|
|
69
|
Guillem JG, Chessin DB, Cohen AM, Shia J,
Mazumdar M, Enker W, Paty PB, Weiser MR, Klimstra D, Saltz L, et
al: Long-term oncologic outcome following preoperative combined
modality therapy and total mesorectal excision of locally advanced
rectal cancer. Ann Surg. 241:828–829. 2005. View Article : Google Scholar
|
|
70
|
Bosset JF, Collette L, Calais G, Mineur L,
Maingon P, Radosevic-Jelic L, Daban A, Bardet E, Beny A and Ollier
JC; EORTC Radiotherapy Group Trial 22921, : Chemotherapy with
preoperative radiotherapy in rectal cancer. N Engl J Med.
355:1114–1123. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sauer R, Becker H, Hohenberger W, Rodel C,
Wittekind C, Fietkau R, Martus P, Tschmelitsch J, Hager E, Hess CF,
et al: Preoperative versus postoperative chemoradiotherapy for
rectal cancer. N Engl J Med. 351:1731–1740. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Jomrich G, Silberhumer GR, Marian B, Beer
A and Mullauer L: Programmed death-ligand 1 expression in rectal
cancer. Eur Surg. 48:352–356. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hecht M, Büttner-Herold M,
Erlenbach-Wünsch K, Haderlein M, Croner R, Grützmann R, Hartmann A,
Fietkau R and Distel LV: PD-L1 is upregulated by radiochemotherapy
in rectal adenocarcinoma patients and associated with a favourable
prognosis. Eur J Cancer. 65:52–60. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Saigusa S, Toiyama Y, Tanaka K, Inoue Y,
Mori K, Ide S, Imaoka H, Kawamura M, Mohri Y and Kusunoki M:
Implication of programmed cell death ligand 1 expression in tumor
recurrence and prognosis in rectal cancer with neoadjuvant
chemoradiotherapy. Int J Clin Oncol. 21:946–952. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lim SH, Hong M, Ahn S, Choi YL, Kim KM, Oh
D, Ahn YC, Jung SH, Ahn MJ, Park K, et al: Changes in tumour
expression of programmed death-ligand 1 after neoadjuvant
concurrent chemoradiotherapy in patients with squamous oesophageal
cancer. Eur J Cancer. 52:1–9. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wu CT, Chen WC, Chang YH, Lin WY and Chen
MF: The role of PD-L1 in the radiation response and clinical
outcome for bladder cancer. Sci Rep. 6:197402016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Sheng J, Fang W, Yu J, Chen N, Zhan J, Ma
Y, Yang Y, Huang Y, Zhao H and Zhang L: Expression of programmed
death ligand-1 on tumor cells varies pre and post chemotherapy in
non-small cell lung cancer. Sci Rep. 6:200902016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wimberly H, Brown JR, Schalper K, Haack H,
Silver MR, Nixon C, Bossuyt V, Pusztai L, Lannin DR and Rimm DL:
PD-L1 expression correlates with tumor-infiltrating lymphocytes and
response to neoadjuvant chemotherapy in breast cancer. Cancer
Immunol Res. 3:326–332. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hamada T, Cao Y, Qian ZR, Masugi Y, Nowak
JA, Yang J, Song M, Mima K, Kosumi K, Liu L, et al: Aspirin use and
colorectal cancer survival according to tumor CD274 (programmed
cell death 1 ligand 1) expression status. J Clin Oncol.
35:1836–1844. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Li P, Wu H, Zhang H, Shi Y, Xu J, Ye Y,
Xia D, Yang J, Cai J and Wu Y: Aspirin use after diagnosis but not
prediagnosis improves established colorectal cancer survival: A
meta-analysis. Gut. 64:1419–1425. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lake RA and Robinson BW: Immunotherapy and
chemotherapy-a practical partnership. Nat Rev Cancer. 5:397–405.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Twyman-Saint Victor C, Rech AJ, Maity A,
Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi
PM, et al: Radiation and dual checkpoint blockade activate
non-redundant immune mechanisms in cancer. Nature. 520:373–377.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Simeone E, Grimaldi AM, Festino L,
Giannarelli D, Vanella V, Palla M, Curvietto M, Esposito A,
Palmieri G, Mozzillo N and Ascierto PA: Correlation between
previous treatment with BRAF inhibitors and clinical response to
pembrolizumab in patients with advanced melanoma. Oncoimmunology.
6:e12834622017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Sahin U and Tureci O: Personalized
vaccines for cancer immunotherapy. Science. 359:1355–1360. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Callahan MK, Postow MA and Wolchok JD:
CTLA-4 and PD-1 pathway blockade: Combinations in the Clinic. Front
Oncol. 4:3852014.
|
|
86
|
Robert C, Long GV, Brady B, Dutriaux C,
Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C,
Kalinka-Warzocha E, et al: Nivolumab in previously untreated
melanoma without BRAF mutation. N Engl J Med. 372:320–330. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Horn L, Spigel DR, Vokes EE, Holgado E,
Ready N, Steins M, Poddubskaya E, Borghaei H, Felip E, Paz-Ares L,
et al: Nivolumab versus docetaxel in previously treated patients
with advanced non-small-cell lung cancer: Two-year outcomes from
two randomized, open-label, Phase III trials (CheckMate 017 and
CheckMate 057). J Clin Oncol. 35:3924–3933. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Armand P, Engert A, Younes A, Fanale M,
Santoro A, Zinzani PL, Timmerman JM, Collins GP, Ramchandren R,
Cohen JB, et al: Nivolumab for Relapsed/refractory classic hodgkin
lymphoma after failure of autologous Hematopoietic cell
transplantation: Extended follow-Up of the multicohort single-arm
Phase II checkmate 205 Trial. J Clin Oncol. 36:1428–1439. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
El-Khoueiry AB, Sangro B, Yau T, Crocenzi
TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling TH Rd, et al:
Nivolumab in patients with advanced hepatocellular carcinoma
(CheckMate 040): An open-label, non-comparative, phase 1/2 dose
escalation and expansion trial. Lancet. 389:2492–2502. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Brahmer JR, Drake CG, Wollner I, Powderly
JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller
TL, et al: Phase I study of single-agent anti-programmed death-1
(MDX-1106) in refractory solid tumors: Safety, clinical activity,
pharmacodynamics, and immunologic correlates. J Clin Oncol.
28:3167–3175. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yamamoto N, Nokihara H, Yamada Y, Shibata
T, Tamura Y, Seki Y, Honda K, Tanabe Y, Wakui H and Tamura T: Phase
I study of Nivolumab, an anti-PD-1 antibody, in patients with
malignant solid tumors. Invest New Drugs. 35:207–216. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Overman MJ, Lonardi S, Wong KYM, Lenz HJ,
Gelsomino F, Aglietta M, Morse MA, Van Cutsem E, McDermott R, Hill
A, et al: Durable clinical benefit with nivolumab plus ipilimumab
in DNA mismatch repair-Deficient/microsatellite instability-high
metastatic colorectal cancer. J Clin Oncol. 36:773–779. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Ribas A, Hamid O, Daud A, Hodi FS, Wolchok
JD, Kefford R, Joshua AM, Patnaik A, Hwu WJ, Weber JS, et al:
Association of pembrolizumab with tumor response and survival among
patients with advanced melanoma. JAMA. 315:1600–1609. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Gallacher D, Armoiry X, Auguste P, Court
R, Mantopoulos T, Patterson J, De Santis M, Cresswell J and Mistry
H: Pembrolizumab for previously treated advanced or metastatic
urothelial cancer: An evidence review group perspective of a NICE
single technology appraisal. Pharmacoeconomics. 37:19–27. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Garon EB, Rizvi NA, Hui R, Leighl N,
Balmanoukian AS, Eder J, Patnaik A, Aggarwal C, Gubens M, Horn L,
et al: Pembrolizumab for the treatment of non-small-cell lung
cancer. N Engl J Med. 372:2018–2028. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Armand P, Shipp MA, Ribrag V, Michot JM,
Zinzani PL, Kuruvilla J, Snyder ES, Ricart AD, Balakumaran A, Rose
S and Moskowitz CH: Programmed Death-1 Blockade with pembrolizumab
in patients with classical hodgkin lymphoma after brentuximab
vedotin failure. J Clin Oncol. 34:3733–3739. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Tahara M, Muro K, Hasegawa Y, Chung HC,
Lin CC, Keam B, Takahashi K, Cheng JD and Bang YJ: Pembrolizumab in
Asia-Pacific patients with advanced head and neck squamous cell
carcinoma: Analyses from KEYNOTE-012. Cancer Sci. 109:771–776.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
O'Neil BH, Wallmark JM, Lorente D, Elez E,
Raimbourg J, Gomez-Roca C, Ejadi S, Piha-Paul SA, Stein MN, Abdul
Razak AR, et al: Safety and antitumor activity of the anti-PD-1
antibody pembrolizumab in patients with advanced colorectal
carcinoma. PLoS One. 12:e01898482017. View Article : Google Scholar
|
|
99
|
Le DT, Kim TW, Van Cutsem E, Geva R, Jäger
D, Hara H, Burge M, O'Neil B, Kavan P, Yoshino T, et al: Phase II
Open-label study of pembrolizumab in treatment-refractory,
microsatellite instability-high/mismatch repair-deficient
metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol. 38:11–19.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
McDermott DF, Sosman JA, Sznol M, Massard
C, Gordon MS, Hamid O, Powderly JD, Infante JR, Fassò M, Wang YV,
et al: Atezolizumab, an anti-programmed death-ligand 1 antibody, in
metastatic renal cell carcinoma: Long-term safety, clinical
activity, and immune correlates from a phase ia study. J Clin
Oncol. 34:833–842. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Powles T, Eder JP, Fine GD, Braiteh FS,
Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL, et
al: MPDL3280A (anti-PD-L1) treatment leads to clinical activity in
metastatic bladder cancer. Nature. 515:558–562. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Bernard-Tessier A, Bonnet C, Lavaud P,
Gizzi M, Loriot Y and Massard C: Atezolizumab
(Tecentriq®): Activity, indication and modality of use
in advanced or metastatic urinary bladder carcinoma. Bull Cancer.
105:140–145. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
No authors listed, . Atezolizumab Extends
Survival for Breast Cancer. Cancer Discov. Jun. 7:OF102017.
|
|
104
|
D'Angelo SP, Russell J, Lebé C,
Chmielowski B, Gambichler T, Grob JJ, Kiecker F, Rabinowits G,
Terheyden P, Zwiener I, et al: Efficacy and safety of first-line
avelumab treatment in patients with stage iv metastatic merkel cell
carcinoma: A preplanned interim analysis of a clinical trial. JAMA
Oncol. 4:e1800772018. View Article : Google Scholar
|
|
105
|
Gulley JL, Rajan A, Spigel DR, Iannotti N,
Chandler J, Wong DJL, Leach J, Edenfield WJ, Wang D, Grote HJ, et
al: Avelumab for patients with previously treated metastatic or
recurrent non-small-cell lung cancer (JAVELIN Solid Tumor):
Dose-expansion cohort of a multicentre, open-label, phase 1b trial.
Lancet Oncol. 18:599–610. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Siu LL, Even C, Mesia R, Remenar E, Daste
A, Delord JP, Krauss J, Saba NF, Nabell L, Ready NE, et al: Safety
and efficacy of durvalumab with or without tremelimumab in patients
with PD-L1-Low/Negative recurrent or metastatic HNSCC: The phase 2
CONDOR randomized clinical trial. JAMA Oncol. 5:195–203. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Antonia SJ, Villegas A, Daniel D, Vicente
D, Murakami S, Hui R, Kurata T, Chiappori A, Lee KH, de Wit M, et
al: Overall survival with durvalumab after chemoradiotherapy in
stage III NSCLC. N Engl J Med. 379:2342–2350. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Tapia Rico G and Price TJ: Atezolizumab
for the treatment of colorectal cancer: The latest evidence and
clinical potential. Expert Opin Biol Ther. 18:449–457. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Oliveira AF, Bretes L and Furtado I:
Review of PD-1/PD-L1 inhibitors in metastatic DMMR/MSI-H colorectal
cancer. Front Oncol. 9:3962019. View Article : Google Scholar : PubMed/NCBI
|