Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
July-2021 Volume 46 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2021 Volume 46 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Binding between ROCK1 and DCTN2 triggers diabetes‑associated centrosome amplification in colon cancer cells

  • Authors:
    • Yuan Fei Li
    • Lin Jie Shi
    • Pu Wang
    • Jia Wen Wang
    • Guang Yi Shi
    • Shao Chin Lee
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China, Changzhi Medical University, Changzhi, Shanxi 030001, P.R. China, Institute of Biomedical Sciences of The School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 151
    |
    Published online on: June 2, 2021
       https://doi.org/10.3892/or.2021.8102
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Type 2 diabetes increases the risk various types of cancer and is associated with a poor prognosis therein. There is also evidence that the disease is associated with cancer metastasis. Centrosome amplification can initiate tumorigenesis with metastasis in vivo and increase the invasiveness of cancer cells in vitro. Our previous study reported that type 2 diabetes promotes centrosome amplification via the upregulation and centrosomal translocation of Rho‑associated protein kinase 1 (ROCK1), which suggests that centrosome amplification is a candidate biological link between type 2 diabetes and cancer development. In the present study, functional proteomics analysis was used to further investigate the molecular pathways underlying centrosome amplification by targeting ROCK1 binding partners. High glucose, insulin and palmitic acid were used to induce centrosome amplification, and immunofluorescent staining was employed to visualize centrosomal alterations. Combined with immunoprecipitation, mass spectrometry‑based proteomics analysis was used to identify ROCK1 binding proteins, and protein complex disruption was achieved by siRNA‑knockdown. In total, 1,148 ROCK1 binding proteins were identified, among which 106 proteins were exclusively associated with the treated samples, 193 were only associated with the control samples, and 849 were found in both the control and treated samples. Of the proteins with evidence of centrosomal localization, Dynactin subunit 2 (DCTN2) was confirmed to be localized to the centrosomes. Treating the cells with high glucose, insulin and palmitic acid increased the protein levels of ROCK1 and DCTN2, promoted their binding with each other, and triggered centrosome amplification. Disruption of the protein complex by knocking down ROCK1 or DCTN2 expression partially attenuated centrosome amplification, while simultaneous knockdown of both proteins completely inhibited centrosome amplification. These results suggested ROCK1‑DCTN2 binding as a signal for the regulation of centrosome homeostasis, which is key for diabetes‑associated centrosome amplification, and enriches our knowledge of centrosome biology. Therefore, the ROCK1‑DCTN2 complex may serve as a target for inhibiting centrosome amplification both in research or future therapeutic development.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Zheng Y, Ley SH and Hu FB: Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 14:88–98. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Bommer C, Heesemann E, Sagalova V, Manne-Goehler J, Atun R, Barnighausen T and Vollmer S: The global economic burden of diabetes in adults aged 20–79 years: A cost-of-illness study. Lancet Diabetes Endocrinol. 5:423–430. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Nazir MA, AlGhamdi L, AlKadi M, AlBeajan N, AlRashoudi L and AlHussan M: The burden of diabetes, its oral complications and their prevention and management. Open Access Maced J Med Sci. 6:1545–1553. 2018. View Article : Google Scholar : PubMed/NCBI

4 

World Health Organization: Fact sheets. http://www.who.int/news-room/fact-sheets/detail/diabetesJune 29–2019

5 

Dall TM, Yang W, Gillespie K, Mocarski M, Byrne E, Cintina I, Beronja K, Semilla AP, Iacobucci W and Hogan PF: The economic burden of elevated blood glucose levels in 2017: Diagnosed and undiagnosed diabetes, gestational diabetes mellitus, and prediabetes. Diabetes Care. 42:1661–1668. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Wang P, Lu YC, Wang J, Wang L, Yu H, Li YF, Kong A, Chan J and Lee S: Type 2 diabetes promotes cell centrosome amplification via AKT-ROS-dependent signalling of ROCK1 and 14-3-3σ. Cell Physiol Biochem. 47:356–367. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG and Yee D: Diabetes and cancer: A consensus report. Diabetes Care. 33:1674–1685. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Zhu B, Wu X, Wu B, Pei D, Zhang L and Wei L: The relationship between diabetes and colorectal cancer prognosis: A meta-analysis based on the cohort studies. PLoS One. 12:e01760682017. View Article : Google Scholar : PubMed/NCBI

9 

Zhang Y, You X, Liu H, Xu M, Dang Q, Yang L, Huang J and Shi W: High KIF2A expression predicts unfavorable prognosis in diffuse large B cell lymphoma. Ann Hematol. 96:1485–1491. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Landman GW, Ubink-Veltmaat LJ, Kleefstra N, Kollen BJ and Bilo HJ: Increased cancer mortality in type 2 diabetes (ZODIAC-3). Anticancer Res. 28:1373–1375. 2008.PubMed/NCBI

11 

D'Assoro AB, Lingle WL and Salisbury JL: Centrosome amplification and the development of cancer. Oncogene. 21:6146–6153. 2002. View Article : Google Scholar

12 

Basto R, Brunk K, Vinadogrova T, Peel N, Franz A, Khodjakov A and Raff JW: Centrosome amplification can initiate tumorigenesis in flies. Cell. 133:1032–1042. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Li J, Xuan JW, Khatamianfar V, Valiyeva F, Moussa M, Sadek A, Yang BB, Dong BJ, Huang YR and Gao WQ: SKA1 over-expression promotes centriole over-duplication, centrosome amplification and prostate tumourigenesis. J Pathol. 234:178–189. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Fan G, Sun L, Shan P, Zhang X, Huan J, Zhang X, Li D, Wang T, Wei T, Zhang X, et al: Loss of KLF14 triggers centrosome amplification and tumorigenesis. Nat Commun. 6:84502015. View Article : Google Scholar : PubMed/NCBI

15 

Levine MS, Bakker B, Boeckx B, Moyett J, Lu J, Vitre B, Spierings DC, Lansdorp PM, Cleveland DW, Lambrechts D, et al: Centrosome amplification is sufficient to promote spontaneous tumorigenesis in mammals. Dev Cell. 40:313–322.e5. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Dionne LK, Shim K, Hoshi M, Cheng T, Wang J, Marthiens V, Knoten A, Basto R, Jain S and Mahjoub MR: Centrosome amplification disrupts renal development and causes cystogenesis. J Cell Biol. 217:2485–2501. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Godinho SA, Picone R, Burute M, Dagher R, Su Y, Leung CT, Polyak K, Brugge JS, Théry M and Pellman D: Oncogene-like induction of cellular invasion from centrosome amplification. Nature. 510:167–171. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Lee SC and Chan JC: Evidence for DNA damage as a biological link between diabetes and cancer. Chin Med J (Engl). 128:1543–1548. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Dodson H, Bourke E, Jeffers LJ, Vagnarelli P, Sonoda E, Takeda S, Earnshaw WC, Merdes A and Morrison C: Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. EMBO J. 23:3864–3873. 2004. View Article : Google Scholar : PubMed/NCBI

20 

He QJ, Wang P, Liu Q, Wu Q, Li YF, Wang J and Lee SC: Secreted Wnt6 mediates diabetes-associated centrosome amplification via its receptor FZD4. Am J Physiol Cell Physiol. 318:C48–C62. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Hartmann S, Ridley AJ and Lutz S: The function of Rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease. Front Pharmacol. 6:2762015. View Article : Google Scholar : PubMed/NCBI

22 

Liang H, Zhang C, Guan H, Liu J and Cui Y: LncRNA DANCR promotes cervical cancer progression by upregulating ROCK1 via sponging miR-335-5p. J Cell Physiol. 234:7266–7278. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Tsai NP and Wei LN: RhoA/ROCK1 signaling regulates stress granule formation and apoptosis. Cell Signal. 22:668–675. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Chen S, Liu Z, Lu S and Hu B: EPEL promotes the migration and invasion of osteosarcoma cells by upregulating ROCK1. Oncol Lett. 17:3133–3140. 2019.PubMed/NCBI

25 

Zucchini C, Martinelli M, De Sanctis P, Rodia MT, Mattei G, Ugolini G, Montroni I, Ghignone F and Solmi R: Possible gender-related modulation by the ROCK1 gene in colorectal cancer susceptibility. Pathobiology. 82:252–258. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Akagi EM, Lavorato-Rocha AM, Maia Bde M, Rodrigues IS, Carvalho KC, Stiepcich MM, Baiocchi G, Sato-Kuwabara Y, Rogatto SR, Soares FA and Rocha RM: ROCK1 as a novel prognostic marker in vulvar cancer. BMC Cancer. 14:8222014. View Article : Google Scholar : PubMed/NCBI

27 

Beeharry N, Lowe JE, Hernandez AR, Chambers JA, Fucassi F, Cragg PJ, Green MH and Green IC: Linoleic acid and antioxidants protect against DNA damage and apoptosis induced by palmitic acid. Mutat Res. 530:27–33. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Chan N and Lim TM: Cytoplasmic nucleophosmin has elevated T199 phosphorylation upon which G2/M phase progression is dependent. Sci Rep. 5:117772015. View Article : Google Scholar : PubMed/NCBI

30 

Nunes P, Ernandez T, Roth I, Qiao X, Strebel D, Bouley R, Charollais A, Ramadori P, Foti M, Meda P, et al: Hypertonic stress promotes autophagy and microtubule-dependent autophagosomal clusters. Autophagy. 9:550–567. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Xu M, Li XX, Chen Y, Pitzer AL, Zhang Y and Li PL: Enhancement of dynein-mediated autophagosome trafficking and autophagy maturation by ROS in mouse coronary arterial myocytes. J Cell Mol Med. 18:2165–2175. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Braathen GJ, Høyer H, Busk ØL, Tveten K, Skjelbred CF and Russell MB: Variants in the genes DCTN2, DNAH10, LRIG3, and MYO1A are associated with intermediate charcot-marie-tooth disease in a Norwegian family. Acta Neurol Scand. 134:67–75. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Bransfield KL, Askham JM, Leek JP, Robinson PA and Mighell AJ: Phenotypic changes associated with DYNACTIN-2 (DCTN2) over expression characterise SJSA-1 osteosarcoma cells. Mol Carcinog. 45:157–163. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Fischer U, Keller A, Leidinger P, Deutscher S, Heisel S, Urbschat S, Lenhof HP and Meese E: A different view on DNA amplifications indicates frequent, highly complex, and stable amplicons on 12q13-21 in glioma. Mol Cancer Res. 6:576–584. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Wang Q, Wang X, Liang Q, Wang S, Liao X, Li D and Pan F: Prognostic value of dynactin mRNA expression in cutaneous melanoma. Med Sci Monit. 24:3752–3763. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Wang S, Wang Q, Zhang X, Liao X, Wang G, Yu L, Zhang W, Zhou Q, Hu S and Yuan W: Distinct prognostic value of dynactin subunit 4 (DCTN4) and diagnostic value of DCTN1, DCTN2, and DCTN4 in colon adenocarcinoma. Cancer Manag Res. 10:5807–5824. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Han X, Hou S and Yang A: Correlation between IGFs-related proteins expression and incidence of colorectal cancer in diabetic patients and related mechanisms. Med Sci Monit. 22:848–854. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Marthiens V, Rujano MA, Pennetier C, Tessier S, Paul-Gilloteaux P and Basto R: Centrosome amplification causes microcephaly. Nat Cell Biol. 15:731–740. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Mahjoub MR and Stearns T: Supernumerary centrosomes nucleate extra cilia and compromise primary cilium signaling. Curr Biol. 22:1628–1634. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Otto EA, Hurd TW, Airik R, Chaki M, Zhou W, Stoetzel C, Patil SB, Levy S, Ghosh AK, Murga-Zamalloa CA, et al: Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat Genet. 42:840–850. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li YF, Shi LJ, Wang P, Wang JW, Shi GY and Lee SC: Binding between ROCK1 and DCTN2 triggers diabetes‑associated centrosome amplification in colon cancer cells. Oncol Rep 46: 151, 2021.
APA
Li, Y.F., Shi, L.J., Wang, P., Wang, J.W., Shi, G.Y., & Lee, S.C. (2021). Binding between ROCK1 and DCTN2 triggers diabetes‑associated centrosome amplification in colon cancer cells. Oncology Reports, 46, 151. https://doi.org/10.3892/or.2021.8102
MLA
Li, Y. F., Shi, L. J., Wang, P., Wang, J. W., Shi, G. Y., Lee, S. C."Binding between ROCK1 and DCTN2 triggers diabetes‑associated centrosome amplification in colon cancer cells". Oncology Reports 46.1 (2021): 151.
Chicago
Li, Y. F., Shi, L. J., Wang, P., Wang, J. W., Shi, G. Y., Lee, S. C."Binding between ROCK1 and DCTN2 triggers diabetes‑associated centrosome amplification in colon cancer cells". Oncology Reports 46, no. 1 (2021): 151. https://doi.org/10.3892/or.2021.8102
Copy and paste a formatted citation
x
Spandidos Publications style
Li YF, Shi LJ, Wang P, Wang JW, Shi GY and Lee SC: Binding between ROCK1 and DCTN2 triggers diabetes‑associated centrosome amplification in colon cancer cells. Oncol Rep 46: 151, 2021.
APA
Li, Y.F., Shi, L.J., Wang, P., Wang, J.W., Shi, G.Y., & Lee, S.C. (2021). Binding between ROCK1 and DCTN2 triggers diabetes‑associated centrosome amplification in colon cancer cells. Oncology Reports, 46, 151. https://doi.org/10.3892/or.2021.8102
MLA
Li, Y. F., Shi, L. J., Wang, P., Wang, J. W., Shi, G. Y., Lee, S. C."Binding between ROCK1 and DCTN2 triggers diabetes‑associated centrosome amplification in colon cancer cells". Oncology Reports 46.1 (2021): 151.
Chicago
Li, Y. F., Shi, L. J., Wang, P., Wang, J. W., Shi, G. Y., Lee, S. C."Binding between ROCK1 and DCTN2 triggers diabetes‑associated centrosome amplification in colon cancer cells". Oncology Reports 46, no. 1 (2021): 151. https://doi.org/10.3892/or.2021.8102
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team