Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
October-2021 Volume 46 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2021 Volume 46 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Gallic acid enhances pirarubicin‑induced anticancer in living K562 and K562/Dox leukemia cancer cells through cellular energetic state impairment and P‑glycoprotein inhibition

  • Authors:
    • Khin Thenu Aye
    • Sakornniya Wattanapongpitak
    • Benjamaporn Supawat
    • Suchart Kothan
    • Chatchanok Udomtanakunchai
    • Singkome Tima
    • Jie Pan
    • Montree Tungjai
  • View Affiliations / Copyright

    Affiliations: Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand, Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
  • Article Number: 227
    |
    Published online on: September 2, 2021
       https://doi.org/10.3892/or.2021.8178
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Leukemia is a common malignancy affecting humans worldwide. Pirarubicin (Pira) is one of the anticancer agents used for the treatment of leukemia. Although Pira is effective, drug resistance may develop in cancer cells exposed to this drug, whereas the combination of natural products with Pira may help to overcome this problem. The aim of the present study was to focus on the effect of gallic acid (GA) on the anticancer activity of Pira in K562 leukemia cells and K562/doxorubicin (Dox)‑resistant leukemia cells in order to investigate the possible underlying mechanisms. The cell viability, mitochondrial activity, mitochondrial membrane potential (ΔΨm) and ATP levels were assessed in living K562 and K562/Dox cancer cells following treatment with GA/Pira combination, GA alone or Pira alone. P‑glycoprotein‑mediated efflux of Pira was determined in GA‑treated K562/Dox cancer cells. The results demonstrated that GA/Pira combination decreased cell viability, mitochondrial activity, ΔΨm and ATP levels in K562 and K562/Dox cancer cells in a GA concentration‑dependent manner compared with non‑treated or Pira‑treated cells. GA inhibited P‑glycoprotein‑mediated efflux of Pira in GA‑treated K562/Dox cancer cells. Therefore, GA enhanced the anticancer effect of Pira on K562 and K562/Dox cancer cells through cellular energy status impairment, and was able to reverse drug resistance in living K562/Dox cancer cells by inhibiting the function of P‑glycoprotein.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Gewirtz DA: A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 57:727–741. 1999. View Article : Google Scholar : PubMed/NCBI

3 

Minotti G, Menna P, Salvatorelli E, Cairo G and Gianni L: Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 56:185–229. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Meredith AM and Dass CR: Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J Pharm Pharmacol. 68:729–741. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Miller AA and Salewski E: Prospects for pirarubicin. Med Pediatr Oncol. 22:261–268. 1994. View Article : Google Scholar : PubMed/NCBI

6 

Tsuruo T, Iida H, Tsukagoshi S and Sakurai Y: 4′-O-tetrahydropyranyladriamycin as a potential new antitumor agent. Cancer Res. 42:1462–1467. 1982.PubMed/NCBI

7 

Kunimoto S, Miura K, Takahashi Y, Takeuchi T and Umezawa H: Rapid uptake by cultured tumor cells and intracellular behavior of 4′-O-tetrahydropyranyladriamycin. J Antibiot (Tokyo). 36:312–317. 1983. View Article : Google Scholar : PubMed/NCBI

8 

Mizutani H, Hotta S, Nishimoto A, Ikemura K, Miyazawa D, Ikeda Y, Maeda T, Yoshikawa M, Hiraku Y and Kawanishi S: Pirarubicin, an anthracycline anticancer agent, induces apoptosis through generation of hydrogen peroxide. Anticancer Res. 37:6063–6069. 2017.PubMed/NCBI

9 

Michieli M, Damiani D, Michelutti A, Candoni A, Masolini P, Scaggiante B, Quadrifoglio F and Baccarani M: Restoring uptake and retention of daunorubicin and idarubicin in P170-related multidrug resistance cells by low concentration D-verapamil, cyclosporin-A and SDZ PSC 833. Haematologica. 79:500–507. 1994.PubMed/NCBI

10 

Xia Q, Wang ZY, Li HQ, Diao YT, Li XL, Cui J, Chen XL and Li H: Reversion of p-glycoprotein-mediated multidrug resistance in human leukemic cell line by diallyl trisulfide. Evid Based Complement Alternat Med. 2012:7198052012. View Article : Google Scholar : PubMed/NCBI

11 

Barrand MA, Bagrij T and Neo SY: Multidrug resistance-associated protein: A protein distinct from P-glycoprotein involved in cytotoxic drug expulsion. Gen Pharmacol. 28:639–645. 1997. View Article : Google Scholar : PubMed/NCBI

12 

Choi CH: ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int. 5:302005. View Article : Google Scholar : PubMed/NCBI

13 

Yang K, Wu J and Li X: Recent advances in the research of P-glycoprotein inhibitors. Biosci Trends. 2:137–146. 2008.PubMed/NCBI

14 

Inaba M, Fujikura R, Tsukagoshi S and Sakurai Y: Restored in vitro sensitivity of adriamycin- and vincristine-resistant P388 leukemia with reserpine. Biochem Pharmacol. 30:2191–2194. 1981. View Article : Google Scholar : PubMed/NCBI

15 

Mocanu MM, Nagy P and Szöllősi J: Chemoprevention of breast cancer by dietary polyphenols. Molecules. 20:22578–22620. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Punia R, Raina K, Agarwal R and Singh RP: Acacetin enhances the therapeutic efficacy of doxorubicin in non-small-cell lung carcinoma cells. PLoS One. 12:e01828702017. View Article : Google Scholar : PubMed/NCBI

17 

Liu R, Ji P, Liu B, Qiao H, Wang X, Zhou L, Deng T and Ba Y: Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis. Oncol Lett. 13:1024–1030. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Bansal T, Jaggi M, Khar RK and Talegaonkar S: Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J Pharm Pharm Sci. 12:46–78. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Naus PJ, Henson R, Bleeker G, Wehbe H, Meng F and Patel T: Tannic acid synergizes the cytotoxicity of chemotherapeutic drugs in human cholangiocarcinoma by modulating drug efflux pathways. J Hepatol. 46:222–229. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Muhammad N, Steele R, Isbell TS, Philips N and Ray RB: Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death. Oncotarget. 8:66226–66236. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Haslam E and Cai Y: Plant polyphenols (vegetable tannins): Gallic acid metabolism. Nat Prod Rep. 11:41–66. 1994. View Article : Google Scholar : PubMed/NCBI

22 

Zhao B and Hu M: Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncol Lett. 6:1749–1755. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Locatelli C, Filippin-Monteiro FB and Creczynski-Pasa TB: Alkyl esters of gallic acid as anticancer agents: A review. Eur J Med Chem. 60:233–239. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Priscilla DH and Prince PS: Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chem Biol Interact. 179:118–124. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Lu Z, Nie G, Belton PS, Tang H and Zhao B: Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int. 48:263–274. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Omóbòwálé TO, Oyagbemi AA, Folasire AM, Ajibade TO, Asenuga ER, Adejumobi OA, Ola-Davies OE, Oyetola O, James G, Adedapo AA and Yakubu MA: Ameliorative effect of gallic acid on doxorubicin-induced cardiac dysfunction in rats. J Basic Clin Physiol Pharmacol. 29:19–27. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Kim SH, Jun CD, Suk K, Choi BJ, Lim H, Park S, Lee SH, Shin HY, Kim DK and Shin TY: Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicol Sci. 91:123–131. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Punithavathi VR, Prince PS, Kumar R and Selvakumari J: Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. Eur J Pharmacol. 650:465–471. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Oyagbemi AA, Omobowale TO, Saba AB, Olowu ER, Dada RO and Akinrinde AS: Gallic acid ameliorates cyclophosphamide-induced neurotoxicity in wistar rats through free radical scavenging activity and improvement in antioxidant defense system. J Diet Suppl. 13:402–419. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Supawat B, Moungthong P, Chanloi C, Jindachai N, Tima S, Kothan S, Udomtanakunchai C and Tungjai M: Effects of gadolinium-based magnetic resonance imaging contrast media on red blood cells and K562 cancer cells. J Trace Elem Med Biol. 62:1266402020. View Article : Google Scholar : PubMed/NCBI

31 

Aborehab NM and Osama N: Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int. 19:1542019. View Article : Google Scholar : PubMed/NCBI

32 

Gu R, Zhang M, Meng H, Xu D and Xie Y: Gallic acid targets acute myeloid leukemia via Akt/mTOR-dependent mitochondrial respiration inhibition. Biomed Pharmacother. 105:491–497. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Liao CC, Chen SC, Huang HP and Wang CJ: Gallic acid inhibits bladder cancer cell proliferation and migration via regulating fatty acid synthase (FAS). J Food Drug Anal. 26:620–627. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Liu Z, Li D, Yu L and Niu F: Gallic acid as a cancer-selective agent induces apoptosis in pancreatic cancer cells. Chemotherapy. 58:185–194. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Tang HM and Cheung PCK: Gallic acid triggers iron-dependent cell death with apoptotic, ferroptotic, and necroptotic features. Toxins (Basel). 11:4922019. View Article : Google Scholar : PubMed/NCBI

36 

Wang K, Zhu X, Zhang K, Zhu L and Zhou F: Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells. J Biochem Mol Toxicol. 28:387–393. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Weng SW, Hsu SC, Liu HC, Ji BC, Lien JC, Yu FS, Liu KC, Lai KC, Lin JP and Chung JG: Gallic acid induces DNA damage and inhibits DNA repair-associated protein expression in human oral cancer SCC-4 cells. Anticancer Res. 35:2077–2084. 2015.PubMed/NCBI

38 

Kothan S, Dechsupa S, Leger G, Moretti JL, Vergote J and Mankhetkorn S: Spontaneous mitochondrial membrane potential change during apoptotic induction by quercetin in K562 and K562/adr cells. Can J Physiol Pharmacol. 82:1084–1090. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Tungjai M, Phathakanon N and Rithidech KN: Effects of medical diagnostic Low-dose X rays on human lymphocytes: Mitochondrial membrane potential, apoptosis and cell cycle. Health Phys. 112:458–464. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Supawat B, Udomtanakunchai C, Kothan S and Tungjai M: The effects of iodinated radiographic contrast media on multidrug-resistant K562/Dox cells: Mitochondria impairment and P-glycoprotein inhibition. Cell Biochem Biophys. 77:157–163. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Yang NC, Ho WM, Chen YH and Hu ML: A convenient one-step extraction of cellular ATP using boiling water for the luciferin-luciferase assay of ATP. Anal Biochem. 306:323–327. 2002. View Article : Google Scholar : PubMed/NCBI

42 

Reungpatthanaphong P and Mankhetkorn S: Modulation of multidrug resistance by artemisinin, artesunate and dihydroartemisinin in K562/adr and GLC4/adr resistant cell lines. Biol Pharm Bull. 25:1555–1561. 2002. View Article : Google Scholar : PubMed/NCBI

43 

Garnier-Suillerot A, Marbeuf-Gueye C, Salerno M, Loetchutinat C, Fokt I, Krawczyk M, Kowalczyk T and Priebe W: Analysis of drug transport kinetics in multidrug-resistant cells: Implications for drug action. Curr Med Chem. 8:51–64. 2001. View Article : Google Scholar : PubMed/NCBI

44 

Frézard F, Pereira-Maia E, Quidu P, Priebe W and Garnier-Suillerot A: P-glycoprotein preferentially effluxes anthracyclines containing free basic versus charged amine. Eur J Biochem. 268:1561–1567. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Bai J, Zhang Y, Tang C, Hou Y, Ai X, Chen X, Zhang Y, Wang X and Meng X: Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother. 133:1109852021. View Article : Google Scholar : PubMed/NCBI

46 

Bhattacharya S, Muhammad N, Steele R, Peng G and Ray RB: Immunomodulatory role of bitter melon extract in inhibition of head and neck squamous cell carcinoma growth. Oncotarget. 7:33202–33209. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Sun J, Chu YF, Wu X and Liu RH: Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem. 50:7449–7454. 2002. View Article : Google Scholar : PubMed/NCBI

48 

Dai J and Mumper RJ: Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules. 15:7313–7352. 2010. View Article : Google Scholar : PubMed/NCBI

49 

De A, De A, Papasian C, Hentges S, Banerjee S, Haque I and Banerjee SK: Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors. PLoS One. 8:e727482013. View Article : Google Scholar : PubMed/NCBI

50 

Subramanian AP, Jaganathan SK, Mandal M, Supriyanto E and Muhamad II: Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World J Gastroenterol. 22:3952–3961. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Sourani ZM, Pourgheysari BP, Beshkar PM, Shirzad HP and Shirzad MM: Gallic acid inhibits proliferation and induces apoptosis in lymphoblastic leukemia cell line (C121). Iran J Med Sci. 41:525–530. 2016.PubMed/NCBI

52 

Yoshino M, Haneda M, Naruse M, Htay HH, Iwata S, Tsubouchi R and Murakami K: Prooxidant action of gallic acid compounds: Copper-dependent strand breaks and the formation of 8-hydroxy-2′-deoxyguanosine in DNA. Toxicol In Vitro. 16:705–709. 2002. View Article : Google Scholar : PubMed/NCBI

53 

Wang R, Ma L, Weng D, Yao J, Liu X and Jin F: Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Oncol Rep. 35:3075–3083. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Rajagopalan R, Jain SK and Trivedi P: Synergistic anti-cancer activity of combined 5-fuorouracil and gallic acid-stearylamine conjugate in a431 human squamous carcinoma cell line. Trop J Pharm Res. 18:471–477. 2019. View Article : Google Scholar

55 

Gillet JP, Efferth T and Remacle J: Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta. 1775:237–262. 2007.PubMed/NCBI

56 

Mimeault M, Hauke R and Batra SK: Recent advances on the molecular mechanisms involved in the drug resistance of cancer cells and novel targeting therapies. Clin Pharmacol Ther. 83:673–691. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Mankhetkorn S and Garnier-Suillerot A: The ability of verapamil to restore intracellular accumulation of anthracyclines in multidrug resistant cells depends on the kinetics of their uptake. Eur J Pharmacol. 343:313–321. 1998. View Article : Google Scholar : PubMed/NCBI

58 

Kitagawa S, Nabekura T, Kamiyama S, Takahashi T, Nakamura Y, Kashiwada Y and Ikeshiro Y: Effects of alkyl gallates on P-glycoprotein function. Biochem Pharmacol. 70:1262–1266. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Aye KT, Wattanapongpitak S, Supawat B, Kothan S, Udomtanakunchai C, Tima S, Pan J and Tungjai M: Gallic acid enhances pirarubicin‑induced anticancer in living K562 and K562/Dox leukemia cancer cells through cellular energetic state impairment and P‑glycoprotein inhibition. Oncol Rep 46: 227, 2021.
APA
Aye, K.T., Wattanapongpitak, S., Supawat, B., Kothan, S., Udomtanakunchai, C., Tima, S. ... Tungjai, M. (2021). Gallic acid enhances pirarubicin‑induced anticancer in living K562 and K562/Dox leukemia cancer cells through cellular energetic state impairment and P‑glycoprotein inhibition. Oncology Reports, 46, 227. https://doi.org/10.3892/or.2021.8178
MLA
Aye, K. T., Wattanapongpitak, S., Supawat, B., Kothan, S., Udomtanakunchai, C., Tima, S., Pan, J., Tungjai, M."Gallic acid enhances pirarubicin‑induced anticancer in living K562 and K562/Dox leukemia cancer cells through cellular energetic state impairment and P‑glycoprotein inhibition". Oncology Reports 46.4 (2021): 227.
Chicago
Aye, K. T., Wattanapongpitak, S., Supawat, B., Kothan, S., Udomtanakunchai, C., Tima, S., Pan, J., Tungjai, M."Gallic acid enhances pirarubicin‑induced anticancer in living K562 and K562/Dox leukemia cancer cells through cellular energetic state impairment and P‑glycoprotein inhibition". Oncology Reports 46, no. 4 (2021): 227. https://doi.org/10.3892/or.2021.8178
Copy and paste a formatted citation
x
Spandidos Publications style
Aye KT, Wattanapongpitak S, Supawat B, Kothan S, Udomtanakunchai C, Tima S, Pan J and Tungjai M: Gallic acid enhances pirarubicin‑induced anticancer in living K562 and K562/Dox leukemia cancer cells through cellular energetic state impairment and P‑glycoprotein inhibition. Oncol Rep 46: 227, 2021.
APA
Aye, K.T., Wattanapongpitak, S., Supawat, B., Kothan, S., Udomtanakunchai, C., Tima, S. ... Tungjai, M. (2021). Gallic acid enhances pirarubicin‑induced anticancer in living K562 and K562/Dox leukemia cancer cells through cellular energetic state impairment and P‑glycoprotein inhibition. Oncology Reports, 46, 227. https://doi.org/10.3892/or.2021.8178
MLA
Aye, K. T., Wattanapongpitak, S., Supawat, B., Kothan, S., Udomtanakunchai, C., Tima, S., Pan, J., Tungjai, M."Gallic acid enhances pirarubicin‑induced anticancer in living K562 and K562/Dox leukemia cancer cells through cellular energetic state impairment and P‑glycoprotein inhibition". Oncology Reports 46.4 (2021): 227.
Chicago
Aye, K. T., Wattanapongpitak, S., Supawat, B., Kothan, S., Udomtanakunchai, C., Tima, S., Pan, J., Tungjai, M."Gallic acid enhances pirarubicin‑induced anticancer in living K562 and K562/Dox leukemia cancer cells through cellular energetic state impairment and P‑glycoprotein inhibition". Oncology Reports 46, no. 4 (2021): 227. https://doi.org/10.3892/or.2021.8178
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team