|
1
|
Rawla P, Sunkara T and Gaduputi V:
Epidemiology of pancreatic cancer: Global trends, etiology and risk
factors. World J Oncol. 10:10–27. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Neoptolemos JP, Kleeff J, Michl P,
Costello E, Greenhalf W and Palmer DH: Therapeutic developments in
pancreatic cancer: Current and future perspectives. Nat Rev
Gastroenterol Hepatol. 15:333–348. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jemal A, Siegel R, Ward E, Murray T, Xu J,
Smigal C and Thun MJ: Cancer Statistics, 2006. CA Cancer J Clin.
56:106–130. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Malvezzi M, Bertuccio P, Levi F, La
Vecchia C and Negri E: European cancer mortality predictions for
the year 2013. Ann Oncol. 24:792–800. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yang W, Zhang J, Wang H, Gao P, Singh M,
Shen K and Fang N: Angiotensin II downregulates catalase expression
and activity in vascular adventitial fibroblasts through an
AT1R/ERK1/2-dependent pathway. Mol Cell Biochem. 358:21–29. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sasaki T, Sato T, Nakai Y, Sasahira N,
Isayama H and Koike K: Brain metastasis in pancreatic cancer: Two
case reports. Medicine (Baltimore). 98:e142272019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Dang Z, Xu WH, Lu P, Wu N, Liu J, Ruan B,
Zhou L, Song WJ and Dou KF: MicroRNA-135a inhibits cell
proliferation by targeting Bmi1 in pancreatic ductal
adenocarcinoma. Int J Biol Sci. 10:733–745. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Tempero MA, Malafa MP, Al-Hawary M, Asbun
H, Bain A, Behrman SW, Benson AB III, Binder E, Cardin DB, Cha C,
et al: Pancreatic adenocarcinoma, version 2.2017, NCCN Clinical
Practice Guidelines in Oncology. J Natl Compr Canc Netw.
15:1028–1061. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tempero MA, Malafa MP, Chiorean EG, Czito
B, Scaife C, Narang AK, Fountzilas C, Wolpin BM, Al-Hawary M, Asbun
H, et al: Pancreatic adenocarcinoma, version 1.2019. J Natl Compr
Canc Netw. 17:202–210. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Sohal DPS, Kennedy EB, Cinar P, Conroy T,
Copur MS, Crane CH, Garrido-Laguna I, Lau MW, Johnson T,
Krishnamurthi S, et al: Metastatic pancreatic cancer: ASCO
Guideline Update. J Clin Oncol. Aug 5–2020.(Epub ahead of print).
doi: 10.1200/JCO.20.01364. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Mellby LD, Nyberg AP, Johansen JS, Wingren
C, Nordestgaard BG, Bojesen SE, Mitchell BL, Sheppard BC, Sears RC
and Borrebaeck CA: Serum biomarker signature-based liquid biopsy
for diagnosis of early-stage pancreatic cancer. J Clin Oncol.
36:2887–2894. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lee ES and Lee JM: Imaging diagnosis of
pancreatic cancer: A state-of-the-art review. World J
Gastroenterol. 20:7864–7877. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Singhi AD, Koay EJ, Chari ST and Maitra A:
Early detection of pancreatic cancer: Opportunities and challenges.
Gastroenterology. 156:2024–2040. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Garces-Descovich A, Beker K,
Jaramillo-Cardoso A, James Moser A and Mortele KJ: Applicability of
current NCCN Guidelines for pancreatic adenocarcinoma
resectability: Analysis and pitfalls. Abdom Radiol (NY).
43:314–322. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zins M, Matos C and Cassinotto C:
Pancreatic adenocarcinoma staging in the Era of preoperative
chemotherapy and radiation therapy. Radiology. 287:374–390. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wong JC and Lu DS: Staging of pancreatic
adenocarcinoma by imaging studies. Clin Gastroenterol Hepatol.
6:1301–1308. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Sah RP, Sharma A, Nagpal S, Patlolla SH,
Sharma A, Kandlakunta H, Anani V, Angom RS, Kamboj AK, Ahmed N, et
al: Phases of metabolic and soft tissue changes in months preceding
a diagnosis of pancreatic ductal adenocarcinoma. Gastroenterology.
156:1742–1752. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Danai LV, Babic A, Rosenthal MH, Dennstedt
EA, Muir A, Lien EC, Mayers JR, Tai K, Lau AN, Jones-Sali P, et al:
Altered exocrine function can drive adipose wasting in early
pancreatic cancer. Nature. 558:600–604. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Cheng SH, Cheng YJ, Jin ZY and Xue HD:
Unresectable pancreatic ductal adenocarcinoma: Role of CT
quantitative imaging biomarkers for predicting outcomes of patients
treated with chemotherapy. Eur J Radiol. 113:188–197. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mohamed E, Needham A, Psarelli E, Carroll
M, Vinjamuri S, Sanghera B, Wong WL, Halloran C and Ghaneh P:
Prognostic value of (18)FDG PET/CT volumetric parameters in the
survival prediction of patients with pancreatic cancer. Eur J Surg
Oncol. 46:1532–1538. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Im HJ, Oo S, Jung W, Jang JY, Kim SW,
Cheon GJ, Kang KW, Chung JK, Kim EE and Lee DS: Prognostic value of
metabolic and volumetric parameters of preoperative FDG-PET/CT in
patients with resectable pancreatic cancer. Medicine (Baltimore).
95:e36862016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhu D, Wang L, Zhang H, Chen J, Wang Y,
Byanju S and Liao M: Prognostic value of 18F-FDG-PET/CT parameters
in patients with pancreatic carcinoma: A systematic review and
meta-analysis. Medicine (Baltimore). 96:e78132017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kim MJ, Lee KH, Lee KT, Lee JK, Ku BH, Oh
CR, Heo JS, Choi SH and Choi DW: The value of positron emission
tomography/computed tomography for evaluating metastatic disease in
patients with pancreatic cancer. Pancreas. 41:897–903. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hu S, Zhang J, Zuo C, Cheng C, Liu Q and
Sun G: (18)F-FDG-PET/CT findings in pancreatic metastasis. Radiol
Med. 120:887–898. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Gao G, Gong B and Shen W: Meta-analysis of
the additional value of integrated 18FDG PET-CT for tumor distant
metastasis staging: Comparison with 18FDG PET alone and CT alone.
Surg Oncol. 22:195–200. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Asagi A, Ohta K, Nasu J, Tanada M, Nadano
S, Nishimura R, Teramoto N, Yamamoto K, Inoue T and Iguchi H:
Utility of contrast-enhanced FDG-PET/CT in the clinical management
of pancreatic cancer: Impact on diagnosis, staging, evaluation of
treatment response, and detection of recurrence. Pancreas.
42:11–19. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Callery MP, Chang KJ, Fishman EK,
Talamonti MS, William Traverso L and Linehan DC: Pretreatment
assessment of resectable and borderline resectable pancreatic
cancer: Expert consensus statement. Ann Surg Oncol. 16:1727–1733.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bae JS, Kim JH, Joo I, Chang W and Han JK:
MDCT findings predicting post-operative residual tumor and survival
in patients with pancreatic cancer. Eur Radiol. 29:3714–3724. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Raman SP, Reddy S, Weiss MJ, Manos LL,
Cameron JL, Zheng L, Herman JM, Hruban RH, Fishman EK and Wolfgang
CL: Impact of the time interval between MDCT imaging and surgery on
the accuracy of identifying metastatic disease in patients with
pancreatic cancer. AJR Am J Roentgenol. 204:W37–W42. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ichikawa T, Haradome H, Hachiya J,
Nitatori T, Ohtomo K, Kinoshita T and Araki T: Pancreatic ductal
adenocarcinoma: Preoperative assessment with helical CT versus
dynamic MR imaging. Radiology. 202:655–662. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Chen FM, Ni JM, Zhang ZY, Zhang L, Li B
and Jiang CJ: Presurgical evaluation of pancreatic cancer: A
comprehensive imaging comparison of CT versus MRI. Am J Roentgenol.
206:526–535. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sheridan MB, Ward J, Guthrie JA, Spencer
JA, Craven CM, Wilson D, Guillou PJ and Robinson PJ: Dynamic
contrast-enhanced MR imaging and dual-phase helical CT in the
preoperative assessment of suspected pancreatic cancer: A
comparative study with receiver operating characteristic analysis.
AJR Am J Roentgenol. 173:583–590. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Canto MI, Harinck F, Hruban RH, Offerhaus
GJ, Poley JW, Kamel I, Nio Y, Schulick RS, Bassi C, Kluijt I, et
al: International Cancer of the Pancreas Screening (CAPS)
Consortium summit on the management of patients with increased risk
for familial pancreatic cancer. Gut. 62:339–347. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Pereira SP, Oldfield L, Ney A, Hart PA,
Keane MG, Pandol SJ, Li D, Greenhalf W, Jeon CY, Koay EJ, et al:
Early detection of pancreatic cancer. Lancet Gastroenterol Hepatol.
5:698–710. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Canto MI, Hruban RH, Fishman EK, Kamel IR,
Schulick R, Zhang Z, Topazian M, Takahashi N, Fletcher J, Petersen
G, et al: Frequent detection of pancreatic lesions in asymptomatic
high-risk individuals. Gastroenterology. 142:796–804. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Mizumoto T, Toyama H, Terai S, Mukubou H,
Yamashita H, Shirakawa S, Nanno Y, Sofue K, Kido M, Ajiki T and
Fukumoto T: Prediction of lymph node metastasis in pancreatic
neuroendocrine tumors by contrast enhancement characteristics.
Pancreatology. 17:956–961. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Leng KM, Wang ZD, Zhao JB, Cui YF and
Zhong XY: Impact of pancreatic margin status and lymph node
metastases on recurrence after resection for invasive and
noninvasive intraductal papillary mucinous neoplasms of the
pancreas: A meta-analysis. Dig Surg. 29:213–225. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Mohamed A, Ayav A, Belle A, Orry X,
Chevaux JB and Laurent V: Pancreatic cancer in patients with
chronic calcifying pancreatitis: Computed tomography findings-a
retrospective analysis of 48 patients. Eur J Radiol. 86:206–212.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Riviere DM, van Geenen EJM, van der Kolk
BM, Nagtegaal ID, Radema SA, van Laarhoven CJHM and Hermans JJ:
Improving preoperative detection of synchronous liver metastases in
pancreatic cancer with combined contrast-enhanced and
diffusion-weighted MRI. Abdom Radiol (NY). 44:1756–1765. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Farag A, Le Lu, Roth HR, Liu J, Turkbey E
and Summers RM: A Bottom-up approach for pancreas segmentation
using cascaded superpixels and (Deep) image patch labeling. IEEE
Trans Image Process. 26:386–399. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Karasawa K, Oda M, Kitasaka T, Misawa K,
Fujiwara M, Chu C, Zheng G, Rueckert D and Mori K: Multi-atlas
pancreas segmentation: Atlas selection based on vessel structure.
Med Image Anal. 39:18–28. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gou S, Lee P, Hu P, Rwigema JC and Sheng
K: Feasibility of automated 3-dimensional magnetic resonance
imaging pancreas segmentation. Adv Radiat Oncol. 1:182–193. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chu LC, Goggins MG and Fishman EK:
Diagnosis and detection of pancreatic cancer. Cancer J. 23:333–342.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Al-Hawary MM, Francis IR, Chari ST,
Fishman EK, Hough DM, Lu DS, Macari M, Megibow AJ, Miller FH,
Mortele KJ, et al: Pancreatic ductal adenocarcinoma radiology
reporting template: Consensus statement of the society of abdominal
radiology and the american pancreatic association.
Gastroenterology. 146:291–304.e1. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Laffan TA, Horton KM, Klein AP,
Berlanstein B, Siegelman SS, Kawamoto S, Johnson PT, Fishman EK and
Hruban RH: Prevalence of unsuspected pancreatic cysts on MDCT. AJR
Am J Roentgenol. 191:802–807. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lee KS, Sekhar A, Rofsky NM and Pedrosa I:
Prevalence of incidental pancreatic cysts in the adult population
on MR imaging. Am J Gastroenterol. 105:2079–2084. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhu Y, Zhang H, Chen N, Hao J, Jin H and
Ma X: Diagnostic value of various liquid biopsy methods for
pancreatic cancer: A systematic review and meta-analysis. Medicine
(Baltimore). 99:e185812020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kamyabi N, Bernard V and Maitra A: Liquid
biopsies in pancreatic cancer. Expert Rev Anticancer Ther.
19:869–878. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kunovsky L, Tesarikova P, Kala Z, Kroupa
R, Kysela P, Dolina J and Trna J: The use of biomarkers in early
diagnostics of pancreatic cancer. Can J Gastroenterol Hepatol.
2018:53898202018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sefrioui D, Blanchard F, Toure E, Basile
P, Beaussire L, Dolfus C, Perdrix A, Paresy M, Antonietti M,
Iwanicki-Caron I, et al: Diagnostic value of CA19.9, circulating
tumour DNA and circulating tumour cells in patients with solid
pancreatic tumours. Br J Cancer. 117:1017–1025. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ariston Gabriel AN, Wang F, Jiao Q, Yvette
U, Yang X, Al-Ameri SA, Du L, Wang YS and Wang C: The involvement
of exosomes in the diagnosis and treatment of pancreatic cancer.
Mol Cancer. 19:1322020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Dhara S, Chhangawala S, Chintalapudi H,
Askan G, Aveson V, Massa AL, Zhang L, Torres D, Makohon-Moore AP,
Lecomte N, et al: Pancreatic cancer prognosis is predicted by an
ATAC-array technology for assessing chromatin accessibility. Nat
Commun. 12:30442021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sannino G, Armbruster N, Bodenhöfer M,
Haerle U, Behrens D, Buchholz M, Rothbauer U, Sipos B and Schmees
C: Role of BCL9L in transforming growth factor-β (TGF-β)-induced
epithelial-to-mesenchymal-transition (EMT) and metastasis of
pancreatic cancer. Oncotarget. 7:73725–73738. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ye X and Weinberg RA:
Epithelial-mesenchymal plasticity: A central regulator of cancer
progression. Trends Cell Biol. 25:675–686. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Oberstein PE and Olive KP: Pancreatic
cancer: Why is it so hard to treat? Therap Adv Gastroenterol.
6:321–337. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Grivennikov SI, Greten FR and Karin M:
Immunity, inflammation, and cancer. Cell. 140:883–899. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Carbone C and Melisi D: NF-κB as a target
for pancreatic cancer therapy. Expert Opin Ther Targets. 16 (Suppl
2):S1–S10. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Pires BR, Mencalha AL, Ferreira GM, de
Souza WF, Morgado-Díaz JA, Maia AM, Corrêa S and Abdelhay ES:
NF-kappaB is involved in the regulation of EMT genes in breast
cancer cells. PLoS One. 12:e01696222017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Labelle M, Begum S and Hynes RO: Direct
signaling between platelets and cancer cells induces an
epithelial-mesenchymal-like transition and promotes metastasis.
Cancer Cell. 20:576–590. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Buscail L, Bournet B and Cordelier P: Role
of oncogenic KRAS in the diagnosis, prognosis and treatment of
pancreatic cancer. Nat Rev Gastroenrerol Hepatol. 17:153–168. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yang J, Li S, Li J, Wang F, Chen K, Zheng
Y, Wang J, Lu W, Zhou Y, Yin Q, et al: A meta-analysis of the
diagnostic value of detecting K-ras mutation in pancreatic juice as
a molecular marker for pancreatic cancer. Pancreatology.
16:605–614. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Dong L, Wang S, Fu B and Wang J:
Evaluation of droplet digital PCR and next generation sequencing
for characterizing DNA reference material for KRAS mutation
detection. Sci Rep. 8:96502018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Patel SA and Vanharanta S: Epigenetic
determinants of metastasis. Mol Oncol. 11:79–96. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Thålin C, Hisada Y, Lundström S, Mackman N
and Wallén H: Neutrophil extracellular traps: Villains and targets
in arterial, venous, and cancer-associated thrombosis. Arterioscler
Thromb Vasc Biol. 39:1724–1738. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Pastushenko I, Brisebarre A, Sifrim A,
Fioramonti M, Revenco T, Boumahdi S, Van Keymeulen A, Brown D,
Moers V, Lemaire S, et al: Identification of the tumour transition
states occurring during EMT. Nature. 556:463–468. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Murthy P, Singhi AD, Ross MA, Loughran P,
Paragomi P, Papachristou GI, Whitcomb DC, Zureikat AH, Lotze MT,
Zeh Iii HJ and Boone BA: Enhanced neutrophil extracellular trap
formation in acute pancreatitis contributes to disease severity and
is reduced by chloroquine. Front Immunol. 10:282019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kajioka H, Kagawa S, Ito A, Yoshimoto M,
Sakamoto S, Kikuchi S, Kuroda S, Yoshida R, Umeda Y, Noma K, et al:
Targeting neutrophil extracellular traps with thrombomodulin
prevents pancreatic cancer metastasis. Cancer Let. 497:1–13. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhang K, Sun X, Zhou X, Han L, Chen L, Shi
Z, Zhang A, Ye M, Wang Q, Liu C, et al: Long non-coding RNA HOTAIR
promotes glioblastoma cell cycle progression in an EZH2 dependent
manner. Oncotarget. 6:537–546. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jiao F, Hu H, Han T, Yuan C and Wang L,
Jin Z, Guo Z and Wang L: Long noncoding RNA MALAT-1 enhances stem
cell-like phenotypes in pancreatic cancer cells. Int J Mol Sci.
16:6677–6693. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sun YW, Chen YF, Li J, Huo YM, Liu DJ, Hua
R, Zhang JF, Liu W, Yang JY, Fu XL, et al: A novel long non-coding
RNA ENST00000480739 suppresses tumour cell invasion by regulating
OS-9 and HIF-1alpha in pancreatic ductal adenocarcinoma. Br J
Cancer. 111:2131–2141. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ye Y, Chen J, Zhou Y, Fu Z, Zhou Q, Wang
Y, Gao W, Zheng S, Zhao X, Chen T and Chen R: High expression of
AFAP1-AS1 is associated with poor survival and short-term
recurrence in pancreatic ductal adenocarcinoma. J Transl Med.
13:1372015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Huang X, Zhi X, Gao Y, Ta N, Jiang H and
Zheng J: LncRNAs in pancreatic cancer. Oncotarget. 7:57379–57390.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wang Y, Jiang XM, Feng ZX, Li XL and Zhang
WL: Long noncoding RNA PCAT-1 accelerates the metastasis of
pancreatic cancer by repressing RBM5. Eur Rev Med Pharmacol Sci.
23:7350–7355. 2019.PubMed/NCBI
|
|
76
|
Marrelli D, Caruso S, Pedrazzani C, Neri
A, Fernandes E, Marini M, Pinto E and Roviello F: CA19-9 serum
levels in obstructive jaundice: Clinical value in benign and
malignant conditions. Am J Surg. 198:333–339. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Shang X, Song C, Du X, Shao H, Xu D and
Wang X: The serum levels of tumor marker CA19-9, CEA, CA72-4, and
NSE in type 2 diabetes without malignancy and the relations to the
metabolic control. Saudi Med J. 38:204–208. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yoshida H, Onda M, Tajiri T, Mamada Y,
Taniai N, Mineta S, Hirakata A, Futami R, Arima Y, Inoue M, et al:
Infected hepatic cyst. Hepatogastroenterology. 50:507–509.
2003.PubMed/NCBI
|
|
79
|
Zhai H, Huang J, Yang C, Fu Y and Yang B:
Serum CEA and CA19-9 levels are associated with the presence and
severity of colorectal neoplasia. Clin Lab. 64:351–356. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ballehaninna UK and Chamberlain RS: The
clinical utility of serum CA 19-9 in the diagnosis, prognosis and
management of pancreatic adenocarcinoma: An evidence based
appraisal. J Gastrointest Oncol. 3:105–119. 2012.PubMed/NCBI
|
|
81
|
Tempero MA, Arnoletti JP, Behrman S,
Ben-Josef E, Benson AB III, Berlin JD, Cameron JL, Casper ES, Cohen
SJ, Duff M, et al: Pancreatic adenocarcinoma. J Natl Compr Canc
Netw. 8:972–1017. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kimmey MB, Bronner MP, Byrd DR and
Brentnall TA: Screening and surveillance for hereditary pancreatic
cancer. Gastrointest Endosc. 56 (Suppl 4):S82–S86. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Goggins M, Overbeek KA, Brand R, Syngal S,
Del Chiaro M, Bartsch DK, Bassi C, Carrato A, Farrell J, Fishman
EK, et al: Management of patients with increased risk for familial
pancreatic cancer: Updated recommendations from the International
Cancer of the Pancreas Screening (CAPS) Consortium. Gut. 69:7–17.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ben Q, Xu M, Ning X, Liu J, Hong S, Huang
W, Zhang H and Li Z: Diabetes mellitus and risk of pancreatic
cancer: A meta-analysis of cohort studies. Eur J Cancer.
47:1928–1937. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kirkegård J, Mortensen FV and
Cronin-Fenton D: Chronic pancreatitis and pancreatic cancer risk: A
systematic review and Meta-analysis. Am J Gastroenterol.
112:1366–1372. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Gaiser RA, Halimi A, Alkharaan H, Lu L,
Davanian H, Healy K, Hugerth LW, Ateeb Z, Valente R, Fernández Moro
C, et al: Enrichment of oral microbiota in early cystic precursors
to invasive pancreatic cance. Gut. 68:2186–2194. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Duraker N, Hot S, Polat Y, Höbek A,
Gençler N and Urhan N: CEA, CA 19-9, and CA 125 in the differential
diagnosis of benign and malignant pancreatic diseases with or
without jaundice. J Surg Oncol. 95:142–147. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Rieser CJ, Zenati M, Hamad A, Al Abbas AI,
Bahary N, Zureikat AH, Zeh HJ III and Hogg ME: CA19-9 on
postoperative surveillance in pancreatic ductal adenocarcinoma:
Predicting recurrence and changing prognosis over time. Ann Surg
Oncol. 25:3483–3491. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Azizian A, Rühlmann F, Krause T, Bernhardt
M, Jo P, König A, Kleiß M, Leha A, Ghadimi M and Gaedcke J: CA19-9
for detecting recurrence of pancreatic cancer. Sci Rep.
10:13322020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ferrone CR, Finkelstein DM, Thayer SP,
Muzikansky A, Fernandez-delCastillo C and Warshaw AL: Perioperative
CA19-9 levels can predict stage and survival in patients with
resectable pancreatic adenocarcinoma. J Clin Oncol. 24:2897–2902.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Berger AC, Garcia M Jr, Hoffman JP, Regine
WF, Abrams RA, Safran H, Konski A, Benson AB III, MacDonald J and
Willett CG: Postresection CA 19-9 predicts overall survival in
patients with pancreatic cancer treated with adjuvant
chemoradiation: A prospective validation by RTOG 9704. J Clin
Oncol. 26:5918–5922. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Jia F, Liu M, Li X, Zhang F, Yue S and Liu
J: Relationship between S100A4 protein expression and pre-operative
serum CA19.9 levels in pancreatic carcinoma and its prognostic
significance. World J Surg Oncol. 17:1632019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Moro L, Simoneschi D, Kurz E, Arbini AA,
Jang S, Guaragnella N, Giannattasio S, Wang W, Chen YA, Pires G, et
al: Epigenetic silencing of the ubiquitin ligase subunit FBXL7
impairs c-SRC degradation and promotes epithelial-to-mesenchymal
transition and metastasis. Nat Cell Biol. 22:1130–1142. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Moro L and Pagano M: Epigenetic
suppression of FBXL7 promotes metastasis. Mol Cell Oncol.
7:18336982020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Baumert M, Surmiak P, Szymkowiak M and
Janosz A: The assessment of Pentraxin 3: A novel biomarker in early
detection of infection in newborns. Biomed Res Int.
2021:66386222021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Goulart MR, Watt J, Siddiqui I, Lawlor RT,
Imrali A, Hughes C, Saad A, ChinAleong J, Hurt C, Cox C, et al:
Pentraxin 3 is a stromally-derived biomarker for detection of
pancreatic ductal adenocarcinoma. NPJ Precis Oncol. 5:612021.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Laklai H, Miroshnikova YA, Pickup MW,
Collisson EA, Kim GE, Barrett AS, Hill RC, Lakins JN, Schlaepfer
DD, Mouw JK, et al: Genotype tunes pancreatic ductal adenocarcinoma
tissue tension to induce matricellular fibrosis and tumor
progression. Nat Med. 22:497–505. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Vennin C, Murphy KJ, Morton JP, Cox TR,
Pajic M and Timpson P: Reshaping the tumor stroma for treatment of
pancreatic cancer. Gastroenterology. 154:820–838. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kim EJ, Sahai V, Abel EV, Griffith KA,
Greenson JK, Takebe N, Khan GN, Blau JL, Craig R, Balis UG, et al:
Pilot clinical trial of hedgehog pathway inhibitor GDC-0449
(vismodegib) in combination with gemcitabine in patients with
metastatic pancreatic adenocarcinoma. Clin Cancer Res.
20:5937–5945. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Catenacci DV, Junttila MR, Karrison T,
Bahary N, Horiba MN, Nattam SR, Marsh R, Wallace J, Kozloff M,
Rajdev L, et al: Randomized Phase Ib/II study of gemcitabine plus
placebo or vismodegib, a hedgehog pathway inhibitor, in patients
with metastatic pancreatic cancer. J Clin Oncol. 33:4284–4292.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Ko AH, LoConte N, Tempero MA, Walker EJ,
Kate Kelley R, Lewis S, Chang WC, Kantoff E, Vannier MW, Catenacci
DV, et al: A phase I study of FOLFIRINOX Plus IPI-926, a hedgehog
pathway inhibitor, for advanced pancreatic adenocarcinoma.
Pancreas. 45:370–375. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Ramanathan RK, McDonough S, Philip PA,
Hingorani SR, Lacy J, Kortmansky JS, Thumar J, Chiorean EG, Shields
AF, Behl D, et al: Phase IB/II randomized study of FOLFIRINOX plus
pegylated recombinant human hyaluronidase versus FOLFIRINOX alone
in patients with metastatic pancreatic adenocarcinoma: SWOG S1313.
J Clin Oncol. 37:1062–1069. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wang WQ, Liu L, Xu JZ and Yu XJ:
Reflections on depletion of tumor stroma in pancreatic cancer.
Biochim Biophys Acta Rev Cancer. 1871:267–272. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Özdemir BC, Pentcheva-Hoang T, Carstens
JL, Zheng X, Wu CC, Simpson TR, Laklai H, Sugimoto H, Kahlert C,
Novitskiy SV, et al: Depletion of carcinoma-associated fibroblasts
and fibrosis induces immunosuppression and accelerates pancreas
cancer with reduced survival. Cancer Cell. 28:831–833. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Lee JJ, Perera RM, Wang H, Wu DC, Liu XS,
Han S, Fitamant J, Jones PD, Ghanta KS, Kawano S, et al: Stromal
response to Hedgehog signaling restrains pancreatic cancer
progression. Proc Natl Acad Sci USA. 111:E3091–E3100. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Roberts KJ, Kershner AM and Beachy PA: The
stromal niche for epithelial stem cells: A template for
regeneration and a brake on malignancy. Cancer Cell. 32:404–410.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Lin Z, Lu S, Xie X, Yi X and Huang H:
Noncoding RNAs in drug-resistant pancreatic cancer: A review.
Biomed Pharmacother. 131:1107682020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Peng Y and Croce CM: The role of MicroRNAs
in human cancer. Signal Transduct Target Ther. 1:150042016.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Lee YS and Dutta A: MicroRNAs in cancer.
Annu Rev Pathol. 4:199–227. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Khan IA, Rashid S, Singh N, Rashid S,
Singh V, Gunjan D, Das P, Dash NR, Pandey RM, Chauhan SS, et al:
Panel of serum miRNAs as potential non-invasive biomarkers for
pancreatic ductal adenocarcinoma. Sci Rep. 11:28242021. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Greither T, Grochola LF, Udelnow A,
Lautenschlager C, Wurl P and Taubert H: Elevated expression of
microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated
with poorer survival. Int J Cancer. 126:73–80. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Schultz NA, Andersen KK, Roslind A,
Willenbrock H, Wojdemann M and Johansen JS: Prognostic microRNAs in
cancer tissue from patients operated for pancreatic cancer-five
microRNAs in a prognostic index. World J Surg. 36:2699–2707. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ye ZQ, Zou CL, Chen HB, Jiang MJ, Mei Z
and Gu DN: MicroRNA-7 as a potential biomarker for prognosis in
pancreatic cancer. Dis Markers. 2020:27821012020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Kumarswamy R, Volkmann I and Thum T:
Regulation and function of miRNA-21 in health and disease. RNA
Biol. 8:706–713. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Liu R, Zhang H, Wang X, Zhou L, Li H, Deng
T, Qu Y, Duan J, Bai M, Ge S, et al: The miR-24-Bim pathway
promotes tumor growth and angiogenesis in pancreatic carcinoma.
Oncotarget. 6:43831–43842. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhang L, Jamaluddin MS, Weakley SM, Yao Q
and Chen C: Roles and mechanisms of microRNAs in pancreatic cancer.
World J Surg. 35:1725–1731. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Habbe N, Koorstra JB, Mendell JT,
Offerhaus GJ, Ryu JK, Feldmann G, Mullendore ME, Goggins MG, Hong
SM and Maitra A: MicroRNA miR-155 is a biomarker of early
pancreatic neoplasia. Cancer Biol Ther. 8:340–346. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Huang X, Ding L, Bennewith KL, Tong RT,
Welford SM, Ang KK, Story M, Le QT and Giaccia AJ:
Hypoxia-inducible mir-210 regulates normoxic gene expression
involved in tumor initiation. Mol Cell. 35:856–867. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wu X, Wang Y, Yu T, Nie E, Hu Q, Wu W, Zhi
T, Jiang K, Wang X, Lu X, et al: Blocking MIR155HG/miR-155 axis
inhibits mesenchymal transition in glioma. Neurooncology.
19:1195–1205. 2017.
|
|
120
|
Korpal M, Lee ES, Hu G and Kang Y: The
miR-200 family inhibits epithelial-mesenchymal transition and
cancer cell migration by direct targeting of E-cadherin
transcriptional repressors ZEB1 and ZEB2. J Biol Chem.
283:14910–14914. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Luthra R, Singh RR, Luthra MG, Li YX,
Hannah C, Romans AM, Barkoh BA, Chen SS, Ensor J, Maru DM, et al:
MicroRNA-196a targets annexin A1: A microRNA-mediated mechanism of
annexin A1 downregulation in cancers. Oncogene. 27:6667–6678. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Ma Y, Yu S, Zhao W, Lu Z and Chen J:
miR-27a regulates the growth, colony formation and migration of
pancreatic cancer cells by targeting Sprouty2. Cancer Lett.
298:150–158. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Du J, Zheng X, Cai S, Zhu Z, Tan J, Hu B,
Huang Z and Jiao H: MicroRNA-506 participates in pancreatic cancer
pathogenesis by targeting PIM3. Mol Med Rep. 12:5121–5126. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Chen Z, Chen LY, Dai HY, Wang P, Gao S and
Wang K: miR-301a promotes pancreatic cancer cell proliferation by
directly inhibiting Bim expression. J Cell Biochem. 113:3229–3235.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Fu Y, Liu X, Chen Q, Liu T, Lu C, Yu J,
Miao Y and Wei J: Downregulated miR-98-5p promotes PDAC
proliferation and metastasis by reversely regulating MAP4K4. J Exp
Clin Cancer Res. 37:1302018. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Chang W, Liu M, Xu J, Fu H, Zhou B, Yuan T
and Chen P: MiR-377 inhibits the proliferation of pancreatic cancer
by targeting Pim-3. Tumour Biol. 37:14813–14824. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Fu XF, Zhao HC, Yang CL, Chen CZ, Wang K,
Gao F, Tian YZ and Zhao HL: MicroRNA-203-3p inhibits the
proliferation, invasion and migration of pancreatic cancer cells by
downregulating fibroblast growth factor 2. Oncol Lett. 22:6262021.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Liu G, Ji L, Ke M, Ou Z, Tang N and Li Y:
miR-125a-3p is responsible for chemosensitivity in PDAC by
inhibiting epithelial-mesenchymal transition via Fyn. Biomed
Pharmacother. 106:523–531. 2018. View Article : Google Scholar : PubMed/NCBI
|