You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Hashibe M, Boffetta P, Zaridze D, Shangina O, Szeszeni-Dabrowska N, Mates D, Fabiánová E, Rudnai P and Brennan P: Contribution of tobacco and alcohol to the high rates of squamous cell carcinoma of the supraglottis and glottis in Central Europe. Am J Epidemiol. 165:814–820. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Curado MP and Hashibe M: Recent changes in the epidemiology of head and neck cancer. Curr Opin Oncol. 21:194–200. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Talamini R, Bosetti C, La Vecchia C, Dal Maso L, Levi F, Bidoli E, Negri E, Pasche C, Vaccarella S, Barzan L and Franceschi S: Combined effect of tobacco and alcohol on laryngeal cancer risk: A case-control study. Cancer Causes Control. 13:957–964. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Pöschl G and Seitz HK: Alcohol and cancer. Alcohol Alcohol. 39:155–165. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Galli J, Cammarota G, De Corso E, Agostino S, Cianci R, Almadori G and Paludetti G: Biliary laryngopharyngeal reflux: A new pathological entity. Curr Opin Otolaryngol Head Neck Surg. 14:128–132. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Tutar H, Erdamar H, Köybaşioğlu A, Dinç AE, Ceylan A and Uslu S: Can bile acids be an etiological factor for laryngeal carcinoma? ORL J Otorhinolaryngol Relat Spec. 73:156–161. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Geterud A, Bove M and Ruth M: Hypopharyngeal acid exposure: An independent risk factor for laryngeal cancer? Laryngoscope. 113:2201–2205. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Sereg-Bahar M, Jerin A and Hocevar-Boltezar I: Higher levels of total pepsin and bile acids in the saliva as a possible risk factor for early laryngeal cancer. Radiol Oncol. 49:59–64. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Altman KW, Prufer N and Vaezi MF: A review of clinical practice guidelines for reflux disease: toward creating a clinical protocol for the otolaryngologist. Laryngoscope. 121:717–723. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Assimakopoulos D and Patrikakos G: The role of gastroesophageal reflux in the pathogenesis of laryngeal carcinoma. Am J Otolaryngol. 23:351–357. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Sasaki CT, Marotta J, Hundal J, Chow J and Eisen RN: Bile-induced laryngitis: Is there a basis in evidence? Ann Otol Rhinol Laryngol. 114:192–197. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Sasaki CT, Issaeva N and Vageli DP: In vitro model for gastroduodenal reflux-induced nuclear factor-kappaB activation and its role in hypopharyngeal carcinogenesis. Head Neck. 38 (Suppl 1):E1381–E1391. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Vageli DP, Prasad ML and Sasaki CT: Gastro-duodenal fluid induced nuclear Factor-κappaB activation and early pre-malignant alterations in murine hypopharyngeal mucosa. Oncotarget. 7:5892–5908. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sasaki CT and Vageli DP: MiR-21, miR-155, miR-192, and miR-375 deregulations related to NF-kappaB activation in gastroduodenal Fluid-Induced early Preneoplastic lesions of laryngeal mucosa in vivo. Neoplasia. 18:329–338. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sasaki CT, Doukas SG, Costa J and Vageli DP: The progressive mutagenic effects of acidic bile refluxate in hypopharyngeal squamous cell carcinogenesis: New insights. Cancers (Basel). 12:10642020. View Article : Google Scholar : PubMed/NCBI | |
|
Sasaki CT, Doukas SG, Doukas PG and Vageli DP: Weakly acidic bile is a risk factor for hypopharyngeal carcinogenesis evidenced by DNA damage, antiapoptotic function, and premalignant dysplastic lesions in vivo. Cancers (Basel). 13:8522021. View Article : Google Scholar : PubMed/NCBI | |
|
Doukas SG, Cardoso B, Tower JI, Vageli DP and Sasaki CT: Biliary tumorigenic effect on hypopharyngeal cells is significantly enhanced by pH reduction. Cancer Med. 8:4417–4427. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sasaki CT, Doukas SG, Costa J and Vageli DP: Biliary reflux as a causal factor in hypopharyngeal carcinoma: New clinical evidence and implications. Cancer. 125:3554–3565. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sasaki CT, Doukas SG and Vageli DP: In Vivo Short-Term topical application of BAY 11-7082 prevents the acidic Bile-Induced mRNA and miRNA oncogenic phenotypes in exposed Murine Hypopharyngeal Mucosa. Neoplasia. 20:374–386. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Vageli DP, Doukas SG, Spock T and Sasaki CT: Curcumin prevents the bile reflux-induced NF-κB-related mRNA oncogenic phenotype, in human hypopharyngeal cells. J Cell Mol Med. 22:4209–4220. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Vageli DP, Doukas SG and Sasaki CT: Inhibition of NF-kappaB prevents the acidic bile-induced oncogenic mRNA phenotype, in human hypopharyngeal cells. Oncotarget. 9:5876–5891. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Doukas SG, Vageli DP and Sasaki CT: NF-κB inhibition reverses acidic bile-induced miR-21, miR-155, miR-192, miR-34a, miR-375 and miR-451a deregulations in human hypopharyngeal cells. J Cell Mol Med. 22:2922–2934. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Doukas PG, Vageli DP, Doukas SG and Sasaki CT: Temporal characteristics of NF-κB inhibition in blocking bile-induced oncogenic molecular events in hypopharyngeal cells. Oncotarget. 10:3339–3351. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Doukas SG, Doukas PG, Sasaki CT and Vageli D: The in vivo preventive and therapeutic properties of curcumin in bile reflux-related oncogenesis of the hypopharynx. J Cell Mol Med. 24:10311–10321. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Vageli DP, Kasle D, Doukas SG, Doukas PG and Sasaki CT: The temporal effects of topical NF-κB inhibition, in the in vivo prevention of bile-related oncogenic mRNA and miRNA phenotypes in murine hypopharyngeal mucosa: A preclinical model. Oncotarget. 11:3303–3314. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hofmann AF: Chemistry and enterohepatic circulation of bile acids. Hepatology. 4 (Suppl 5):4S–14S. 1984. View Article : Google Scholar : PubMed/NCBI | |
|
Greek Medicine, . http://www.greekmedicine.net/b_p/Four_Humors.html | |
|
Rather LJ: Disturbance of function (functio laesa): The legendary fifth cardinal sign of inflammation, added by Galen to the four cardinal signs of Celsus. Bull NY Acad Med. 47:303–322. 1971.PubMed/NCBI | |
|
Virchow R and Rather LJ: Disease, Life, and Man: Selected Essays. Stanford University Press; Stanford, CA: 1958 | |
|
Cook JW: Carcinogenic chemical agents. Yale J Biol Med. 11:1–13. 1938.PubMed/NCBI | |
|
Bernstein H, Bernstein C, Payne CM, Dvorakova K and Garewal H: Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res. 589:47–65. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Kuwahara A, Saito T and Kobayashi M: Bile acids promote carcinogenesis in the remnant stomach of rats. J Cancer Res Clin Oncol. 115:423–428. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Hill MJ: Bile flow and colon cancer. Mutat Res. 238:313–320. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Bayerdörffer E, Mannes GA, Ochsenkühn T, Dirschedl P, Wiebecke B and Paumgartner G: Unconjugated secondary bile acids in the serum of patients with colorectal adenomas. Gut. 36:268–273. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Nehra D, Howell P, Williams CP, Pye JK and Beynon J: Toxic bile acids in gastro-oesophageal reflux disease: Influence of gastric acidity. Gut. 44:598–602. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Vaezi MF and Richter JE: Double reflux: Double trouble. Gut. 44:590–592. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Vaezi MF, Singh S and Richter JE: Role of acid and duodenogastric reflux in esophageal mucosal injury: A review of animal and human studies. Gastroenterology. 108:1897–1907. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Gotley DC, Morgan AP and Cooper MJ: Bile acid concentrations in the refluxate of patients with reflux oesophagitis. Br J Surg. 75:587–590. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Kauer WK, Peters JH, DeMeester TR, Ireland AP, Bremner CG and Hagen JA: Mixed reflux of gastric and duodenal juices is more harmful to the esophagus than gastric juice alone. The need for surgical therapy re-emphasized. Ann Surg. 222:525–531. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Kauer WK, Peters JH, DeMeester TR, Feussner H, Ireland AP, Stein HJ and Siewert RJ: Composition and concentration of bile acid reflux into the esophagus of patients with gastroesophageal reflux disease. Surgery. 122:874–881. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Domellof L, Reddy BS and Weisburger JH: Microflora and deconjugation of bile acids in alkaline reflux after partial gastrectomy. Am J Surg. 140:291–295. 1980. View Article : Google Scholar : PubMed/NCBI | |
|
Fein M, Peters JH, Chandrasoma P, Ireland AP, Oberg S, Ritter MP, Bremner CG, Hagen JA and DeMeester TR: Duodenoesophageal reflux induces esophageal adenocarcinoma without exogenous carcinogen. J Gastrointest Surg. 2:260–268. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
McQuaid KR, Laine L, Fennerty MB, Souza R and Spechler SJ: Systematic review: The role of bile acids in the pathogenesis of gastro-oesophageal reflux disease and related neoplasia. Aliment Pharmacol Ther. 34:146–165. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Oh DS, Hagen JA, Fein M, Bremner CG, Dunst CM, Demeester SR, Lipham J and Demeester TR: The impact of reflux composition on mucosal injury and esophageal function. J Gastrointest Surg. 10:787–796. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Sweet MP, Patti MG, Hoopes C, Hays SR and Golden JA: Gastro-oesophageal reflux and aspiration in patients with advanced lung disease. Thorax. 64:167–173. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Covington MF, Krupinski E, Avery RJ and Kuo PH: Classification schema of symptomatic enterogastric reflux utilizing sincalide augmentation on hepatobiliary scintigraphy. J Nucl Med Technol. 42:198–202. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lewin JS, Gillenwater AM, Garrett JD, Bishop-Leone JK, Nguyen DD, Callender DL, Ayers GD and Myers JN: Characterization of laryngopharyngeal reflux in patients with premalignant or early carcinomas of the larynx. Cancer. 97:1010–1014. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Johnston N, Ondrey F, Rosen R, Hurley BP, Gould J, Allen J, DelGaudio J and Altman KW: Airway reflux. Ann N Y Acad Sci. 1381:5–13. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Adams J, Heintz P, Gross N, Andersen P, Everts E, Wax M and Cohen J: Acid/pepsin promotion of carcinogenesis in the hamster cheek pouch. Arch Otolaryngol Head Neck Surg. 126:405–409. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Johnston N, Dettmar PW, Ondrey FG, Nanchal R, Lee SH and Bock JM: Pepsin: Biomarker, mediator, and therapeutic target for reflux and aspiration. Ann NY Acad Sci. 1434:282–289. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Johnston N, Wells CW, Samuels TL and Blumin JH: Pepsin in nonacidic refluxate can damage hypopharyngeal epithelial cells. Ann Otol Rhinol Laryngol. 118:677–685. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Del Negro A, Araújo MR, Tincani AJ, Meirelles L, Martins AS and Andreollo NA: Experimental carcinogenesis on the oropharyngeal mucosa of rats with hydrochloric acid, sodium nitrate and pepsin. Acta Cir Bras. 23:337–342. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Sasaki CT, Toman J and Vageli D: The in vitro effect of Acidic-Pepsin on nuclear factor KappaB activation and its related oncogenic effect on normal human hypopharyngeal cells. PLoS One. 11:e01682692016. View Article : Google Scholar : PubMed/NCBI | |
|
Doukas PG, Vageli DP, Sasaki CT and Judson BL: Pepsin promotes activation of epidermal growth factor receptor and downstream oncogenic pathways, at slightly acidic and neutral pH, in exposed hypopharyngeal cells. Int J Mol Sci. 22:42752021. View Article : Google Scholar : PubMed/NCBI | |
|
Goldstein JL, Schlesinger PK, Mozwecz HL and Layden TJ: Esophageal mucosal resistance. A factor in esophagitis. Gastroenterol Clin North Am. 19:565–586. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Stamp D and Jenkins G: An overview of bile-acid synthesis, chemistry and function. Bile Acids: Toxicology and Bioactivity. Jenkins GJ and Hardie L: Royal Society of Chemistry; Cambridge: 2008, Print: Issues in Toxicology; 4. https://pubs.rsc.org/en/content/ebook/978-0-85404-846-5 View Article : Google Scholar | |
|
Stamp DH: Three hypotheses linking bile to carcinogenesis in the gastrointestinal tract: certain bile salts have properties that may be used to complement chemotherapy. Med Hypotheses. 59:398–405. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Ireland AP, Peters JH, Smyrk TC, DeMeester TR, Clark GW, Mirvish SS and Adrian TE: Gastric juice protects against the development of esophageal adenocarcinoma in the rat. Ann Surg. 224:358–370. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Dvorak K, Payne CM, Chavarria M, Ramsey L, Dvorakova B, Bernstein H, Holubec H, Sampliner RE, Guy N, Condon A, et al: Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: Relevance to the pathogenesis of Barrett's oesophagus. Gut. 56:763–771. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kauer WK and Stein HJ: Role of acid and bile in the genesis of Barrett's esophagus. Chest Surg Clin N Am. 12:39–45. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Ulualp SO, Roland PS, Toohill RJ and Shaker R: Prevalence of gastroesophagopharyngeal acid reflux events: An evidence-based systematic review. Am J Otolaryngol. 26:239–244. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Lillemoe KD, Gadacz TR and Harmon JW: Bile absorption occurs during disruption of the esophageal mucosal barrier. J Surg Res. 35:57–62. 1983. View Article : Google Scholar : PubMed/NCBI | |
|
Sasaki CT, Hajek M, Doukas SG and Vageli DP: The role of bile reflux and its related NF-κB activated pathway in progression of hypopharyngeal squamous cell cancer. Oral Oncol. 105:1046682020. View Article : Google Scholar : PubMed/NCBI | |
|
Hemmink GJ, Bredenoord AJ, Weusten BL, Monkelbaan JF, Timmer R and Smout AJ: Esophageal pH-impedance monitoring in patients with therapy-resistant reflux symptoms: ‘On’ or ‘off’ proton pump inhibitor? Am J Gastroenterol. 103:2446–2453. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Bernstein H, Payne CM, Bernstein C, Schneider J, Beard SE and Crowley CL: Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate. Toxicol Lett. 108:37–46. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Huo X, Juergens S, Zhang X, Rezaei D, Yu C, Strauch ED, Wang JY, Cheng E, Meyer F, Wang DH, et al: Deoxycholic acid causes DNA damage while inducing apoptotic resistance through NF-κB activation in benign Barrett's epithelial cells. Am J Physiol Gastrointest Liver Physiol. 301:G278–G286. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Langevin SM, Michaud DS, Marsit CJ, Nelson HH, Birnbaum AE, Eliot M, Christensen BC, McClean MD and Kelsey KT: Gastric reflux is an independent risk factor for laryngopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 22:1061–1068. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Coca-Pelaz A, Rodrigo JP, Takes RP, Silver CE, Paccagnella D, Rinaldo A, Hinni ML and Ferlito A: Relationship between reflux and laryngeal cancer. Head Neck. 35:1814–1818. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Attwood SE, Smyrk TC, DeMeester TR, Mirvish SS, Stein HJ and Hinder RA: Duodenoesophageal reflux and the development of esophageal adenocarcinoma in rats. Surgery. 111:503–510. 1992.PubMed/NCBI | |
|
Fein M, Fuchs KH, Stopper H, Diem S and Herderich M: Duodenogastric reflux and foregut carcinogenesis: Analysis of duodenal juice in a rodent model of cancer. Carcinogenesis. 21:2079–2084. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Miwa K, Hattori T and Miyazaki I: Duodenogastric reflux and foregut carcinogenesis. Cancer. 75 (Suppl 6):S1426–S1432. 1995. View Article : Google Scholar | |
|
Fang Y, Chen H, Hu Y, Djukic Z, Tevebaugh W, Shaheen NJ, Orlando RC, Hu J and Chen X: Gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice. Am J Physiol Gastrointest Liver Physiol. 305:G58–G65. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
McAdam E, Haboubi HN, Griffiths AP, Baxter JN, Spencer-Harty S, Davies C and Jenkins GJ: Reflux composition influences the level of NF-κB activation and upstream kinase preference in oesophageal adenocarcinoma cells. Int J Cancer. 136:527–535. 2015.PubMed/NCBI | |
|
Bus P, Siersema PD and van Baal JW: Cell culture models for studying the development of Barrett's esophagus: A systematic review. Cell Oncol (Dordr). 35:149–161. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hormi-Carver K, Zhang X, Zhang HY, Whitehead RH, Terada LS, Spechler SJ and Souza RF: Unlike esophageal squamous cells, Barrett's epithelial cells resist apoptosis by activating the nuclear factor-κB pathway. Cancer Res. 69:672–677. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Karin M: Nuclear factor-kappaB in cancer development and progression. Nature. 441:431–436. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H and Cho CH: Effect of NF-kappaB signaling on apoptosis in chronic inflammation-associated carcinogenesis. Curr Cancer Drug Targets. 10:593–599. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
DiDonato JA, Mercurio F and Karin M: NF-kappaB and the link between inflammation and cancer. Immunol Rev. 246:379–400. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hoesel B and Schmid JA: The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer. 12:862013. View Article : Google Scholar : PubMed/NCBI | |
|
Nottingham LK, Yan CH, Yang X, Si H, Coupar J, Bian Y, Cheng TF, Allen C, Arun P, Gius D, et al: Aberrant IKKα and IKKβ cooperatively activate NF-κB and induce EGFR/AP1 signaling to promote survival and migration of head and neck cancer. Oncogene. 33:1135–1147. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Stadler ME, Patel MR, Couch ME and Hayes DN: Molecular biology of head and neck cancer: Risks and pathways. Hematol Oncol Clin North Am. 22:1099–1124. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Molinolo AA, Amornphimoltham P, Squarize CH, Castilho RM, Patel V and Gutkind JS: Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol. 45:324–334. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
King KE, Ponnamperuma RM, Allen C, Lu H, Duggal P, Chen Z, Van Waes C and Weinberg WC: The p53 homologue DeltaNp63alpha interacts with the nuclear factor-kappaB pathway to modulate epithelial cell growth. Cancer Res. 68:5122–5131. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Jackson-Bernitsas DG, Ichikawa H, Takada Y, Myers JN, Lin XL, Darnay BG, Chaturvedi MM and Aggarwal BB: Evidence that TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK pathway mediates constitutive NF-kappaB activation and proliferation in human head and neck squamous cell carcinoma. Oncogene. 26:1385–1397. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Dong J, Jimi E, Zeiss C, Hayden MS and Ghosh S: Constitutively active NF-kappaB triggers systemic TNFalpha-dependent inflammation and localized TNFalpha-independent inflammatory disease. Genes Dev. 24:1709–1717. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Foxwell BM, Bondeson J, Brennan F and Feldmann M: Adenoviral transgene delivery provides an approach to identifying important molecular processes in inflammation: Evidence for heterogenecity in the requirement for NF-kappaB in tumour necrosis factor production. Ann Rheum Dis. 59 (Suppl 1):i54–i59. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Guyer RA and Macara IG: Loss of the polarity protein PAR3 activates STAT3 signaling via an atypical protein kinase C (aPKC)/NF-κB/interleukin-6 (IL-6) axis in mouse mammary cells. J Biol Chem. 290:8457–8468. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Zhang C, Huang Y, Yu Y, Li R, Li M, Liu N, Liu P and Qiao J: Up-regulated expression of WNT5a increases inflammation and oxidative stress via PI3K/AKT/NF-κB signaling in the granulosa cells of PCOS patients. J Clin Endocrinol Metab. 100:201–211. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bo H, Zhang S, Gao L, Chen Y, Zhang J, Chang X and Zhu M: Upregulation of Wnt5a promotes epithelial-to-mesenchymal transition and metastasis of pancreatic cancer cells. BMC Cancer. 13:4962013. View Article : Google Scholar : PubMed/NCBI | |
|
Klein JD and Grandis JR: The molecular pathogenesis of head and neck cancer. Cancer Biol Ther. 9:1–7. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Allen CT, Ricker JL, Chen Z and Van Waes C: Role of activated nuclear factor-kappaB in the pathogenesis and therapy of squamous cell carcinoma of the head and neck. Head Neck. 29:959–971. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Loercher A, Lee TL, Ricker JL, Howard A, Geoghegen J, Chen Z, Sunwoo JB, Sitcheran R, Chuang EY, Mitchell JB, et al: Nuclear factor-kappaB is an important modulator of the altered gene expression profile and malignant phenotype in squamous cell carcinoma. Cancer Res. 64:6511–6523. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Chung CH, Parker JS, Ely K, Carter J, Yi Y, Murphy BA, Ang KK, El-Naggar AK, Zanation AM, Cmelak AJ, et al: Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-kappaB signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res. 66:8210–8218. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Lee TL, Yang XP, Yan B, Friedman J, Duggal P, Bagain L, Dong G, Yeh NT, Wang J, Zhou J, et al: A novel nuclear factor-kappaB gene signature is differentially expressed in head and neck squamous cell carcinomas in association with TP53 status. Clin Cancer Res. 13:5680–5691. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Souza RF: From reflux esophagitis to esophageal adenocarcinoma. Dig Dis. 34:483–490. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wroblewski LE, Peek RM Jr and Wilson KT: Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin Microbiol Rev. 23:713–739. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Shaheen N and Ransohoff DF: Gastroesophageal reflux, Barrett esophagus, and esophageal cancer: Scientific review. JAMA. 287:1972–1981. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Vander Broek R, Snow GE, Chen Z and Van Waes C: Chemoprevention of head and neck squamous cell carcinoma through inhibition of NF-kappaB signaling. Oral Oncol. 50:930–941. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Baldwin AS Jr: The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu Rev Immunol. 14:649–683. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Lee TL, Yeh J, Friedman J, Yan B, Yang X, Yeh NT, Van Waes C and Chen Z: A signal network involving coactivated NF-kappaB and STAT3 and altered p53 modulates BAX/BCL-XL expression and promotes cell survival of head and neck squamous cell carcinomas. Int J Cancer. 122:1987–1998. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wheeler SE, Suzuki S, Thomas SM, Sen M, Leeman-Neill RJ, Chiosea SI, Kuan CT, Bigner DD, Gooding WE, Lai SY and Grandis JR: Epidermal growth factor receptor variant III mediates head and neck cancer cell invasion via STAT3 activation. Oncogene. 29:5135–5145. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Yan B, Yang X, Lee TL, Friedman J, Tang J, Van Waes C and Chen Z: Genome-wide identification of novel expression signatures reveal distinct patterns and prevalence of binding motifs for p53, nuclear factor-kappaB and other signal transcription factors in head and neck squamous cell carcinoma. Genome Biol. 8:R782007. View Article : Google Scholar : PubMed/NCBI | |
|
Yan B, Li H, Yang X, Shao J, Jang M, Guan D, Zou S, Van Waes C, Chen Z and Zhan M: Unraveling regulatory programs for NF-kappaB, p53 and microRNAs in head and neck squamous cell carcinoma. PLoS One. 8:e736562013. View Article : Google Scholar : PubMed/NCBI | |
|
Sriuranpong V, Park JI, Amornphimoltham P, Patel V, Nelkin BD and Gutkind JS: Epidermal growth factor receptor-independent constitutive activation of STAT3 in head and neck squamous cell carcinoma is mediated by the autocrine/paracrine stimulation of the interleukin 6/gp130 cytokine system. Cancer Res. 63:2948–2956. 2003.PubMed/NCBI | |
|
Yang X, Lu H, Yan B, Romano RA, Bian Y, Friedman J, Duggal P, Allen C, Chuang R, Ehsanian R, et al: ΔNp63 versatility regulates a Broad NF-κB gene program and promotes squamous epithelial proliferation, migration, and inflammation. Cancer Res. 71:3688–3700. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Du J, Romano RA, Si H, Mattox A, Bian Y, Yang X, Sinha S, Van Waes C and Chen Z: Epidermal overexpression of transgenic ΔNp63 promotes type 2 immune and myeloid inflammatory responses and hyperplasia via NF-κB activation. J Pathol. 232:356–368. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Squarize CH, Castilho RM, Sriuranpong V, Pinto DS Jr and Gutkind JS: Molecular cross-talk between the NFkappaB and STAT3 signaling pathways in head and neck squamous cell carcinoma. Neoplasia. 8:733–746. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Yap LF, Ahmad M, Zabidi MM, Chu TL, Chai SJ, Lee HM, Lim PV, Wei W, Dawson C, Teo SH, et al: Oncogenic effects of WNT5A in Epstein-Barr virus associated nasopharyngeal carcinoma. Int J Oncol. 44:1774–1780. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sherwood V, Chaurasiya SK, Ekström EJ, Guilmain W, Liu Q, Koeck T, Brown K, Hansson K, Agnarsdóttir M, Bergqvist M, et al: WNT5A-mediated β-catenin-independent signalling is a novel regulator of cancer cell metabolism. Carcinogenesis. 35:784–794. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Asem MS, Buechler S, Wates RB, Miller DL and Stack MS: Wnt5a Signaling in Cancer. Cancers (Basel). 8:792016. View Article : Google Scholar : PubMed/NCBI | |
|
Nakanishi C and Toi M: Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer. 5:297–309. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Meng Z, Lou S, Tan J, Xu K, Jia Q and Zheng W: Nuclear factor-kappa B inhibition can enhance apoptosis of differentiated thyroid cancer cells induced by 131I. PLoS One. 7:e335972012. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Y, Bai L, Chen W and Xu S: The NF-κB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets. 14:45–55. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Van Waes C: Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin Cancer Res. 13:1076–1082. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wilken R, Veena MS, Wang MB and Srivatsan ES: Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer. 10:122011. View Article : Google Scholar : PubMed/NCBI | |
|
LoTempio MM, Veena MS, Steele HL, Ramamurthy B, Ramalingam TS, Cohen AN, Chakrabarti R, Srivatsan ES and Wang MB: Curcumin suppresses growth of head and neck squamous cell carcinoma. Clin Cancer Res. 11:6994–7002. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Naksuriya O, Okonogi S, Schiffelers RM and Hennink WE: Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 35:3365–3383. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fan Y, Mao R and Yang J: NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell. 4:176–185. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Gaykalova DA, Manola JB, Ozawa H, Zizkova V, Morton K, Bishop JA, Sharma R, Zhang C, Michailidi C, Considine M, et al: NF-κB and stat3 transcription factor signatures differentiate HPV-positive and HPV-negative head and neck squamous cell carcinoma. Int J Cancer. 137:1879–1889. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Khaznadar SS, Khan M, Schmid E, Gebhart S, Becker ET, Krahn T and von Ahsen O: EGFR overexpression is not common in patients with head and neck cancer. Cell lines are not representative for the clinical situation in this indication. Oncotarget. 9:28965–28975. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson DE, Burtness B, Leemans CR, Lui VW, Bauman JE and Grandis JR: Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 6:922020. View Article : Google Scholar : PubMed/NCBI | |
|
Vander Broek R, Mohan S, Eytan DF, Chen Z and Van Waes C: The PI3K/Akt/mTOR axis in head and neck cancer: Functions, aberrations, cross-talk, and therapies. Oral Dis. 21:815–825. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Yang Z, Passaniti A, Lapidus RG, Liu X, Cullen KJ and Dan HC: A positive feedback loop involving EGFR/Akt/mTORC1 and IKK/NF-kB regulates head and neck squamous cell carcinoma proliferation. Oncotarget. 7:31892–31906. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Harris RE: Cyclooxygenase-2 (cox-2) and the inflammogenesis of cancer. Subcell Biochem. 42:93–126. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Lim JW, Kim H and Kim KH: Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Lab Invest. 81:349–360. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Meng F, Liu L, Chin PC and D'Mello SR: Akt is a downstream target of NF-kappa B. J Biol Chem. 277:29674–29680. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Ahmad A, Biersack B, Li Y, Kong D, Bao B, Schobert R, Padhye SB and Sarkar FH: Targeted regulation of PI3K/Akt/mTOR/NF-κB signaling by indole compounds and their derivatives: Mechanistic details and biological implications for cancer therapy. Anticancer Agents Med Chem. 13:1002–1013. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Baud V and Karin M: Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov. 8:33–40. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Tili E, Michaille JJ and Croce CM: MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol Rev. 253:167–184. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Filipowicz W, Bhattacharyya SN and Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet. 9:102–114. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Svoronos AA, Engelman DM and Slack FJ: OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 76:3666–3670. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hu A, Huang JJ, Xu WH, Jin XJ, Li JP, Tang YJ, Huang XF, Cui HJ and Sun GB: MiR-21 and miR-375 microRNAs as candidate diagnostic biomarkers in squamous cell carcinoma of the larynx: Association with patient survival. Am J Transl Res. 6:604–613. 2014.PubMed/NCBI | |
|
Hu A, Huang JJ, Xu WH, Jin XJ, Li JP, Tang YJ, Huang XF, Cui HJ, Sun GB, Li RL and Duan JL: MiR-21/miR-375 ratio is an independent prognostic factor in patients with laryngeal squamous cell carcinoma. Am J Cancer Res. 5:1775–1785. 2015.PubMed/NCBI | |
|
Arantes LM, Laus AC, Melendez ME, de Carvalho AC, Sorroche BP, De Marchi PR, Evangelista AF, Scapulatempo-Neto C, de Souza Viana L and Carvalho AL: MiR-21 as prognostic biomarker in head and neck squamous cell carcinoma patients undergoing an organ preservation protocol. Oncotarget. 8:9911–9921. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Yu J, Ma Y, Wang F and Liu H: MiR-148a and miR-375 may serve as predictive biomarkers for early diagnosis of laryngeal carcinoma. Oncol Lett. 12:871–878. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Wang K, Chen X, Meng H, Song M, Wang Y, Xu X and Bai Y: Transcriptional activation of microRNA-34a by NF-kappa B in human esophageal cancer cells. BMC Mol Biol. 13:42012. View Article : Google Scholar : PubMed/NCBI | |
|
Li HP, Zeng XC, Zhang B, Long JT, Zhou B, Tan GS, Zeng WX, Chen W and Yang JY: MiR-451 inhibits cell proliferation in human hepatocellular carcinoma through direct suppression of IKK-β. Carcinogenesis. 34:2443–2451. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou P, Zeng F, Liu J, Lv D and Liu S: Correlation betweenmir-21 expression and laryngeal carcinoma risks: A meta-analysis. J Evid Based Med. 9:32–37. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shen Z, Zhan G, Ye D, Ren Y, Cheng L, Wu Z and Guo J: MicroRNA-34a affects the occurrence of laryngeal squamous cell carcinoma by targeting the antiapoptotic gene survivin. Med Oncol. 29:2473–2480. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Xian PF, Yang L and Wang SX: MicroRNA-21 promotes proliferation of fibroblast-like synoviocytes through mediation of NF-κB nuclear translocation in a rat model of collagen-induced rheumatoid arthritis. Biomed Res Int. 2016:92790782016.PubMed/NCBI | |
|
Kikkawa N, Kinoshita T, Nohata N, Hanazawa T, Yamamoto N, Fukumoto I, Chiyomaru T, Enokida H, Nakagawa M, Okamoto Y and Seki N: MicroRNA-504 inhibits cancer cell proliferation via targeting CDK6 in hypopharyngeal squamous cell carcinoma. Int J Oncol. 44:2085–2092. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kikkawa N, Hanazawa T, Fujimura L, Nohata N, Suzuki H, Chazono H, Sakurai D, Horiguchi S, Okamoto Y and Seki N: MiR-489 is a tumour-suppressive miRNA target PTPN11 in hypopharyngeal squamous cell carcinoma (HSCC). Br J Cancer. 103:877–884. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Fukumoto I, Kinoshita T, Hanazawa T, Kikkawa N, Chiyomaru T, Enokida H, Yamamoto N, Goto Y, Nishikawa R, Nakagawa M, et al: Identification of tumour suppressive microRNA-451a in hypopharyngeal squamous cell carcinoma based on microRNA expression signature. Br J Cancer. 111:386–394. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hui AB, Lenarduzzi M, Krushel T, Waldron L, Pintilie M, Shi W, Perez-Ordonez B, Jurisica I, O'Sullivan B, Waldron J, et al: Comprehensive microRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res. 16:1129–1139. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Tai J, Xiao X, Huang ZG, Yu ZK, Chen XH, Zhou WG, Chen XJ, Rao YS, Fang JG and Ni X: MicroRNAs regulate epithelial-mesenchymal transition of supraglottic laryngeal cancer. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 48:499–503. 2013.(In Chinese). PubMed/NCBI | |
|
Zhao XD, Zhang W, Liang HJ and Ji WY: Overexpression of miR-155 promotes proliferation and invasion of human laryngeal squamous cell carcinoma via targeting SOCS1 and STAT3. PLoS One. 8:e563952013. View Article : Google Scholar : PubMed/NCBI | |
|
Luzna P, Gregar J, Uberall I, Radova L, Prochazka V and Ehrmann J Jr: Changes of microRNAs-192, 196a and 203 correlate with Barrett's esophagus diagnosis and its progression compared to normal healthy individuals. Diagn Pathol. 6:1142011. View Article : Google Scholar : PubMed/NCBI | |
|
Bus P, Siersema PD, Verbeek RE and van Baal JW: Upregulation of miRNA-143, −145, −192, and −194 in esophageal epithelial cells upon acidic bile salt stimulation. Dis Esophagus. 27:591–600. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chen D, Cabay RJ, Jin Y, Wang A, Lu Y, Shah-Khan M and Zhou X: MicroRNA deregulations in head and neck squamous cell carcinomas. J Oral Maxillofac Res. 4:e22013. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Fang S, Di Y, Ying W, Tan Y and Gu W: Modulation of NF-κB/miR-21/PTEN pathway sensitizes non-small cell lung cancer to cisplatin. PLoS One. 10:e01215472015. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao T, Ling M, Xu H, Luo F, Xue J, Chen C, Bai J, Zhang Q, Wang Y, Bian Q and Liu Q: NF-κB-regulation of miR-155, via SOCS1/STAT3, is involved in the PM2.5-accelerated cell cycle and proliferation of human bronchial epithelial cells. Toxicol Appl Pharmacol. 377:1146162019. View Article : Google Scholar : PubMed/NCBI | |
|
Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, et al: IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 124:1853–1867. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Tili E, Croce CM and Michaille JJ: MiR-155: On the crosstalk between inflammation and cancer. Int Rev Immunol. 28:264–284. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Bharti AC, Donato N, Singh S and Aggarwal BB: Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood. 101:1053–1062. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Dai Y, Pei XY, Rahmani M, Conrad DH, Dent P and Grant S: Interruption of the NF-kappaB pathway by Bay 11-7082 promotes UCN-01-mediated mitochondrial dysfunction and apoptosis in human multiple myeloma cells. Blood. 103:2761–2770. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Monisha J, Roy NK, Bordoloi D, Kumar A, Golla R, Kotoky J, Padmavathi G and Kunnumakkara AB: Nuclear factor kappa B: A potential target to persecute head and neck cancer. Curr Drug Targets. 18:232–253. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Karin M, Yamamoto Y and Wang QM: The IKK NF-kappa B system: A treasure trove for drug development. Nat Rev Drug Discov. 3:17–26. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Ramadass V, Vaiyapuri T and Tergaonkar V: Small molecule NF-κB pathway inhibitors in clinic. Int J Mol Sci. 21:51642020. View Article : Google Scholar : PubMed/NCBI | |
|
Greten FR, Arkan MC, Bollrath J, Hsu LC, Goode J, Miething C, Göktuna SI, Neuenhahn M, Fierer J, Paxian S, et al: NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell. 130:918–931. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C and Darnell JE Jr: Stat3 as an oncogene. Cell. 98:295–303. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Geiger JL, Grandis JR and Bauman JE: The STAT3 pathway as a therapeutic target in head and neck cancer: Barriers and innovations. Oral Oncol. 56:84–92. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nelson EA, Walker SR, Kepich A, Gashin LB, Hideshima T, Ikeda H, Chauhan D, Anderson KC and Frank DA: Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood. 112:5095–5102. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Siddiquee KA, Gunning PT, Glenn M, Katt WP, Zhang S, Schrock C, Sebti SM, Jove R, Hamilton AD and Turkson J: An oxazole-based small-molecule Stat3 inhibitor modulates Stat3 stability and processing and induces antitumor cell effects. ACS Chem Biol. 2:787–798. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson DE, O'Keefe RA and Grandis JR: Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Goldman A, Shahidullah M, Goldman D, Khailova L, Watts G, Delamere N and Dvorak K: A novel mechanism of acid and bile acid-induced DNA damage involving Na+/H+ exchanger: Implication for Barrett's oesophagus. Gut. 59:1606–1616. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Bernstein H, Bernstein C, Payne CM and Dvorak K: Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J Gastroenterol. 15:3329–3340. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Lechner S, Müller-Ladner U, Schlottmann K, Jung B, McClelland M, Rüschoff J, Welsh J, Schölmerich J and Kullmann F: Bile acids mimic oxidative stress induced upregulation of thioredoxin reductase in colon cancer cell lines. Carcinogenesis. 23:1281–1288. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Kinner A, Wu W, Staudt C and Iliakis G: Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 36:5678–5694. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Rothkamm K and Löbrich M: Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA. 100:5057–5062. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Nikitaki Z, Hellweg CE, Georgakilas AG and Ravanat JL: Stress-induced DNA damage biomarkers: Applications and limitations. Front Chem. 3:352015. View Article : Google Scholar : PubMed/NCBI | |
|
Tsantoulis PK, Kotsinas A, Sfikakis PP, Evangelou K, Sideridou M, Levy B, Mo L, Kittas C, Wu XR, Papavassiliou AG and Gorgoulis VG: Oncogene-induced replication stress preferentially targets common fragile sites in preneoplastic lesions. A genome-wide study. Oncogene. 27:3256–3264. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Choudhari SK, Chaudhary M, Gadbail AR, Sharma A and Tekade S: Oxidative and antioxidative mechanisms in oral cancer and precancer: A review. Oral Oncol. 50:10–18. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Janssens S and Tschopp J: Signals from within: The DNA-damage-induced NF-kappaB response. Cell Death Differ. 13:773–784. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kawanishi S, Ohnishi S, Ma N, Hiraku Y and Murata M: Crosstalk between DNA damage and inflammation in the multiple steps of carcinogenesis. Int J Mol Sci. 18:18082017. View Article : Google Scholar : PubMed/NCBI | |
|
Tafani M, Sansone L, Limana F, Arcangeli T, De Santis E, Polese M, Fini M and Russo MA: The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression. Oxid Med Cell Longev. 2016:39071472016. View Article : Google Scholar : PubMed/NCBI | |
|
Li D and Cao W: Bile acid receptor TGR5, NADPH Oxidase NOX5-S and CREB mediate bile acid-induced DNA damage in Barrett's esophageal adenocarcinoma cells. Sci Rep. 6:315382016. View Article : Google Scholar : PubMed/NCBI | |
|
Nema R, Vishwakarma S, Agarwal R, Panday RK and Kumar A: Emerging role of sphingosine-1-phosphate signaling in head and neck squamous cell carcinoma. Onco Targets Ther. 9:3269–3280. 2016.PubMed/NCBI | |
|
Tamashiro PM, Furuya H, Shimizu Y, Iino K and Kawamori T: The impact of sphingosine kinase-1 in head and neck cancer. Biomolecules. 3:481–513. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu R, Li X, Hylemon PB and Zhou H: Conjugated bile acids promote invasive growth of esophageal adenocarcinoma cells and cancer stem cell expansion via sphingosine 1-phosphate receptor 2-mediated yes-associated protein activation. Am J Pathol. 188:2042–2058. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Pang C, LaLonde A, Godfrey TE, Que J, Sun J, Wu TT and Zhou Z: Bile salt receptor TGR5 is highly expressed in esophageal adenocarcinoma and precancerous lesions with significantly worse overall survival and gender differences. Clin Exp Gastroenterol. 10:29–37. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Guan B, Li H, Yang Z, Hoque A and Xu X: Inhibition of farnesoid X receptor controls esophageal cancer cell growth in vitro and in nude mouse xenografts. Cancer. 119:1321–1329. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yu JH, Zheng JB, Qi J, Yang K, Wu YH, Wang K, Wang CB and Sun XJ: Bile acids promote gastric intestinal metaplasia by upregulating CDX2 and MUC2 expression via the FXR/NF-κB signaling pathway. Int J Oncol. 54:879–892. 2019.PubMed/NCBI | |
|
Schweitzer A, Knauer SK and Stauber RH: Nuclear receptors in head and neck cancer: Current knowledge and perspectives. Int J Cancer. 126:801–809. 2010.PubMed/NCBI | |
|
Gadaleta RM, Oldenburg B, Willemsen EC, Spit M, Murzilli S, Salvatore L, Klomp LW, Siersema PD, van Erpecum KJ and van Mil SW: Activation of bile salt nuclear receptor FXR is repressed by pro-inflammatory cytokines activating NF-κB signaling in the intestine. Biochim Biophys Acta. 1812:851–858. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wang YD, Chen WD, Wang M, Yu D, Forman BM and Huang W: Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology. 48:1632–1643. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Li Y and Sarkar FH: Signaling mechanism(s) of reactive oxygen species in epithelial-mesenchymal transition reminiscent of cancer stem cells in tumor progression. Curr Stem Cell Res Ther. 5:74–80. 2010. View Article : Google Scholar : PubMed/NCBI |