Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
February-2022 Volume 47 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2022 Volume 47 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Lysosome‑targeted drug combination induces multiple organelle dysfunctions and non‑canonical death in pancreatic cancer cells

  • Authors:
    • Sumire Suzuki
    • Masato Ogawa
    • Masaya Miyazaki
    • Kohki Ota
    • Hiromi Kazama
    • Ayako Hirota
    • Naoharu Takano
    • Masaki Hiramoto
    • Keisuke Miyazawa
  • View Affiliations / Copyright

    Affiliations: Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
    Copyright: © Suzuki et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 40
    |
    Published online on: December 24, 2021
       https://doi.org/10.3892/or.2021.8251
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Pancreatic cancer is one of the leading causes of cancer‑related mortality and has the lowest 5‑year survival rate. Therefore, novel strategies are urgently required to treat pancreatic cancer. Pancreatic ductal adenocarcinoma (PDAC) cells rely on enhanced lysosomal function for survival and proliferation to facilitate the degradation of contents accumulated via autophagy and macropinocytosis. Previously, we have reported that the combination of epidermal growth factor receptor/HER2 inhibitor lapatinib and sphingosine analog fingolimod (FTY720) confers a significant cytostatic effect in lung cancer cells. In the present study, the combined effects of these drugs on PDAC cell lines, BxPC‑3, KP‑4, PANC‑1 and MIA PaCa‑2, were examined. It was observed that FTY720 enhanced the lapatinib‑induced cytotoxic effect and caused non‑canonical and lysosome‑dependent death in PDAC cells. Lapatinib and FTY720 induced lysosomal swelling and inhibited lysosomal acidification. Combination treatment with lapatinib and FTY720 increased lysosomal membrane permeability, induced mitochondrial depolarization, induced endoplasmic reticulum stress and disturbed intracellular calcium homeostasis. Additionally, the cytotoxic effect of lapatinib was enhanced by hydroxychloroquine or the CDK4/6 inhibitor abemaciclib, both of which induce lysosomal dysfunction. Collectively, these results indicated that the lysosome‑targeted drug combination induces multiple organelle dysfunction and exerts a marked cytotoxic effect in PDAC cells.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

View References

1 

Rawla P, Sunkara T and Gaduputi V: Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J Oncol. 10:10–27. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Mizrahi JD, Surana R, Valle JW and Shroff RT: Pancreatic cancer. Lancet. 395:2008–2020. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Ushio J, Kanno A, Ikeda E, Ando K, Nagai H, Miwata T, Kawasaki Y, Tada Y, Yokoyama K, Numao N, et al: Pancreatic ductal adenocarcinoma: Epidemiology and risk factors. Diagnostics (Basel). 11:5622021. View Article : Google Scholar : PubMed/NCBI

4 

Rai V and Agrawal S: Targets (metabolic mediators) of therapeutic importance in pancreatic ductal adenocarcinoma. Int J Mol Sci. 21:85022020. View Article : Google Scholar : PubMed/NCBI

5 

Feig C, Gopinathan A, Neesse A, Chan DS, Cook N and Tuveson DA: The pancreas cancer microenvironment. Clin Cancer Res. 18:4266–4276. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardière C, et al: FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 364:1817–1825. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Suker M, Beumer BR, Sadot E, Marthey L, Faris JE, Mellon EA, El-Rayes BF, Wang-Gillam A, Lacy J, Hosein PJ, et al: FOLFIRINOX for locally advanced pancreatic cancer: A systematic review and patient-level meta-analysis. Lancet Oncol. 17:801–810. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C and Yang H: Chemoresistance in pancreatic cancer. Int J Mol Sci. 20:45042019. View Article : Google Scholar : PubMed/NCBI

9 

Florey O and Overholtzer M: Macropinocytosis and autophagy crosstalk in nutrient scavenging. Philos Trans R Soc Lond B Biol Sci. 374:201801542019. View Article : Google Scholar : PubMed/NCBI

10 

Bryant KL, Mancias JD, Kimmelman AC and Der CJ: KRAS: Feeding pancreatic cancer proliferation. Trends Biochem Sci. 39:91–100. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Piffoux M, Eriau E and Cassier PA: Autophagy as a therapeutic target in pancreatic cancer. Br J Cancer. 124:333–344. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Su H, Yang F, Fu R, Li X, French R, Mose E, Pu X, Trinh B, Kumar A, Liu J, et al: Cancer cells escape autophagy inhibition via NRF2-induced macropinocytosis. Cancer Cell. 39:678–693.e11. 2021. View Article : Google Scholar : PubMed/NCBI

13 

Morishita H and Mizushima N: Diverse cellular roles of autophagy. Annu Rev Cell Dev Biol. 35:453–475. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, Kremer D, Hwang RF, Witkiewicz AK, Ying H, et al: Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 536:479–483. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Recouvreux MV and Commisso C: Macropinocytosis: A metabolic adaptation to nutrient stress in cancer. Front Endocrinol (Lausanne). 8:2612017. View Article : Google Scholar : PubMed/NCBI

16 

Perera RM and Zoncu R: The lysosome as a regulatory Hub. Annu Rev Cell Dev Biol. 32:223–253. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Gupta S, Yano J, Mercier V, Htwe HH, Shin HR, Rademaker G, Cakir Z, Ituarte T, Wen KW, Kim GE, et al: Lysosomal retargeting of myoferlin mitigates membrane stress to enable pancreatic cancer growth. Nat Cell Biol. 23:232–242. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Ota K, Okuma T, Lorenzo A, Yokota A, Hino H, Kazama H, Moriya S, Takano N, Hiramoto M and Miyazawa K: Fingolimod sensitizes EGFR wild-type non-small cell lung cancer cells to lapatinib or sorafenib and induces cell cycle arrest. Oncol Rep. 42:231–242. 2019.PubMed/NCBI

19 

Zhang N, Qi Y, Wadham C, Wang L, Warren A, Di W and Xia P: FTY720 induces necrotic cell death and autophagy in ovarian cancer cells: A protective role of autophagy. Autophagy. 6:1157–1167. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Liao A, Hu R, Zhao Q, Li J, Li Y, Yao K, Zhang R, Wang H, Yang W and Liu Z: Autophagy induced by FTY720 promotes apoptosis in U266 cells. Eur J Pharm Sci. 45:600–605. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Zhang L, Wang H, Ding K and Xu J: FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 236:43–59. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Li J, Wang SW, Zhang DS, Sun Y, Zhu CY, Fei Q, Hu J, Zhang C and Sun YM: FTY720-induced enhancement of autophagy protects cells from FTY720 cytotoxicity in colorectal cancer. Oncol Rep. 35:2833–2842. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Alinari L, Mahoney E, Patton J, Zhang X, Huynh L, Earl CT, Mani R, Mao Y, Yu B, Quinion C, et al: FTY720 increases CD74 expression and sensitizes mantle cell lymphoma cells to milatuzumab-mediated cell death. Blood. 118:6893–6903. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Trkov S, Stenovec M, Kreft M, Potokar M, Parpura V, Davletov B and Zorec R: Fingolimod-a sphingosine-like molecule inhibits vesicle mobility and secretion in astrocytes. Glia. 60:1406–1416. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Ahmed D, de Verdier PJ, Ryk C, Lunqe O, Stål P and Flygare J: FTY720 (Fingolimod) sensitizes hepatocellular carcinoma cells to sorafenib-mediated cytotoxicity. Pharmacol Res Perspect. 3:e001712015. View Article : Google Scholar : PubMed/NCBI

26 

Tay KH, Liu X, Chi M, Jin L, Jiang CC, Guo ST, Verrills NM, Tseng HY and Zhang XD: Involvement of vacuolar H(+)-ATPase in killing of human melanoma cells by the sphingosine kinase analogue FTY720. Pigment Cell Melanoma Res. 28:171–183. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Li X, Wang MH, Qin C, Fan WH, Tian DS and Liu JL: Fingolimod suppresses neuronal autophagy through the mTOR/p70S6K pathway and alleviates ischemic brain damage in mice. PLoS One. 12:e01887482017. View Article : Google Scholar : PubMed/NCBI

28 

Min KJ and Kwon TK: Induction of lysosomal membrane permeabilization is a major event of FTY720-mediated non-apoptotic cell death in human glioma cells. Cancers (Basel). 12:33882020. View Article : Google Scholar : PubMed/NCBI

29 

Aizawa S, Yaguchi M, Nakano M, Toyama K, Inokuchi S, Imai T, Yasuda M, Nabeshima R and Handa H: Hematopoietic supportive function of human bone marrow stromal cell lines established by a recombinant SV40-adenovirus vector. Exp Hematol. 22:482–487. 1994.PubMed/NCBI

30 

Kazama H, Hiramoto M, Miyahara K, Takano N and Miyazawa K: Designing an effective drug combination for ER stress loading in cancer therapy using a real-time monitoring system. Biochem Biophys Res Commun. 501:286–292. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Iwawaki T, Akai R, Kohno K and Miura M: A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat Med. 10:98–102. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Kaizuka T, Morishita H, Hama Y, Tsukamoto S, Matsui T, Toyota Y, Kodama A, Ishihara T, Mizushima T and Mizushima N: An autophagic flux probe that releases an internal control. Mol Cell. 64:835–849. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Saito Y, Moriya S, Kazama H, Hirasawa K, Miyahara K, Kokuba H, Hino H, Kikuchi H, Takano N, Hiramoto M, et al: Amino acid starvation culture condition sensitizes EGFR-expressing cancer cell lines to gefitinib-mediated cytotoxicity by inducing atypical necroptosis. Int J Oncol. 52:1165–1177. 2018.PubMed/NCBI

34 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

35 

Aizawa S, Hiramoto M, Hoshi H, Toyama K, Shima D and Handa H: Establishment of stromal cell line from an MDS RA patient which induced an apoptotic change in hematopoietic and leukemic cells in vitro. Exp Hematol. 28:148–155. 2000. View Article : Google Scholar : PubMed/NCBI

36 

Nadanaciva S, Lu S, Gebhard DF, Jessen BA, Pennie WD and Will Y: A high content screening assay for identifying lysosomotropic compounds. Toxicol In Vitro. 25:715–723. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Chou TC: Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 58:621–681. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Chiba K, Kataoka H, Seki N, Shimano K, Koyama M, Fukunari A, Sugahara K and Sugita T: Fingolimod (FTY720), sphingosine 1-phosphate receptor modulator, shows superior efficacy as compared with interferon-β in mouse experimental autoimmune encephalomyelitis. Int Immunopharmacol. 11:366–372. 2011. View Article : Google Scholar : PubMed/NCBI

39 

White C, Alshaker H, Cooper C, Winkler M and Pchejetski D: The emerging role of FTY720 (fingolimod) in cancer treatment. Oncotarget. 7:23106–23127. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Heymach JV, Nilsson M, Blumenschein G, Papadimitrakopoulou V and Herbst R: Epidermal growth factor receptor inhibitors in development for the treatment of non-small cell lung cancer. Clin Cancer Res. 12:4441s–4445s. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Legrand C, Bour JM, Jacob C, Capiaumont J, Martial A, Marc A, Wudtke M, Kretzmer G, Demangel C, Duval D, et al: Lactate dehydrogenase (LDH) activity of the cultured eukaryotic cells as marker of the number of dead cells in the medium [corrected]. J Biotechnol. 25:231–243. 1992. View Article : Google Scholar : PubMed/NCBI

42 

Crowley LC, Marfell BJ, Scott AP and Waterhouse NJ: Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb Protoc 2016. 2016. View Article : Google Scholar

43 

Duriez PJ and Shah GM: Cleavage of poly(ADP-ribose) polymerase: A sensitive parameter to study cell death. Biochem Cell Biol. 75:337–349. 1997. View Article : Google Scholar : PubMed/NCBI

44 

Rogakou EP, Boon C, Redon C and Bonner WM: Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 146:905–916. 1999. View Article : Google Scholar : PubMed/NCBI

45 

Rogakou EP, Nieves-Neira W, Boon C, Pommier Y and Bonner WM: Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem. 275:9390–9395. 2000. View Article : Google Scholar : PubMed/NCBI

46 

Patel T, Gores GJ and Kaufmann SH: The role of proteases during apoptosis. FASEB J. 10:587–597. 1996. View Article : Google Scholar : PubMed/NCBI

47 

Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, et al: Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 4:313–321. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Aruoma OI, Halliwell B, Hoey BM and Butler J: The antioxidant action of N-acetylcysteine: Its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med. 6:593–597. 1989. View Article : Google Scholar : PubMed/NCBI

49 

Wu YT, Tan HL, Huang Q, Kim YS, Pan N, Ong WY, Liu ZG, Ong CN and Shen HM: Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy. 4:457–466. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Wang F, Gómez-Sintes R and Boya P: Lysosomal membrane permeabilization and cell death. Traffic. 19:918–931. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Serrano-Puebla A and Boya P: Lysosomal membrane permeabilization as a cell death mechanism in cancer cells. Biochem Soc Trans. 46:207–215. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Cremer T, Neefjes J and Berlin I: The journey of Ca2+ through the cell-pulsing through the network of ER membrane contact sites. J Cell Sci. 133:jcs2491362020. View Article : Google Scholar : PubMed/NCBI

53 

Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA and Herman B: The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta. 1366:177–196. 1998. View Article : Google Scholar : PubMed/NCBI

54 

Kim I, Rodriguez-Enriquez S and Lemasters JJ: Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 462:245–253. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Ponnambalam S, Girotti M, Yaspo ML, Owen CE, Perry AC, Suganuma T, Nilsson T, Fried M, Banting G and Warren G: Primate homologues of rat TGN38: Primary structure, expression and functional implications. J Cell Sci. 109:675–685. 1996. View Article : Google Scholar : PubMed/NCBI

56 

Ghosh RN, Mallet WG, Soe TT, McGraw TE and Maxfield FR: An endocytosed TGN38 chimeric protein is delivered to the TGN after trafficking through the endocytic recycling compartment in CHO cells. J Cell Biol. 142:923–936. 1998. View Article : Google Scholar : PubMed/NCBI

57 

Di Martino R, Sticco L and Luini A: Regulation of cargo export and sorting at the trans-Golgi network. FEBS Lett. 593:2306–2318. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Hino H, Iriyama N, Kokuba H, Kazama H, Moriya S, Takano N, Hiramoto M, Aizawa S and Miyazawa K: Abemaciclib induces atypical cell death in cancer cells characterized by formation of cytoplasmic vacuoles derived from lysosomes. Cancer Sci. 111:2132–2145. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Ohkuma S and Poole B: Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA. 75:3327–3331. 1978. View Article : Google Scholar : PubMed/NCBI

60 

Mackenzie AH: Pharmacologic actions of 4-aminoquinoline compounds. Am J Med. 75:5–10. 1983. View Article : Google Scholar : PubMed/NCBI

61 

Appelqvist H, Nilsson C, Garner B, Brown AJ, Kagedal K and Ollinger K: Attenuation of the lysosomal death pathway by lysosomal cholesterol accumulation. Am J Pathol. 178:629–639. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Appelqvist H, Sandin L, Björnström K, Saftig P, Garner B, Ollinger K and Kågedal K: Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content. PLoS One. 7:e502622012. View Article : Google Scholar : PubMed/NCBI

63 

Kornhuber J, Henkel AW, Groemer TW, Städtler S, Welzel O, Tripal P, Rotter A, Bleich S and Trapp S: Lipophilic cationic drugs increase the permeability of lysosomal membranes in a cell culture system. J Cell Physiol. 224:152–164. 2010.PubMed/NCBI

64 

Villamil Giraldo AM, Appelqvist H, Ederth T and Öllinger K: Lysosomotropic agents: Impact on lysosomal membrane permeabilization and cell death. Biochem Soc Trans. 42:1460–1464. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Lu S, Sung T, Lin N, Abraham RT and Jessen BA: Lysosomal adaptation: How cells respond to lysosomotropic compounds. PLoS One. 12:e01737712017. View Article : Google Scholar : PubMed/NCBI

66 

Anand A, Liu B, Dicroce Giacobini J, Maeda K, Rohde M and Jäättelä M: Cell death induced by cationic amphiphilic drugs depends on lysosomal Ca2+ release and cyclic AMP. Mol Cancer Ther. 18:1602–1614. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Llanos S, Megias D, Blanco-Aparicio C, Hernández-Encinas E, Rovira M, Pietrocola F and Serrano M: Lysosomal trapping of palbociclib and its functional implications. Oncogene. 38:3886–3902. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Aits S and Jäättelä M: Lysosomal cell death at a glance. J Cell Sci. 126:1905–1912. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Xu H and Ren D: Lysosomal physiology. Annu Rev Physiol. 77:57–80. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Ballabio A and Bonifacino JS: Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol. 21:101–118. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Wu Y, Huang P and Dong XP: Lysosomal calcium channels in autophagy and cancer. Cancers (Basel). 13:12992021. View Article : Google Scholar : PubMed/NCBI

72 

Sahara S and Yamashima T: Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. Biochem Biophys Res Commun. 393:806–811. 2010. View Article : Google Scholar : PubMed/NCBI

73 

Villalpando Rodriguez GE and Torriglia A: Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. Biochim Biophys Acta. 1833:2244–2253. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Phillips MJ and Voeltz GK: Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol. 17:69–82. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Prinz WA, Toulmay A and Balla T: The functional universe of membrane contact sites. Nat Rev Mol Cell Biol. 21:7–24. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Vessey DA, Kelley M, Zhang J, Li L, Tao R and Karliner JS: Dimethylsphingosine and FTY720 inhibit the SK1 form but activate the SK2 form of sphingosine kinase from rat heart. J Biochem Mol Toxicol. 21:273–279. 2007. View Article : Google Scholar : PubMed/NCBI

77 

Bandhuvula P, Tam YY, Oskouian B and Saba JD: The immune modulator FTY720 inhibits sphingosine-1-phosphate lyase activity. J Biol Chem. 280:33697–33700. 2005. View Article : Google Scholar : PubMed/NCBI

78 

Berdyshev EV, Gorshkova I, Skobeleva A, Bittman R, Lu X, Dudek SM, Mirzapoiazova T, Garcia JG and Natarajan V: FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells. J Biol Chem. 284:5467–5477. 2009. View Article : Google Scholar : PubMed/NCBI

79 

Lahiri S, Park H, Laviad EL, Lu X, Bittman R and Futerman AH: Ceramide synthesis is modulated by the sphingosine analog FTY720 via a mixture of uncompetitive and noncompetitive inhibition in an Acyl-CoA chain length-dependent manner. J Biol Chem. 284:16090–16098. 2009. View Article : Google Scholar : PubMed/NCBI

80 

Dawson G and Qin J: Gilenya (FTY720) inhibits acid sphingomyelinase by a mechanism similar to tricyclic antidepressants. Biochem Biophys Res Commun. 404:321–323. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Ogretmen B: Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer. 18:33–50. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Hannun YA and Obeid LM: Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat Rev Mol Cell Biol. 9:139–150. 2008. View Article : Google Scholar : PubMed/NCBI

83 

Hannun YA and Obeid LM: Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 19:175–191. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Hayashi A, Hong J and Iacobuzio-Donahue CA: The pancreatic cancer genome revisited. Nat Rev Gastroenterol Hepatol. 18:469–481. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Suzuki S, Ogawa M, Miyazaki M, Ota K, Kazama H, Hirota A, Takano N, Hiramoto M and Miyazawa K: Lysosome‑targeted drug combination induces multiple organelle dysfunctions and non‑canonical death in pancreatic cancer cells. Oncol Rep 47: 40, 2022.
APA
Suzuki, S., Ogawa, M., Miyazaki, M., Ota, K., Kazama, H., Hirota, A. ... Miyazawa, K. (2022). Lysosome‑targeted drug combination induces multiple organelle dysfunctions and non‑canonical death in pancreatic cancer cells. Oncology Reports, 47, 40. https://doi.org/10.3892/or.2021.8251
MLA
Suzuki, S., Ogawa, M., Miyazaki, M., Ota, K., Kazama, H., Hirota, A., Takano, N., Hiramoto, M., Miyazawa, K."Lysosome‑targeted drug combination induces multiple organelle dysfunctions and non‑canonical death in pancreatic cancer cells". Oncology Reports 47.2 (2022): 40.
Chicago
Suzuki, S., Ogawa, M., Miyazaki, M., Ota, K., Kazama, H., Hirota, A., Takano, N., Hiramoto, M., Miyazawa, K."Lysosome‑targeted drug combination induces multiple organelle dysfunctions and non‑canonical death in pancreatic cancer cells". Oncology Reports 47, no. 2 (2022): 40. https://doi.org/10.3892/or.2021.8251
Copy and paste a formatted citation
x
Spandidos Publications style
Suzuki S, Ogawa M, Miyazaki M, Ota K, Kazama H, Hirota A, Takano N, Hiramoto M and Miyazawa K: Lysosome‑targeted drug combination induces multiple organelle dysfunctions and non‑canonical death in pancreatic cancer cells. Oncol Rep 47: 40, 2022.
APA
Suzuki, S., Ogawa, M., Miyazaki, M., Ota, K., Kazama, H., Hirota, A. ... Miyazawa, K. (2022). Lysosome‑targeted drug combination induces multiple organelle dysfunctions and non‑canonical death in pancreatic cancer cells. Oncology Reports, 47, 40. https://doi.org/10.3892/or.2021.8251
MLA
Suzuki, S., Ogawa, M., Miyazaki, M., Ota, K., Kazama, H., Hirota, A., Takano, N., Hiramoto, M., Miyazawa, K."Lysosome‑targeted drug combination induces multiple organelle dysfunctions and non‑canonical death in pancreatic cancer cells". Oncology Reports 47.2 (2022): 40.
Chicago
Suzuki, S., Ogawa, M., Miyazaki, M., Ota, K., Kazama, H., Hirota, A., Takano, N., Hiramoto, M., Miyazawa, K."Lysosome‑targeted drug combination induces multiple organelle dysfunctions and non‑canonical death in pancreatic cancer cells". Oncology Reports 47, no. 2 (2022): 40. https://doi.org/10.3892/or.2021.8251
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team