Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
April-2022 Volume 47 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2022 Volume 47 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review)

  • Authors:
    • Ling Yang
    • Hong-Jian Xie
    • Ying-Ying Li
    • Xia Wang
    • Xing-Xin Liu
    • Jia Mai
  • View Affiliations / Copyright

    Affiliations: Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
    Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 82
    |
    Published online on: February 25, 2022
       https://doi.org/10.3892/or.2022.8293
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cisplatin is one of the most effective chemotherapy drugs for ovarian cancer, but resistance is common. The initial response to platinum‑based chemotherapy is as high as 80%, but in most advanced patients, final relapse and death are caused by acquired drug resistance. The development of resistance to therapy in ovarian cancer is a significant hindrance to therapeutic efficacy. The resistance of ovarian cancer cells to chemotherapeutic mechanisms is rather complex and includes multidrug resistance, DNA damage repair, cell metabolism, oxidative stress, cell cycle regulation, cancer stem cells, immunity, apoptotic pathways, autophagy and abnormal signaling pathways. The present review provided an update of recent developments in our understanding of the mechanisms of ovarian cancer platinum‑based chemotherapy resistance, discussed current and emerging approaches for targeting these patients and presented challenges associated with these approaches, with a focus on development and overcoming resistance.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J and Karlan BY: Ovarian cancer. Nat Rev Dis Primers. 2:160612016. View Article : Google Scholar : PubMed/NCBI

3 

Orr B and Edwards RP: Diagnosis and treatment of ovarian cancer. Hematol Oncol Clin North Am. 32:943–964. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Gershenson DM, Bodurka DC, Lu KH, Nathan LC, Milojevic L, Wong KK, Malpica A and Sun CC: Impact of age and primary disease site on outcome in women with low-grade serous carcinoma of the ovary or peritoneum: Results of a large single-institution registry of a rare tumor. J Clin Oncol. 33:2675–2682. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Grisham RN, Sylvester BE, Won H, McDermott G, DeLair D, Ramirez R, Yao Z, Shen R, Dao F, Bogomolniy F, et al: Extreme outlier analysis identifies occult mitogen-activated protein kinase pathway mutations in patients with low-grade serous ovarian cancer. J Clin Oncol. 33:4099–4105. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Chui MH, Chang JC, Zhang Y, Zehir A, Schram AM, Konner J, Drilon AE, Da Cruz Paula A, Weigelt B and Grisham RN: Spectrum of BRAF mutations and gene rearrangements in ovarian serous carcinoma. JCO Precis Oncol. 5:PO.21.00055. 2021.PubMed/NCBI

7 

Davidson B and Tropé CG: Ovarian cancer: Diagnostic, biological and prognostic aspects. Women's Health (Lond). 10:519–533. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Reavis HD and Drapkin R: The tubal epigenome-An emerging target for ovarian cancer. Pharmacol Ther. 210:1075242020. View Article : Google Scholar : PubMed/NCBI

9 

Coleman RL, Duska LR, Ramirez PT, Heymach JV, Kamat AA, Modesitt SC, Schmeler KM, Iyer RB, Garcia ME, Miller DL, et al: Phase 1–2 study of docetaxel plus aflibercept in patients with recurrent ovarian, primary peritoneal, or fallopian tube cancer. Lancet Oncol. 12:1109–1117. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Nowak M and Klink M: The Role of Tumor-associated macrophages in the progression and chemoresistance of ovarian cancer. Cells. 9:12992020. View Article : Google Scholar : PubMed/NCBI

11 

Aghajanian C, Blank SV, Goff BA, Judson PL, Teneriello MG, Husain A, Sovak MA, Yi J and Nycum LR: OCEANS: A randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J Clin Oncol. 30:2039–2045. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Cruz IN, Coley HM, Kramer HB, Madhuri TK, Safuwan NA, Angelino AR and Yang M: Proteomics analysis of ovarian cancer cell lines and tissues reveals drug resistance-associated proteins. Cancer Genomics Proteomics. 14:35–51. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Disis ML, Taylor MH, Kelly K, Beck JT, Gordon M, Moore KM, Patel MR, Chaves J, Park H, Mita AC, et al: Efficacy and safety of avelumab for patients with recurrent or refractory ovarian cancer: Phase 1b results from the JAVELIN solid tumor trial. JAMA Oncol. 5:393–401. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Moufarrij S, Dandapani M, Arthofer E, Gomez S, Srivastava A, Lopez-Acevedo M, Villagra A and Chiappinelli KB: Epigenetic therapy for ovarian cancer: Promise and progress. Clin Epigenetics. 11:72019. View Article : Google Scholar : PubMed/NCBI

15 

Ren F, Shen J, Shi H, Hornicek FJ, Kan Q and Duan Z: Novel mechanisms and approaches to overcome multidrug resistance in the treatment of ovarian cancer. Biochim Biophys Acta. 1866:266–275. 2016.PubMed/NCBI

16 

Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T and He H: Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small. 5:2673–2677. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Zalewski M, Kulbacka J, Saczko J, Drag-Zalesinska M and Choromanska A: Valspodar-modulated chemotherapy in human ovarian cancer cells SK-OV-3 and MDAH-2774. Bosn J Basic Med Sci. 19:234–241. 2019.PubMed/NCBI

18 

Baekelandt M, Lehne G, Tropé CG, Szántó I, Pfeiffer P, Gustavssson B and Kristensen GB: Phase I/II trial of the multidrug-resistance modulator valspodar combined with cisplatin and doxorubicin in refractory ovarian cancer. J Clin Oncol. 19:2983–2993. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Gee ME, Faraahi Z, McCormick A and Edmondson RJ: DNA damage repair in ovarian cancer: Unlocking the heterogeneity. J Ovarian Res. 11:502018. View Article : Google Scholar : PubMed/NCBI

20 

Sengupta D, Mukhopadhyay A and Sengupta K: Emerging roles of lamins and DNA damage repair mechanisms in ovarian cancer. Biochem Soc Trans. 48:2317–2333. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Ledermann JA, Drew Y and Kristeleit RS: Homologous recombination deficiency and ovarian cancer. Eur J Cancer. 60:49–58. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Christie EL and Bowtell DDL: Acquired chemotherapy resistance in ovarian cancer. Ann Oncol. 28 (Suppl 8):viii13–viii15. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Karakashev S, Fukumoto T, Zhao B, Lin J, Wu S, Fatkhutdinov N, Park PH, Semenova G, Jean S, Cadungog MG, et al: EZH2 inhibition sensitizes CARM1-high, homologous recombination proficient ovarian cancers to PARP Inhibition. Cancer Cell. 37:157–167.e6. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Moschetta M, George A, Kaye SB and Banerjee S: BRCA somatic mutations and epigenetic BRCA modifications in serous ovarian cancer. Ann Oncol. 27:1449–1455. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Birkbak NJ, Wang ZC, Kim JY, Eklund AC, Li Q, Tian R, Bowman-Colin C, Li Y, Greene-Colozzi A, Iglehart JD, et al: Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov. 2:366–375. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Du Y, Yamaguchi H, Wei Y, Hsu JL, Wang HL, Hsu YH, Lin WC, Yu WH, Leonard PG, Lee GR IV, et al: Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat Med. 22:194–201. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Brown JS, O'Carrigan B, Jackson SP and Yap TA: Targeting DNA repair in cancer: Beyond PARP inhibitors. Cancer Discov. 7:20–37. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Alsop K, Fereday S, Meldrum C, DeFazio A, Emmanuel C, George J, Dobrovic A, Birrer MJ, Webb PM, Stewart C, et al: BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: A report from the Australian Ovarian Cancer Study Group. J Clin Oncol. 30:2654–2663. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Iyer S, Zhang S, Yucel S, Horn H, Smith SG, Reinhardt F, Hoefsmit E, Assatova B, Casado J, Meinsohn MC, et al: Genetically defined syngeneic mouse models of ovarian cancer as tools for the discovery of combination immunotherapy. Cancer Discov. 11:384–407. 2021. View Article : Google Scholar : PubMed/NCBI

30 

Domchek SM: Reversion mutations with clinical use of PARP inhibitors: Many genes, many versions. Cancer Discov. 7:937–939. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Pietragalla A, Arcieri M, Marchetti C, Scambia G and Fagotti A: Ovarian cancer predisposition beyond BRCA1 and BRCA2 genes. Int J Gynecol Cancer. 30:1803–1810. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Lin KK, Harrell MI, Oza AM, Oaknin A, Ray-Coquard I, Tinker AV, Helman E, Radke MR, Say C, Vo LT, et al: BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov. 9:210–219. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Norquist B, Wurz KA, Pennil CC, Garcia R, Gross J, Sakai W, Karlan BY, Taniguchi T and Swisher EM: Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol. 29:3008–3015. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Kondrashova O, Nguyen M, Shield-Artin K, Tinker AV, Teng NNH, Harrell MI, Kuiper MJ, Ho GY, Barker H, Jasin M, et al: Secondary somatic mutations restoring RAD51C and RAD51D associated with acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov. 7:984–998. 2017. View Article : Google Scholar : PubMed/NCBI

35 

He YJ, Meghani K, Caron MC, Yang C, Ronato DA, Bian J, Sharma A, Moore J, Niraj J, Detappe A, et al: DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells. Nature. 563:522–526. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Penson RT, Valencia RV, Cibula D, Colombo N, Leath CA III, Bidziński M, Kim JW, Nam JH, Madry R, Hernández C, et al: Olaparib versus nonplatinum chemotherapy in patients with platinum-sensitive relapsed ovarian cancer and a germline BRCA1/2 mutation (SOLO3): A randomized phase III trial. J Clin Oncol. 38:1164–1174. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Marzi L, Szabova L, Gordon M, Weaver Ohler Z, Sharan SK, Beshiri ML, Etemadi M, Murai J, Kelly K and Pommier Y: The indenoisoquinoline TOP1 inhibitors selectively target homologous recombination-deficient and schlafen 11-positive cancer cells and synergize with olaparib. Clin Cancer Res. 25:6206–6216. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Yan S, Xuan J, Brajanovski N, Tancock MRC, Madhamshettiwar PB, Simpson KJ, Ellis S, Kang J, Cullinane C, Sheppard KE, et al: The RNA polymerase I transcription inhibitor CX-5461 cooperates with topoisomerase 1 inhibition by enhancing the DNA damage response in homologous recombination-proficient high-grade serous ovarian cancer. Br J Cancer. 124:616–627. 2021. View Article : Google Scholar : PubMed/NCBI

39 

Yap TA, O'Carrigan B, Penney MS, Lim JS, Brown JS, de Miguel Luken MJ, Tunariu N, Perez-Lopez R, Rodrigues DN, Riisnaes R, et al: Phase I trial of first-in-class ATR Inhibitor M6620 (VX-970) as monotherapy or in combination with carboplatin in patients with advanced solid tumors. J Clin Oncol. 38:3195–3204. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Konstantinopoulos PA, Cheng SC, Wahner Hendrickson AE, Penson RT, Schumer ST, Doyle LA, Lee EK, Kohn EC, Duska LR, Crispens MA, et al: Berzosertib plus gemcitabine versus gemcitabine alone in platinum-resistant high-grade serous ovarian cancer: A multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 21:957–968. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Nakayama N, Nakayama K, Shamima Y, Ishikawa M, Katagiri A, Iida K and Miyazaki K: Gene amplification CCNE1 is related to poor survival and potential therapeutic target in ovarian cancer. Cancer. 116:2621–2634. 2010.PubMed/NCBI

42 

Au-Yeung G, Lang F, Azar WJ, Mitchell C, Jarman KE, Lackovic K, Aziz D, Cullinane C, Pearson RB, Mileshkin L, et al: Selective targeting of cyclin E1-Amplified high-grade serous ovarian cancer by cyclin-dependent kinase 2 and AKT Inhibition. Clin Cancer Res. 23:1862–1874. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Etemadmoghadam D, Weir BA, Au-Yeung G, Alsop K, Mitchell G, George J; Australian Ovarian Cancer Study Group, ; Davis S, D'Andrea AD, Simpson K, et al: Synthetic lethality between CCNE1 amplification and loss of BRCA1. Proc Natl Acad Sci USA. 110:19489–19494. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Campbell GJ, Hands EL and Van de Pette M: The Role of CDKs and CDKIs in murine development. Int J Mol Sci. 21:53432020. View Article : Google Scholar : PubMed/NCBI

45 

Angius G, Tomao S, Stati V, Vici P, Bianco V and Tomao F: Prexasertib, a checkpoint kinase inhibitor: From preclinical data to clinical development. Cancer Chemother Pharmacol. 85:9–20. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Kim H, Xu H, George E, Hallberg D, Kumar S, Jagannathan V, Medvedev S, Kinose Y, Devins K, Verma P, et al: Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat Commun. 11:37262020. View Article : Google Scholar : PubMed/NCBI

47 

Gorski JW, Ueland FR and Kolesar JM: CCNE1 amplification as a predictive biomarker of chemotherapy resistance in epithelial ovarian cancer. Diagnostics (Basel). 10:2792020. View Article : Google Scholar : PubMed/NCBI

48 

Gralewska P, Gajek A, Marczak A and Rogalska A: Participation of the ATR/CHK1 pathway in replicative stress targeted therapy of high-grade ovarian cancer. J Hematol Oncol. 13:392020. View Article : Google Scholar : PubMed/NCBI

49 

Garsed DW, Alsop K, Fereday S, Emmanuel C, Kennedy CJ, Etemadmoghadam D, Gao B, Gebski V, Garès V, Christie EL, et al: Homologous recombination DNA repair pathway disruption and retinoblastoma protein loss are associated with exceptional survival in high-grade serous ovarian cancer. Clin Cancer Res. 24:569–580. 2018. View Article : Google Scholar : PubMed/NCBI

50 

da Costa AABA, do Canto LM, Larsen SJ, Ribeiro ARG, Stecca CE, Petersen AH, Aagaard MM, de Brot L, Baumbach J, Baiocchi G, et al: Genomic profiling in ovarian cancer retreated with platinum based chemotherapy presented homologous recombination deficiency and copy number imbalances of CCNE1 and RB1 genes. BMC Cancer. 19:4222019. View Article : Google Scholar : PubMed/NCBI

51 

Shi M, Whorton AE, Sekulovski N, Paquet M, MacLean JA, Song Y, Van Dyke T and Hayashi K: Inactivation of TRP53, PTEN, RB1, and/or CDH1 in the ovarian surface epithelium induces ovarian cancer transformation and metastasis. Biol Reprod. 102:1055–1064. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Dall'Acqua A, Sonego M, Pellizzari I, Pellarin I, Canzonieri V, D'Andrea S, Benevol S, Sorio R, Giorda G, Califano D, et al: CDK6 protects epithelial ovarian cancer from platinum-induced death via FOXO3 regulation. EMBO Mol Med. 9:1415–1433. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Giacomini I, Ragazzi E, Pasut G and Montopoli M: The pentose phosphate pathway and its involvement in cisplatin resistance. Int J Mol Sci. 21:9372020. View Article : Google Scholar : PubMed/NCBI

54 

Morandi A and Indraccolo S: Linking metabolic reprogramming to therapy resistance in cancer. Biochim Biophys Acta Rev Cancer. 868:1–6. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Zhao Y, Butler EB and Tan M: Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 4:e5322013. View Article : Google Scholar : PubMed/NCBI

56 

Butler EB, Zhao Y, Muñoz-Pinedo C, Lu J and Tan M: Stalling the engine of resistance: Targeting cancer metabolism to overcome therapeutic resistance. Cancer Res. 73:2709–2717. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Tennant DA, Durán RV and Gottlieb E: Targeting metabolic transformation for cancer therapy. Nat Rev Cancer. 10:267–277. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Yeung SJ, Pan J and Lee MH: Roles of p53, MYC and HIF-1 in regulating glycolysis-the seventh hallmark of cancer. Cell Mol Life Sci. 65:3981–3999. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M and Lincet H: How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat. 38:1–11. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Ai Z, Lu Y, Qiu S and Fan Z: Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism. Cancer Lett. 373:36–44. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Ricci F, Brunelli L, Affatato R, Chilà R, Verza M, Indraccolo S, Falcetta F, Fratelli M, Fruscio R, Pastorelli R and Damia G: Overcoming platinum-acquired resistance in ovarian cancer patient-derived xenografts. Ther Adv Med Oncol. 11:17588359198395432019. View Article : Google Scholar : PubMed/NCBI

62 

Urpilainen E, Puistola U, Boussios S and Karihtala P: Metformin and ovarian cancer: The evidence. Ann Transl Med. 8:17112020. View Article : Google Scholar : PubMed/NCBI

63 

Kim TH, Suh DH, Kim MK and Song YS: Metformin against cancer stem cells through the modulation of energy metabolism: Special considerations on ovarian cancer. Biomed Res Int. 2014:1327022014. View Article : Google Scholar : PubMed/NCBI

64 

Itoh K, Tong KI and Yamamoto M: Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med. 36:1208–1213. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Wu X, Han LY, Zhang XX and Wang L: The study of Nrf2 signaling pathway in ovarian cancer. Crit Rev Eukaryot Gene Expr. 28:329–336. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Gentric G, Kieffer Y, Mieulet V, Goundiam O, Bonneau C, Nemati F, Hurbain I, Raposo G, Popova T, Stern MH, et al: PML-regulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancers. Cell Metab. 29:156–173.e10. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Lister A, Nedjadi T, Kitteringham NR, Campbell F, Costello E, Lloyd B, Copple IM, Williams S, Owen A, Neoptolemos JP, et al: Nrf2 is overexpressed in pancreatic cancer: Implications for cell proliferation and therapy. Mol Cancer. 10:372011. View Article : Google Scholar : PubMed/NCBI

68 

van der Wijst MG, Huisman C, Mposhi A, Roelfes G and Rots MG: Targeting Nrf2 in healthy and malignant ovarian epithelial cells: Protection versus promotion. Mol Oncol. 9:1259–1273. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Hou D, Liu Z, Xu X, Liu Q, Zhang X, Kong B, Wei JJ, Gong Y and Shao C: Increased oxidative stress mediates the antitumor effect of PARP inhibition in ovarian cancer. Redox Biol. 17:99–111. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Kleih M, Böpple K, Dong M, Gaissler A, Heine S, Olayioye MA, Aulitzky WE and Essmann F: Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis. 10:8512019. View Article : Google Scholar : PubMed/NCBI

71 

Podratz JL, Knight AM, Ta LE, Staff NP, Gass JM, Genelin K, Schlattau A, Lathroum L and Windebank AJ: Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol Dis. 41:661–668. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Yang Z, Schumaker LM, Egorin MJ, Zuhowski EG, Guo Z and Cullen KJ: Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: Possible role in apoptosis. Clin Cancer Res. 12:5817–5825. 2006. View Article : Google Scholar : PubMed/NCBI

73 

Zhang J, Yang L, Xiang X, Li Z, Qu K and Li K: A panel of three oxidative stress-related genes predicts overall survival in ovarian cancer patients received platinum-based chemotherapy. Aging (Albany NY). 10:1366–1379. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Verschoor ML and Singh G: Ets-1 regulates intracellular glutathione levels: Key target for resistant ovarian cancer. Mol Cancer. 12:1382013. View Article : Google Scholar : PubMed/NCBI

75 

Wilson LA, Yamamoto H and Singh G: Role of the transcription factor Ets-1 in cisplatin resistance. Mol Cancer Ther. 3:823–832. 2004.PubMed/NCBI

76 

Nwani NG, Condello S, Wang Y, Swetzig WM, Barber E, Hurley T and Matei D: A Novel ALDH1A1 inhibitor targets cells with stem cell characteristics in ovarian cancer. Cancers (Basel). 11:5022019. View Article : Google Scholar : PubMed/NCBI

77 

Batlle E and Clevers H: Cancer stem cells revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI

78 

Beck B and Blanpain C: Unravelling cancer stem cell potential. Nat Rev Cancer. 13:727–738. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Carnero A, Garcia-Mayea Y, Mir C, Lorente J, Rubio IT and LLeonart ME: The cancer stem-cell signaling network and resistance to therapy. Cancer Treat Rev. 49:25–36. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Maugeri-Saccà M, Vigneri P and De Maria R: Cancer stem cells and chemosensitivity. Clin Cancer Res. 17:4942–4947. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Hu L, McArthur C and Jaffe RB: Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer. 102:1276–1283. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH and Nephew KP: Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 68:4311–4320. 2008. View Article : Google Scholar : PubMed/NCBI

83 

Wang Y, Zhao G, Condello S, Huang H, Cardenas H, Tanner EJ, Wei J, Ji Y, Li J, Tan Y, et al: Frizzled-7 identifies platinum-tolerant ovarian cancer cells susceptible to ferroptosis. Cancer Res. 81:384–399. 2021. View Article : Google Scholar : PubMed/NCBI

84 

Chen J, Cao X, An Q, Zhang Y, Li K, Yao W, Shi F, Pan Y, Jia Q, Zhou W, et al: Inhibition of cancer stem cell like cells by a synthetic retinoid. Nat Commun. 9:14062018. View Article : Google Scholar : PubMed/NCBI

85 

Muñoz-Galván S, Felipe-Abrio B, Verdugo-Sivianes EM, Perez M, Jiménez-García MP, Suarez-Martinez E, Estevez-Garcia P and Carnero A: Downregulation of MYPT1 increases tumor resistance in ovarian cancer by targeting the Hippo pathway and increasing the stemness. Mol Cancer. 19:72020. View Article : Google Scholar : PubMed/NCBI

86 

Keyvani V, Farshchian M, Esmaeili SA, Yari H, Moghbeli M, Nezhad SK and Abbaszadegan MR: Ovarian cancer stem cells and targeted therapy. J Ovarian Res. 12:1202019. View Article : Google Scholar : PubMed/NCBI

87 

Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, Huang Z, Bentley RC, Mori S, Fujii S, et al: Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene. 28:209–218. 2009. View Article : Google Scholar : PubMed/NCBI

88 

Cole AJ, Iyengar M, Panesso-Gómez S, O'Hayer P, Chan D, Delgoffe GM, Aird KM, Yoon E, Bai S and Buckanovich RJ: NFATC4 promotes quiescence and chemotherapy resistance in ovarian cancer. JCI Insight. 5:e1314862020. View Article : Google Scholar : PubMed/NCBI

89 

Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D, Ginestier C, Johnston C, Kueck A, Reynolds RK, et al: Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 71:3991–4001. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Li SS, Ma J and Wong AST: Chemoresistance in ovarian cancer: Exploiting cancer stem cell metabolism. J Gynecol Oncol. 29:e322018. View Article : Google Scholar : PubMed/NCBI

91 

Deng J, Bai X, Feng X, Ni J, Beretov J, Graham P and Li Y: Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer. 19:6182019. View Article : Google Scholar : PubMed/NCBI

92 

Brown JR, Chan DK, Shank JJ, Griffith KA, Fan H, Szulawski R, Yang K, Reynolds RK, Johnston C, McLean K, et al: Phase II clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer. JCI Insight. 5:e1332472020.PubMed/NCBI

93 

Bogani G, Lopez S, Mantiero M, Ducceschi M, Bosio S, Ruisi S, Sarpietro G, Guerrisi R, Brusadelli C, Dell'Acqua A, et al: Immunotherapy for platinum-resistant ovarian cancer. Gynecol Oncol. 158:484–488. 2020. View Article : Google Scholar : PubMed/NCBI

94 

Nelson BH: The impact of T-cell immunity on ovarian cancer outcomes. Immunol Rev. 222:101–116. 2008. View Article : Google Scholar : PubMed/NCBI

95 

Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, et al: Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 348:203–213. 2003. View Article : Google Scholar : PubMed/NCBI

96 

Shen GH, Ghazizadeh M, Kawanami O, Shimizu H, Jin E, Araki T and Sugisaki Y: Prognostic significance of vascular endothelial growth factor expression in human ovarian carcinoma. Br J Cancer. 83:196–203. 2000. View Article : Google Scholar : PubMed/NCBI

97 

Chen CA, Cheng WF, Lee CN, Chen TM, Kung CC, Hsieh FJ and Hsieh CY: Serum vascular endothelial growth factor in epithelial ovarian neoplasms: Correlation with patient survival. Gynecol Oncol. 74:235–240. 1999. View Article : Google Scholar : PubMed/NCBI

98 

Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, et al: Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 23:249–262. 2013. View Article : Google Scholar : PubMed/NCBI

99 

An Y and Yang Q: Tumor-associated macrophage-targeted therapeutics in ovarian cancer. Int J Cancer. 149:21–30. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Liang R, Chen X, Chen L, Wan F, Chen K, Sun Y and Zhu X: STAT3 signaling in ovarian cancer: A potential therapeutic target. J Cancer. 11:837–848. 2020. View Article : Google Scholar : PubMed/NCBI

101 

Lamichhane P, Karyampudi L, Shreeder B, Krempski J, Bahr D, Daum J, Kalli KR, Goode EL, Block MS, Cannon MJ and Knutson KL: IL10 Release upon PD-1 blockade sustains immunosuppression in ovarian cancer. Cancer Res. 77:6667–6678. 2017. View Article : Google Scholar : PubMed/NCBI

102 

Wan C, Keany MP, Dong H, Al-Alem LF, Pandya UM, Lazo S, Boehnke K, Lynch KN, Xu R, Zarrella DT, et al: Enhanced efficacy of simultaneous PD-1 and PD-L1 immune checkpoint blockade in high-grade serous ovarian cancer. Cancer Res. 81:158–173. 2021.PubMed/NCBI

103 

Kalim M, Iqbal Khan MS and Zhan J: Programmed cell death ligand-1: A dynamic immune checkpoint in cancer therapy. Chem Biol Drug Des. 95:552–566. 2020. View Article : Google Scholar : PubMed/NCBI

104 

Constantinidou A, Alifieris C and Trafalis DT: Targeting programmed cell death −1 (PD-1) and Ligand (PD-L1): A new era in cancer active immunotherapy. Pharmacol Ther. 194:84–106. 2019. View Article : Google Scholar : PubMed/NCBI

105 

Fraser M, Leung B, Jahani-Asl A, Yan X, Thompson WE and Tsang BK: Chemoresistance in human ovarian cancer: The role of apoptotic regulators. Reprod Biol Endocrinol. 1:662003. View Article : Google Scholar : PubMed/NCBI

106 

Janzen DM, Tiourin E, Salehi JA, Paik DY, Lu J, Pellegrini M and Memarzadeh S: An apoptosis-enhancing drug overcomes platinum resistance in a tumour-initiating subpopulation of ovarian cancer. Nat Commun. 6:79562015. View Article : Google Scholar : PubMed/NCBI

107 

Ni Chonghaile T, Sarosiek KA, Vo TT, Ryan JA, Tammareddi A, Moore Vdel G, Deng J, Anderson KC, Richardson P, Tai YT, et al: Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science. 334:1129–1133. 2011. View Article : Google Scholar : PubMed/NCBI

108 

Baekelandt M, Kristensen GB, Nesland JM, Tropé CG and Holm R: Clinical significance of apoptosis-related factors p53, Mdm2, and Bcl-2 in advanced ovarian cancer. J Clin Oncol. 17:20611999. View Article : Google Scholar : PubMed/NCBI

109 

Baekelandt M, Holm R, Nesland JM, Tropé CG and Kristensen GB: Expression of apoptosis-related proteins is an independent determinant of patient prognosis in advanced ovarian cancer. J Clin Oncol. 18:3775–3781. 2000. View Article : Google Scholar : PubMed/NCBI

110 

Binju M, Amaya-Padilla MA, Wan G, Gunosewoyo H, Suryo Rahmanto Y and Yu Y: Therapeutic inducers of apoptosis in ovarian cancer. Cancers (Basel). 11:17862019. View Article : Google Scholar : PubMed/NCBI

111 

Zervantonakis IK, Iavarone C, Chen HY, Selfors LM, Palakurthi S, Liu JF, Drapkin R, Matulonis U, Leverson JD, Sampath D, et al: Systems analysis of apoptotic priming in ovarian cancer identifies vulnerabilities and predictors of drug response. Nat Commun. 8:3652017. View Article : Google Scholar : PubMed/NCBI

112 

Reles A, Wen WH, Schmider A, Gee C, Runnebaum IB, Kilian U, Jones LA, El-Naggar A, Minguillon C, Schönborn I, et al: Correlation of p53 mutations with resistance to platinum-based chemotherapy and shortened survival in ovarian cancer. Clin Cancer Res. 7:2984–2997. 2001.PubMed/NCBI

113 

Lee JM, Nair J, Zimmer A, Lipkowitz S, Annunziata CM, Merino MJ, Swisher EM, Harrell MI, Trepel JB, Lee MJ, et al: Prexasertib, a cell cycle checkpoint kinase 1 and 2 inhibitor, in BRCA wild-type recurrent high-grade serous ovarian cancer: A first-in-class proof-of-concept phase 2 study. Lancet Oncol. 19:207–215. 2018. View Article : Google Scholar : PubMed/NCBI

114 

Chui MH, Momeni Boroujeni A, Mandelker D, Ladanyi M and Soslow RA: Characterization of TP53-wildtype tubo-ovarian high-grade serous carcinomas: Rare exceptions to the binary classification of ovarian serous carcinoma. Mod Pathol. 34:490–501. 2021. View Article : Google Scholar : PubMed/NCBI

115 

Lavarino C, Pilotti S, Oggionni M, Gatti L, Perego P, Bresciani G, Pierotti MA, Scambia G, Ferrandina G, Fagotti A, et al: p53 gene status and response to platinum/paclitaxel-based chemotherapy in advanced ovarian carcinoma. J Clin Oncol. 18:3936–3945. 2000. View Article : Google Scholar : PubMed/NCBI

116 

Jones S, Wang TL, Shih IeM, Mao TL, Nakayama K, Roden R, Glas R, Slamon D, Diaz LA Jr, Vogelstein B, et al: Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 330:228–231. 2010. View Article : Google Scholar : PubMed/NCBI

117 

Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SE, et al: ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 363:1532–1543. 2010. View Article : Google Scholar : PubMed/NCBI

118 

Guan B, Wang TL and Shih IeM: ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res. 71:6718–6727. 2011. View Article : Google Scholar : PubMed/NCBI

119 

Bitler BG, Wu S, Park PH, Hai Y, Aird KM, Wang Y, Zhai Y, Kossenkov AV, Vara-Ailor A, Rauscher FJ III, et al: ARID1A-mutated ovarian cancers depend on HDAC6 activity. Nat Cell Biol. 19:962–973. 2017. View Article : Google Scholar : PubMed/NCBI

120 

Saha S, Panigrahi DP, Patil S and Bhutia SK: Autophagy in health and disease: A comprehensive review. Biomed Pharmacother. 104:485–495. 2018. View Article : Google Scholar : PubMed/NCBI

121 

Hu YL, Jahangiri A, Delay M and Aghi MK: Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy. Cancer Res. 72:4294–4299. 2012. View Article : Google Scholar : PubMed/NCBI

122 

Yu H, Su J, Xu Y, Kang J, Li H, Zhang L, Yi H, Xiang X, Liu F and Sun L: p62/SQSTM1 involved in cisplatin resistance in human ovarian cancer cells by clearing ubiquitinated proteins. Eur J Cancer. 47:1585–1594. 2011. View Article : Google Scholar : PubMed/NCBI

123 

Zhang Y, Cheng Y, Ren X, Zhang L, Yap KL, Wu H, Patel R, Liu D, Qin ZH, Shih IM and Yang JM: NAC1 modulates sensitivity of ovarian cancer cells to cisplatin by altering the HMGB1-mediated autophagic response. Oncogene. 31:1055–1064. 2012. View Article : Google Scholar : PubMed/NCBI

124 

Huang Z, Zhou L, Chen Z, Nice EC and Huang C: Stress management by autophagy: Implications for chemoresistance. Int J Cancer. 139:23–32. 2016. View Article : Google Scholar : PubMed/NCBI

125 

Follo C, Cheng Y, Richards WG, Bueno R and Broaddus VC: Inhibition of autophagy initiation potentiates chemosensitivity in mesothelioma. Mol Carcinog. 57:319–332. 2018. View Article : Google Scholar : PubMed/NCBI

126 

He J, Yu JJ, Xu Q, Wang L, Zheng JZ, Liu LZ and Jiang BH: Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy. Autophagy. 11:373–384. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Shteingauz A, Boyango I, Naroditsky I, Hammond E, Gruber M, Doweck I, Ilan N and Vlodavsky I: Heparanase enhances tumor growth and chemoresistance by promoting autophagy. Cancer Res. 75:3946–3957. 2015. View Article : Google Scholar : PubMed/NCBI

128 

Ashrafizadeh M, Zarrabi A, Orouei S, Kiavash Hushmandi, Hakimi A, Amirhossein Zabolian, Daneshi S, Samarghandian S, Baradaran B and Najafi M: MicroRNA-mediated autophagy regulation in cancer therapy: The role in chemoresistance/chemosensitivity. Eur J Pharmacol. 892:1736602021. View Article : Google Scholar : PubMed/NCBI

129 

Sun C, Fang Y, Yin J, Chen J, Ju Z, Zhang D, Chen X, Vellano CP, Jeong KJ, Ng PK, et al: Rational combination therapy with PARP and MEK inhibitors capitalizes on therapeutic liabilities in RAS mutant cancers. Sci Transl Med. 9:eaal51482017. View Article : Google Scholar : PubMed/NCBI

130 

Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J and Rosen N: AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell. 19:58–71. 2011. View Article : Google Scholar : PubMed/NCBI

131 

Aksamitiene E, Kiyatkin A and Kholodenko BN: Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: A fine balance. Biochem Soc Trans. 40:139–146. 2012. View Article : Google Scholar : PubMed/NCBI

132 

Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, Bowtell D, Barretina J, Lin WM, Rameh L, Salmena L, et al: Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell. 16:115–125. 2009. View Article : Google Scholar : PubMed/NCBI

133 

Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, et al: A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 448:439–444. 2007. View Article : Google Scholar : PubMed/NCBI

134 

Choi HJ, Heo JH, Park JY, Jeong JY, Cho HJ, Park KS, Kim SH, Moon YW, Kim JS and An HJ: A novel PI3K/mTOR dual inhibitor, CMG002, overcomes the chemoresistance in ovarian cancer. Gynecol Oncol. 153:135–148. 2019. View Article : Google Scholar : PubMed/NCBI

135 

Kim MJ, Lee SJ, Ryu JH, Kim SH, Kwon IC and Roberts TM: Combination of KRAS gene silencing and PI3K inhibition for ovarian cancer treatment. J Control Release. 318:98–108. 2020. View Article : Google Scholar : PubMed/NCBI

136 

Gupta S, Nag S, Aggarwal S, Rauthan A and Warrier N: Maintenance therapy for recurrent epithelial ovarian cancer: Current therapies and future perspectives-a review. J Ovarian Res. 12:1032019. View Article : Google Scholar : PubMed/NCBI

137 

Lorusso PM, Edelman MJ, Bever SL, Forman KM, Pilat M, Quinn MF, Li J, Heath EI, Malburg LM, Klein PJ, et al: Phase I study of folate conjugate EC145 (Vintafolide) in patients with refractory solid tumors. J Clin Oncol. 30:4011–4016. 2012. View Article : Google Scholar : PubMed/NCBI

138 

Naumann RW, Coleman RL, Burger RA, Sausville EA, Kutarska E, Ghamande SA, Gabrail NY, Depasquale SE, Nowara E, Gilbert L, et al: PRECEDENT: A randomized phase II trial comparing vintafolide (EC145) and pegylated liposomal doxorubicin (PLD) in combination versus PLD alone in patients with platinum-resistant ovarian cancer. J Clin Oncol. 31:4400–4406. 2013. View Article : Google Scholar : PubMed/NCBI

139 

Moore KN, Martin LP, O'Malley DM, Matulonis UA, Konner JA, Perez RP, Bauer TM, Ruiz-Soto R and Birrer MJ: Safety and activity of mirvetuximab soravtansine (IMGN853), a folate receptor alpha-targeting antibody-drug conjugate, in platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: A Phase I expansion study. J Clin Oncol. 35:1112–1118. 2017. View Article : Google Scholar : PubMed/NCBI

140 

Holmes D: Ovarian cancer: Beyond resistance. Nature. 527:S2172015. View Article : Google Scholar : PubMed/NCBI

141 

Huber D, Seitz S, Kast K, Emons G and Ortmann O: Use of oral contraceptives in BRCA mutation carriers and risk for ovarian and breast cancer: A systematic review. Arch Gynecol Obstet. 301:875–884. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang L, Xie H, Li Y, Wang X, Liu X and Mai J: Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review). Oncol Rep 47: 82, 2022.
APA
Yang, L., Xie, H., Li, Y., Wang, X., Liu, X., & Mai, J. (2022). Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review). Oncology Reports, 47, 82. https://doi.org/10.3892/or.2022.8293
MLA
Yang, L., Xie, H., Li, Y., Wang, X., Liu, X., Mai, J."Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review)". Oncology Reports 47.4 (2022): 82.
Chicago
Yang, L., Xie, H., Li, Y., Wang, X., Liu, X., Mai, J."Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review)". Oncology Reports 47, no. 4 (2022): 82. https://doi.org/10.3892/or.2022.8293
Copy and paste a formatted citation
x
Spandidos Publications style
Yang L, Xie H, Li Y, Wang X, Liu X and Mai J: Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review). Oncol Rep 47: 82, 2022.
APA
Yang, L., Xie, H., Li, Y., Wang, X., Liu, X., & Mai, J. (2022). Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review). Oncology Reports, 47, 82. https://doi.org/10.3892/or.2022.8293
MLA
Yang, L., Xie, H., Li, Y., Wang, X., Liu, X., Mai, J."Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review)". Oncology Reports 47.4 (2022): 82.
Chicago
Yang, L., Xie, H., Li, Y., Wang, X., Liu, X., Mai, J."Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review)". Oncology Reports 47, no. 4 (2022): 82. https://doi.org/10.3892/or.2022.8293
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team