|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kozomara A, Birgaoanu M and
Griffiths-Jones S: miRBase: From microRNA sequences to function.
Nucleic Acids Res. 47(D1): D155–D162. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ha M and Kim VN: Regulation of microRNA
biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chen L, Wang X, Zhu Y, Zhu J and Lai Q:
miR-200b-3p inhibits proliferation and induces apoptosis in
colorectal cancer by targeting Wnt1. Mol Med Rep. 18:2571–2580.
2018.PubMed/NCBI
|
|
5
|
Feifei W, Hui G, Ruiqiang Z, Qunxiang J
and Yu'an X: MAGP2, a component of extracellular matrix, is
upregulated in colorectal cancer and negatively modulated by
miR-200b-3p. Technol Cancer Res Treat. 18:15330338198707772019.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lv Z, Wei J, You W, Wang R, Shang J, Xiong
Y, Yang H, Yang X and Fu Z: Disruption of the
c-Myc/miR-200b-3p/PRDX2 regulatory loop enhances tumor metastasis
and chemotherapeutic resistance in colorectal cancer. J Transl Med.
15:2572017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chen DL, Chen LZ, Lu YX, Zhang DS, Zeng
ZL, Pan ZZ, Huang P, Wang FH, Li YH, Ju HQ and Xu RH: Long
noncoding RNA XIST expedites metastasis and modulates
epithelial-mesenchymal transition in colorectal cancer. Cell Death
Dis. 8:e30112017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Moh-Moh-Aung A, Fujisawa M, Ito S,
Katayama H, Ohara T, Ota Y, Yoshimura T and Matsukawa A: Decreased
miR-200b-3p in cancer cells leads to angiogenesis in HCC by
enhancing endothelial ERG expression. Sci Rep. 10:104182020.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Qiu W, Wang Z, Chen R, Shi H, Ma Y and
Zhou H, Li M, Li W, Chen H and Zhou H: Xiaoai jiedu recipe
suppresses hepatocellular carcinogenesis through the
miR-200b-3p/Notch1 axis. Cancer Manag Res. 12:11121–11131. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Liu L, Jiang H, Pan H and Zhu X: LncRNA
XIST promotes liver cancer progression by acting as a molecular
sponge of miR-200b-3p to regulate ZEB1/2 expression. J Int Med Res.
49:30006052110162112021.PubMed/NCBI
|
|
11
|
Liu WG and Xu Q: Long non-coding RNA XIST
promotes hepatocellular carcinoma progression by sponging
miR-200b-3p. Eur Rev Med Pharmacol Sci. 23:9857–9862.
2019.PubMed/NCBI
|
|
12
|
Huang Z, Chu L, Liang J, Tan X, Wang Y,
Wen J, Chen J, Wu Y, Liu S, Liao J, et al: H19 promotes HCC bone
metastasis through reducing osteoprotegerin expression in a protein
phosphatase 1 catalytic subunit alpha/p38 mitogen-activated protein
kinase-dependent manner and sponging microRNA 200b-3p. Hepatology.
74:214–232. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Nwaeburu CC, Abukiwan A, Zhao Z and Herr
I: Quercetin-induced miR-200b-3p regulates the mode of
self-renewing divisions in pancreatic cancer. Mol Cancer.
16:232017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Gui Z, Luo F, Yang Y, Shen C, Li S and Xu
J: Oridonin inhibition and miR-200b-3p/ZEB1 axis in human
pancreatic cancer. Int J Oncol. 50:111–120. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Gyvyte U, Lukosevicius R, Inciuraite R,
Streleckiene G, Gudoityte G, Bekampyte J, Valentini S, Salteniene
V, Ruzgys P, Satkauskas S, et al: The role of miR-375-3p and
miR-200b-3p in gastrointestinal stromal tumors. Int J Mol Sci.
21:51512020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li D, Wang H, Song H, Xu H, Zhao B, Wu C,
Hu J, Wu T, Xie D, Zhao J, et al: The microRNAs miR-200b-3p and
miR-429-5p target the LIMK1/CFL1 pathway to inhibit growth and
motility of breast cancer cells. Oncotarget. 8:85276–85289. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhang X, Wang M, Sun H, Zhu T and Wang X:
Downregulation of LINC00894-002 contributes to tamoxifen resistance
by enhancing the TGF-β signaling pathway. Biochemistry (Mosc).
83:603–611. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Rhodes LV, Martin EC, Segar HC, Miller DF,
Buechlein A, Rusch DB, Nephew KP, Burow ME and Collins-Burow BM:
Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the
inhibition of epithelial-to-mesenchymal transition in
triple-negative breast cancer. Oncotarget. 6:16638–16652. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhou WJ, Wang HY, Zhang J, Dai HY, Yao ZX,
Zheng Z, Meng-Yan S and Wu K: NEAT1/miR-200b-3p/SMAD2 axis promotes
progression of melanoma. Aging (Albany NY). 12:22759–22775.
2020.PubMed/NCBI
|
|
20
|
Liu J, Wang L and Li X: HMGB3 promotes the
proliferation and metastasis of glioblastoma and is negatively
regulated by miR-200b-3p and miR-200c-3p. Cell Biochem Funct.
36:357–365. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wu J, Cui H, Zhu Z and Wang L:
MicroRNA-200b-3p suppresses epithelial-mesenchymal transition and
inhibits tumor growth of glioma through down-regulation of ERK5.
Biochem Biophys Res Commun. 478:1158–1164. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Xu B, Qin T, Yu J, Giordano TJ, Sartor MA
and Koenig RJ: Novel role of ASH1L histone methyltransferase in
anaplastic thyroid carcinoma. J Biol Chem. 295:8834–8845. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Pereira TDSF, Brito JAR, Guimarães ALS,
Gomes CC, de Lacerda JCT, de Castro WH, Coimbra RS, Diniz MG and
Gomez RS: MicroRNA profiling reveals dysregulated microRNAs and
their target gene regulatory networks in cemento-ossifying fibroma.
J Oral Pathol Med. 47:78–85. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ma J, Xiao Y, Tian B, Chen S, Zhang B, Wu
J, Wu Z, Li X, Tang J, Yang D, et al: Long noncoding RNA
lnc-ABCA12-3 promotes cell migration, invasion, and proliferation
by regulating fibronectin 1 in esophageal squamous cell carcinoma.
J Cell Biochem. 121:1374–1387. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pan J and Zang Y: LINC00667 promotes
progression of esophageal cancer cells by regulating
miR-200b-3p/SLC2A3 axis. Dig Dis Sci. Jul 27–2021.(Epub ahead of
print). doi: 10.1007/s10620-021-07145-5. View Article : Google Scholar
|
|
26
|
Masaoka T, Shinozuka K, Ohara K, Tsuda H,
Imai K and Tonogi M: Bioinformatics analysis of dysregulated
exosomal microRNAs derived from oral squamous cell carcinoma cells.
J Oral Sci. 63:174–178. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Li F, Lu T, Liu D, Zhang C, Zhang Y and
Dong F: Upregulated PPARG2 facilitates interaction with
demethylated AKAP12 gene promoter and suppresses proliferation in
prostate cancer. Cell Death Dis. 12:5282021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
He M, Liu Y, Deng X, Qi S, Sun X, Liu G,
Liu Y, Liu Y and Zhao M: Down-regulation of miR-200b-3p by low p73
contributes to the androgen-independence of prostate cancer cells.
Prostate. 73:1048–1056. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Dong Y, Zhai W and Xu Y: Bioinformatic
gene analysis for potential biomarkers and therapeutic targets of
diabetic nephropathy associated renal cell carcinoma. Transl Androl
Urol. 9:2555–2571. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ma X, Ying Y, Sun J, Xie H, Li J, He L,
Wang W, Chen S, Shen H, Yi J, et al: circKDM4C enhances bladder
cancer invasion and metastasis through miR-200bc-3p/ZEB1 axis. Cell
Death Discov. 7:3652021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Micolucci L, Akhtar MM, Olivieri F, Rippo
MR and Procopio AD: Diagnostic value of microRNAs in asbestos
exposure and malignant mesothelioma: Systematic review and
qualitative meta-analysis. Oncotarget. 7:58606–58637. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Pełka K, Klicka K, Grzywa TM, Gondek A,
Marczewska JM, Garbicz F, Szczepaniak K, Paskal W and Włodarski PK:
miR-96-5p, miR-134-5p, miR-181b-5p and miR-200b-3p heterogenous
expression in sites of prostate cancer versus benign prostate
hyperplasia-archival samples study. Histochem Cell Biol.
155:423–433. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Janiak M, Paskal W, Rak B, Garbicz F,
Jarema R, Sikora K and Włodarski P: TIMP4 expression is regulated
by miR-200b-3p in prostate cancer cells. APMIS. 125:101–105. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Liu K, Zhang W, Tan J, Ma J and Zhao J:
MiR-200b-3p functions as an oncogene by targeting ABCA1 in lung
adenocarcinoma. Technol Cancer Res Treat. 18:15330338198925902019.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wang L, Tong X, Zhou Z, Wang S, Lei Z,
Zhang T, Liu Z, Zeng Y, Li C, Zhao J, et al: Circular RNA
hsa_circ_0008305 (circPTK2) inhibits TGF-β-induced
epithelial-mesenchymal transition and metastasis by controlling
TIF1γ in non-small cell lung cancer. Mol Cancer. 17:1402018.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chi Y, Zheng W, Bao G, Wu L, He X, Gan R,
Shen Y, Yin X and Jin M: Circular RNA circ_103820 suppresses lung
cancer tumorigenesis by sponging miR-200b-3p to release LATS2 and
SOCS6. Cell Death Dis. 12:1852021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang Y, Xu YM, Zou YQ, Lin J, Huang B, Liu
J, Li J, Zhang J, Yang WM, Min QH, et al: Identification of
differential expressed PE exosomal miRNA in lung adenocarcinoma,
tuberculosis, and other benign lesions. Medicine (Baltimore).
96:e83612017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Xie K, Wang C, Qin N, Yang J, Zhu M, Dai
J, Jin G, Shen H, Ma H and Hu Z: Genetic variants in regulatory
regions of microRNAs are associated with lung cancer risk.
Oncotarget. 7:47966–47974. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sun G, Cao Y, Wang P, Song H, Bie T, Li M
and Huai D: miR-200b-3p in plasma is a potential diagnostic
biomarker in oral squamous cell carcinoma. Biomarkers. 23:137–141.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ishibashi O, Akagi I, Ogawa Y and Inui T:
MiR-141-3p is upregulated in esophageal squamous cell carcinoma and
targets pleckstrin homology domain leucine-rich repeat protein
phosphatase-2, a negative regulator of the PI3K/AKT pathway.
Biochem Biophys Res Commun. 501:507–513. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Amorim M, Lobo J, Fontes-Sousa M,
Estevão-Pereira H, Salta S, Lopes P, Coimbra N, Antunes L, Palma de
Sousa S, Henrique R and Jerónimo C: Predictive and prognostic value
of selected MicroRNAs in luminal breast cancer. Front Genet.
10:8152019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Guo L, Yang G, Kang Y, Li S, Duan R, Shen
L, Jiang W, Qian B, Yin Z and Liang T: Construction and analysis of
a ceRNA network reveals potential prognostic markers in colorectal
cancer. Front Genet. 11:4182020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Della Vittoria Scarpati G, Calura E, Di
Marino M, Romualdi C, Beltrame L, Malapelle U, Troncone G, De
Stefano A, Pepe S, De Placido S, et al: Analysis of differential
miRNA expression in primary tumor and stroma of colorectal cancer
patients. Biomed Res Int. 2014:8409212014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Patil S and Warnakulasuriya S: Blood-based
circulating microRNAs as potential biomarkers for predicting the
prognosis of head and neck cancer-a systematic review. Clin Oral
Investig. 24:3833–3841. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Shen L, Chen G, Xia Q, Shao S and Fang H:
Exosomal miR-200 family as serum biomarkers for early detection and
prognostic prediction of cholangiocarcinoma. Int J Clin Exp Pathol.
12:3870–3876. 2019.PubMed/NCBI
|
|
46
|
Livingstone MC, Johnson NM, Roebuck BD,
Kensler TW and Groopman JD: Profound changes in miRNA expression
during cancer initiation by aflatoxin B1 and their
abrogation by the chemopreventive triterpenoid CDDO-Im. Mol
Carcinog. 56:2382–2390. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Usman S, Waseem NH, Nguyen TKN, Mohsin S,
Jamal A, Teh MT and Waseem A: Vimentin is at the heart of
epithelial mesenchymal transition (EMT) mediated metastasis.
Cancers (Basel). 13:49852021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhang P, Sun Y and Ma L: ZEB1: At the
crossroads of epithelial-mesenchymal transition, metastasis and
therapy resistance. Cell Cycle. 14:481–487. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Qin Y, Yu J, Zhang M, Qin F and Lan X:
ZEB1 promotes tumorigenesis and metastasis in hepatocellular
carcinoma by regulating the expression of vimentin. Mol Med Rep.
19:2297–2306. 2019.PubMed/NCBI
|
|
50
|
Liu J, Cao L, Meng J, Li Y, Deng P, Pan P,
Hu C and Yang H: The fibrotic microenvironment promotes the
metastatic seeding of tumor cells into the lungs via mediating the
ZEB1-AS1/miR-200b-3p/ ZEB1 signaling. Cell Cycle. 19:2701–2719.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wu YZ, Lin HY, Zhang Y and Chen WF:
miR-200b-3p mitigates oxaliplatin resistance via targeting TUBB3 in
colorectal cancer. J Gene Med. 22:e31782020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kolacinska A, Morawiec J, Fendler W,
Malachowska B, Morawiec Z, Szemraj J, Pawlowska Z, Chowdhury D,
Choi YE, Kubiak R, et al: Association of microRNAs and pathologic
response to preoperative chemotherapy in triple negative breast
cancer: Preliminary report. Mol Biol Rep. 41:2851–2857. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Xia L, Han Q, Chi C, Zhu Y, Pan J, Dong B,
Huang Y, Xia W, Xue W and Sha J: Transcriptional regulation of
PRKAR2B by miR-200b-3p/200c-3p and XBP1 in human prostate cancer.
Biomed Pharmacother. 124:1098632020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Samli H, Samli M, Vatansever B, Ardicli S,
Aztopal N, Dincel D, Sahin A and Balci F: Paclitaxel resistance and
the role of miRNAs in prostate cancer cell lines. World J Urol.
37:1117–1126. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Doğanlar O, Doğanlar ZB, Delen E and Doğan
A: The role of melatonin in angio-miR-associated inhibition of
tumorigenesis and invasion in human glioblastoma tumour spheroids.
Tissue Cell. 73:1016172021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhu KP, Zhang CL, Ma XL, Hu JP, Cai T and
Zhang L: Analyzing the interactions of mRNAs and ncRNAs to predict
competing endogenous RNA networks in osteosarcoma chemo-resistance.
Mol Ther. 27:518–530. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kun-Peng Z, Chun-Lin Z, Xiao-Long M and
Lei Z: Fibronectin-1 modulated by the long noncoding RNA
OIP5-AS1/miR-200b-3p axis contributes to doxorubicin resistance of
osteosarcoma cells. J Cell Physiol. 234:6927–6939. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Jones M and Lal A: MicroRNAs, wild-type
and mutant p53: More questions than answers. RNA Biol. 9:781–791.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Briand J, Sérandour AA, Nadaradjane A,
Bougras-Cartron G, Heymann D, Ory B, Vallette FM and Cartron PF:
N6-adenosine methylation of miRNA-200b-3p influences its
functionality and is a theranostic tool. Mol Ther Nucleic Acids.
22:72–83. 2020.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Davalos V, Moutinho C, Villanueva A, Boque
R, Silva P, Carneiro F and Esteller M: Dynamic epigenetic
regulation of the microRNA-200 family mediates epithelial and
mesenchymal transitions in human tumorigenesis. Oncogene.
31:2062–2074. 2012. View Article : Google Scholar : PubMed/NCBI
|