|
1
|
Louis DN, Perry A, Reifenberger G, von
Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD,
Kleihues P and Ellison DW: The 2016 world health organization
classification of tumors of the central nervous system: A summary.
Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Louis DN, Perry A, Wesseling P, Brat DJ,
Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM,
Reifenberger G, et al: The 2021 WHO classification of tumors of the
central nervous system: A summary. Neuro Oncol. 23:1231–1251. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Tan AC, Ashley DM, López GY, Malinzak M,
Friedman HS and Khasraw M: Management of glioblastoma: State of the
art and future directions. CA Cancer J Clin. 70:299–312. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Nayak L and Reardon DA: High-grade
gliomas. Continuum (Minneap Minn). 23:1548–1563. 2017.PubMed/NCBI
|
|
5
|
Miller KD, Ostrom QT, Kruchko C, Patil N,
Tihan T, Cioffi G, Fuchs HE, Waite KA, Jemal A, Siegel RL and
Barnholtz-Sloan JS: Brain and other central nervous system tumor
statistics, 2021. CA Cancer J Clin. 71:381–406. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Han T, Zuo Z, Qu M, Zhou Y, Li Q and Wang
H: Comprehensive analysis of inflammatory response-related genes,
and prognosis and immune infiltration in patients with low-grade
glioma. Front Pharmacol. 12:7489932021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ogino H, Taylor JW, Nejo T, Gibson D,
Watchmaker PB, Okada K, Saijo A, Tedesco MR, Shai A, Wong CM, et
al: Randomized trial of neoadjuvant vaccination with tumor-cell
lysate induces T cell response in low-grade gliomas. J Clin Invest.
132:e1512392022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Choi S, Yu Y, Grimmer MR, Wahl M, Chang SM
and Costello JF: Temozolomide-associated hypermutation in gliomas.
Neuro Oncol. 20:1300–1309. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Faulkner H, Arnaout O, Hoshide R, Young
IM, Yeung JT, Sughrue ME and Teo C: The surgical resection of
brainstem glioma: Outcomes and prognostic factors. World Neurosurg.
146:e639–e650. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Dong CY, Hong S, Zheng DW, Huang QX, Liu
FS, Zhong ZL and Zhang XZ: Multifunctionalized gold sub-nanometer
particles for sensitizing radiotherapy against glioblastoma. Small.
17:e20065822021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Poon MTC, Sudlow CLM, Figueroa JD and
Brennan PM: Longer-term (≥2 years) survival in patients with
glioblastoma in population-based studies pre- and post-2005: A
systematic review and meta-analysis. Sci Rep. 10:116222020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wang Y, Jiang Y, Wei D, Singh P, Yu Y, Lee
T, Zhang L, Mandl HK, Piotrowski-Daspit AS, Chen X, et al:
Nanoparticle-mediated convection-enhanced delivery of a DNA
intercalator to gliomas circumvents temozolomide resistance. Nat
Biomed Eng. 5:1048–1058. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang
Z, Dai Z, Zhang X, Zhang L, Peng Y, et al: Glioma targeted therapy:
Insight into future of molecular approaches. Mol Cancer. 21:392022.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Goodenberger ML and Jenkins RB: Genetics
of adult glioma. Cancer Genet. 205:613–621. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Carrillo JA and Munoz CA: Alternative
chemotherapeutic agents: Nitrosoureas, cisplatin, irinotecan.
Neurosurg Clin N Am. 23297–306. (ix)2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Shi H, Sun S, Xu H, Zhao Z, Han Z, Jia J,
Wu D, Lu J, Liu H and Yu R: Combined delivery of temozolomide and
siPLK1 using targeted nanoparticles to enhance temozolomide
sensitivity in glioma. Int J Nanomedicine. 15:3347–3362. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Mehta S and Lo Cascio C: Developmentally
regulated signaling pathways in glioma invasion. Cell Mol Life Sci.
75:385–402. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhao M, van Straten D, Broekman MLD, Préat
V and Schiffelers RM: Nanocarrier-based drug combination therapy
for glioblastoma. Theranostics. 10:1355–1372. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Haumann R, Videira JC, Kaspers GJL, van
Vuurden DG and Hulleman E: Overview of current drug delivery
methods across the blood-brain barrier for the treatment of primary
brain tumors. CNS Drugs. 34:1121–1131. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Xu Y, Yang X, Mei S, Sun Y and Li J:
Acquisition of temozolomide resistance by the rat C6 glioma cell
line increases cell migration and side population phenotype. Oncol
Rep. 42:2355–2362. 2019.PubMed/NCBI
|
|
21
|
Liu S, Shi W, Zhao Q, Zheng Z, Liu Z, Meng
L, Dong L and Jiang X: Progress and prospect in tumor treating
fields treatment of glioblastoma. Biomed Pharmacother.
141:1118102021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Velásquez C, Mansouri S, Mora C, Nassiri
F, Suppiah S, Martino J, Zadeh G and Fernández-Luna JL: Molecular
and clinical insights into the invasive capacity of glioblastoma
cells. J Oncol. 2019:17407632019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Muir M, Gopakumar S, Traylor J, Lee S and
Rao G: Glioblastoma multiforme: Novel therapeutic targets. Expert
Opin Ther Targets. 24:605–614. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Cheng F and Guo D: MET in glioma:
Signaling pathways and targeted therapies. J Exp Clin Cancer Res.
38:2702019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Desjardins A, Rich JN, Quinn JA,
Vredenburgh J, Gururangan S, Sathornsumetee S, Reardon DA, Friedman
AH, Bigner DD and Friedman HS: Chemotherapy and novel therapeutic
approaches in malignant glioma. Front Biosci. 10:2645–2668. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lapointe S, Perry A and Butowski NA:
Primary brain tumours in adults. Lancet. 392:432–446. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhang Y, Zhai M, Chen Z, Han X, Yu F, Li
Z, Xie X, Han C, Yu L, Yang Y and Mei X: Dual-modified liposome
codelivery of doxorubicin and vincristine improve targeting and
therapeutic efficacy of glioma. Drug Deliv. 24:1045–1055. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
d'Angelo M, Castelli V, Benedetti E,
Antonosante A, Catanesi M, Dominguez-Benot R, Pitari G, Ippoliti R
and Cimini A: Theranostic nanomedicine for malignant gliomas. Front
Bioeng Biotechnol. 7:3252019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Brandes AA, Bartolotti M, Tosoni A and
Franceschi E: Nitrosoureas in the management of malignant gliomas.
Curr Neurol Neurosci Rep. 16:132016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Stupp R: Drug development for glioma: Are
we repeating the same mistakes? Lancet Oncol. 20:10–12. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yu Y, Wang L, Han J, Wang A, Chu L, Xi X,
Kan R, Sha C and Sun K: Synthesis and characterization of a series
of temozolomide esters and its anti-glioma study. J Pharm Sci.
110:3431–3438. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Karachi A, Dastmalchi F, Mitchell DA and
Rahman M: Temozolomide for immunomodulation in the treatment of
glioblastoma. Neuro Oncol. 20:1566–1572. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Cao H, Li X, Wang F, Zhang Y, Xiong Y and
Yang Q: Phytochemical-mediated glioma targeted treatment: Drug
resistance and novel delivery systems. Curr Med Chem. 27:599–629.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Mirabdaly S, Elieh Ali Komi D, Shakiba Y,
Moini A and Kiani A: Effects of temozolomide on U87MG glioblastoma
cell expression of CXCR4, MMP2, MMP9, VEGF, anti-proliferatory
cytotoxic and apoptotic properties. Mol Biol Rep. 47:1187–1197.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wang Y, Gao S, Wang W and Liang J:
Temozolomide inhibits cellular growth and motility via targeting
ERK signaling in glioma C6 cells. Mol Med Rep. 14:5732–5738. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Da Ros M, Iorio AL, De Gregorio V,
Fantappiè O, Laffi G, de Martino M, Pisano C, Genitori L and Sardi
I: Aldoxorubicin and temozolomide combination in a xenograft mice
model of human glioblastoma. Oncotarget. 9:34935–34944. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hu YH, Jiao BH, Wang CY and Wu JL:
Regulation of temozolomide resistance in glioma cells via the
RIP2/NF-κB/MGMT pathway. CNS Neurosci Ther. 27:552–563. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wu S, Li X, Gao F, de Groot JF, Koul D and
Yung WKA: PARP-mediated PARylation of MGMT is critical to promote
repair of temozolomide-induced O6-methylguanine DNA damage in
glioblastoma. Neuro Oncol. 23:920–931. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Rahman MA, Gras Navarro A, Brekke J,
Engelsen A, Bindesbøll C, Sarowar S, Bahador M, Bifulco E, Goplen
D, Waha A, et al: Bortezomib administered prior to temozolomide
depletes MGMT, chemosensitizes glioblastoma with unmethylated MGMT
promoter and prolongs animal survival. Br J Cancer. 121:545–555.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Rezaei T, Hejazi M, Mansoori B, Mohammadi
A, Amini M, Mosafer J, Rezaei S, Mokhtarzadeh A and Baradaran B:
microRNA-181a mediates the chemo-sensitivity of glioblastoma to
carmustine and regulates cell proliferation, migration, and
apoptosis. Eur J Pharmacol. 888:1734832020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lu Z, Ma J, Liu B, Dai C, Xie T, Ma X, Li
M, Dong J, Lan Q and Huang Q: Hyperbaric oxygen therapy sensitizes
nimustine treatment for glioma in mice. Cancer Med. 5:3147–3155.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yi S, Yang F, Jie C and Zhang G: A novel
strategy to the formulation of carmustine and bioactive
nanoparticles co-loaded PLGA biocomposite spheres for targeting
drug delivery to glioma treatment and nursing care. Artif Cells
Nanomed Biotechnol. 47:3438–3447. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ashrafzadeh MS, Akbarzadeh A, Heydarinasab
A and Ardjmand M: In vivo glioblastoma therapy using targeted
liposomal cisplatin. Int J Nanomedicine. 15:7035–7049. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhang C, Nance EA, Mastorakos P, Chisholm
J, Berry S, Eberhart C, Tyler B, Brem H, Suk JS and Hanes J:
Convection enhanced delivery of cisplatin-loaded brain penetrating
nanoparticles cures malignant glioma in rats. J Control Release.
263:112–119. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Thakur A, Sidu RK, Zou H, Alam MK, Yang M
and Lee Y: Inhibition of glioma cells' proliferation by
doxorubicin-loaded exosomes via microfluidics. Int J Nanomedicine.
15:8331–8343. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Meng L, Chu X, Xing H, Liu X, Xin X, Chen
L, Jin M, Guan Y, Huang W and Gao Z: Improving glioblastoma
therapeutic outcomes via doxorubicin-loaded nanomicelles modified
with borneol. Int J Pharm. 567:1184852019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Park KJ, Yu MO, Park DH, Park JY, Chung YG
and Kang SH: Role of vincristine in the inhibition of angiogenesis
in glioblastoma. Neurol Res. 38:871–879. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Fu S, Liang M, Wang Y, Cui L, Gao C, Chu
X, Liu Q, Feng Y, Gong W, Yang M, et al: Dual-modified novel
biomimetic nanocarriers improve targeting and therapeutic efficacy
in glioma. ACS Appl Mater Interfaces. 11:1841–1854. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wu M, Fan Y, Lv S, Xiao B, Ye M and Zhu X:
Vincristine and temozolomide combined chemotherapy for the
treatment of glioma: A comparison of solid lipid nanoparticles and
nanostructured lipid carriers for dual drugs delivery. Drug Deliv.
23:2720–2725. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Koosha F, Neshasteh-Riz A, Takavar A,
Eyvazzadeh N, Mazaheri Z, Eynali S and Mousavi M: The combination
of A-966492 and Topotecan for effective radiosensitization on
glioblastoma spheroids. Biochem Biophys Res Commun. 491:1092–1097.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sharon GR and Rubinstein A: Controlling
the release rate of topotecan from PLGA spheres and increasing its
cytotoxicity towards glioblastoma cells by co-loading with calcium
chloride. Int J Pharm. 602:1206162021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kim MM, Umemura Y and Leung D: Bevacizumab
and glioblastoma: Past, present, and future directions. Cancer J.
24:180–186. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sonoda Y, Kanamori M, Deen DF, Cheng SY,
Berger MS and Pieper RO: Overexpression of vascular endothelial
growth factor isoforms drives oxygenation and growth but not
progression to glioblastoma multiforme in a human model of
gliomagenesis. Cancer Res. 63:1962–1968. 2003.PubMed/NCBI
|
|
54
|
Grossman R, Brastianos H, Blakeley JO,
Mangraviti A, Lal B, Zadnik P, Hwang L, Wicks RT, Goodwin RC, Brem
H and Tyler B: Combination of anti-VEGF therapy and temozolomide in
two experimental human glioma models. J Neurooncol. 116:59–65.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhang R, Saito R, Shibahara I, Sugiyama S,
Kanamori M, Sonoda Y and Tominaga T: Temozolomide reverses
doxorubicin resistance by inhibiting P-glycoprotein in malignant
glioma cells. J Neurooncol. 126:235–242. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang X, Ni Q, Wang Y, Fan H and Li Y:
Synergistic anticancer effects of formononetin and temozolomide on
glioma C6 cells. Biol Pharm Bull. 41:1194–1202. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ni Q, Fan Y, Zhang X, Fan H and Li Y: In
vitro and in vivo study on glioma treatment enhancement by
combining temozolomide with calycosin and formononetin. J
Ethnopharmacol. 242:1116992019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Vengoji R, Macha MA, Nimmakayala RK,
Rachagani S, Siddiqui JA, Mallya K, Gorantla S, Jain M, Ponnusamy
MP, Batra SK and Shonka N: Afatinib and temozolomide combination
inhibits tumorigenesis by targeting EGFRvIII-cMet signaling in
glioblastoma cells. J Exp Clin Cancer Res. 38:2662019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tang JH, Yang L, Chen JX, Li QR, Zhu LR,
Xu QF, Huang GH, Zhang ZX, Xiang Y, Du L, et al: Bortezomib
inhibits growth and sensitizes glioma to temozolomide (TMZ) via
down-regulating the FOXM1-survivin axis. Cancer Commun (Lond).
39:812019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Xu P, Wang H, Pan H, Chen J and Deng C:
Anlotinib combined with temozolomide suppresses glioblastoma growth
via mediation of JAK2/STAT3 signaling pathway. Cancer Chemother
Pharmacol. 89:183–196. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Thomas AA and Rauschkolb PK: Tumor
treating fields for glioblastoma: Should it or will it ever be
adopted? Curr Opin Neurol. 32:857–863. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ortiz R, Perazzoli G, Cabeza L,
Jimenez-Luna C, Luque R, Prados J and Melguizo C: Temozolomide: An
updated overview of resistance mechanisms, nanotechnology advances
and clinical applications. Curr Neuropharmacol. 19:513–537. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Peng Y, Huang J, Xiao H, Wu T and Shuai X:
Codelivery of temozolomide and siRNA with polymeric nanocarrier for
effective glioma treatment. Int J Nanomedicine. 13:3467–3480. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Song S, Mao G, Du J and Zhu X: Novel RGD
containing, temozolomide-loading nanostructured lipid carriers for
glioblastoma multiforme chemotherapy. Drug Deliv. 23:1404–1408.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Afzalipour R, Khoei S, Khoee S,
Shirvalilou S, Jamali Raoufi N, Motevalian M and Karimi MR:
Dual-targeting temozolomide loaded in folate-conjugated magnetic
triblock copolymer nanoparticles to improve the therapeutic
efficiency of rat brain gliomas. ACS Biomater Sci Eng. 5:6000–6011.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Costagliola di Polidoro A, Zambito G,
Haeck J, Mezzanotte L, Lamfers M, Netti PA and Torino E:
Theranostic design of angiopep-2 conjugated hyaluronic acid
nanoparticles (Thera-ANG-cHANPs) for dual targeting and boosted
imaging of glioma cells. Cancers (Basel). 13:5032021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yang Z, Wei D, Dai X, Stevens MFG,
Bradshaw TD, Luo Y and Zhang J: C8-substituted imidazotetrazine
analogs overcome temozolomide resistance by inducing DNA adducts
and DNA damage. Front Oncol. 9:4852019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hotchkiss KM and Sampson JH: Temozolomide
treatment outcomes and immunotherapy efficacy in brain tumor. J
Neurooncol. 151:55–62. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Sorribes IC, Handelman SK and Jain HV:
Mitigating temozolomide resistance in glioblastoma via DNA
damage-repair inhibition. J R Soc Interface. 17:201907222020.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Butler M, Pongor L, Su YT, Xi L, Raffeld
M, Quezado M, Trepel J, Aldape K, Pommier Y and Wu J: MGMT status
as a clinical biomarker in glioblastoma. Trends Cancer. 6:380–391.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yu W, Zhang L, Wei Q and Shao A:
O6-methylguanine-DNA methyltransferase (MGMT): Challenges and new
opportunities in glioma chemotherapy. Front Oncol. 9:15472020.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lang F, Liu Y, Chou FJ and Yang C:
Genotoxic therapy and resistance mechanism in gliomas. Pharmacol
Ther. 228:1079222021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Daniel P, Sabri S, Chaddad A, Meehan B,
Jean-Claude B, Rak J and Abdulkarim BS: Temozolomide induced
hypermutation in glioma: Evolutionary mechanisms and therapeutic
opportunities. Front Oncol. 9:412019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tomar MS, Kumar A, Srivastava C and
Shrivastava A: Elucidating the mechanisms of temozolomide
resistance in gliomas and the strategies to overcome the
resistance. Biochim Biophys Acta Rev Cancer. 1876:1886162021.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ohba S, Yamashiro K and Hirose Y:
Inhibition of DNA repair in combination with temozolomide or
dianhydrogalactiol overcomes temozolomide-resistant glioma cells.
Cancers (Basel). 13:25702021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Liu Y, Du Z, Xu Z, Jin T, Xu K, Huang M,
Wang S, Zheng Y, Liu M and Xu H: Overexpressed GNA13 induces
temozolomide sensitization via down-regulating MGMT and p-RELA in
glioma. Am J Transl Res. 13:11413–11426. 2021.PubMed/NCBI
|
|
77
|
Yamada T, Tsuji S, Nakamura S, Egashira Y,
Shimazawa M, Nakayama N, Yano H, Iwama T and Hara H: Riluzole
enhances the antitumor effects of temozolomide via suppression of
MGMT expression in glioblastoma. J Neurosurg. 134:701–710. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kaina B and Christmann M: DNA repair in
personalized brain cancer therapy with temozolomide and
nitrosoureas. DNA Repair (Amst). 78:128–141. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Berte N, Piée-Staffa A, Piecha N, Wang M,
Borgmann K, Kaina B and Nikolova T: Targeting homologous
recombination by pharmacological inhibitors enhances the killing
response of glioblastoma cells treated with alkylating drugs. Mol
Cancer Ther. 15:2665–2678. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Weller M and Le Rhun E: How did lomustine
become standard of care in recurrent glioblastoma? Cancer Treat
Rev. 87:1020292020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lombardi G, Farina P, Della Puppa A,
Cecchin D, Pambuku A, Bellu L and Zagonel V: An overview of
fotemustine in high-grade gliomas: From single agent to association
with bevacizumab. Biomed Res Int. 2014:6985422014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Rudà R, Touat M and Soffietti R: Is
chemotherapy alone an option as initial treatment for low-grade
oligodendrogliomas? Curr Opin Neurol. 33:707–715. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ge Y, Lai X, Li J, Yu R, Zhuang Z, Sun G,
Cui X, Zhang N, Zhao L, Upadhyaya P and Zhong R: NBGNU: A
hypoxia-activated tripartite combi-nitrosourea prodrug overcoming
AGT-mediated chemoresistance. Future Med Chem. 11:269–284. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Sun X, Sun G, Huang Y, Zhang S, Tang X,
Zhang N, Zhao L, Zhong R and Peng Y: Glycolytic inhibition by
3-bromopyruvate increases the cytotoxic effects of
chloroethylnitrosoureas to human glioma cells and the DNA
interstrand cross-links formation. Toxicology. 435:1524132020.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Yamamuro S, Takahashi M, Satomi K, Sasaki
N, Kobayashi T, Uchida E, Kawauchi D, Nakano T, Fujii T, Narita Y,
et al: Lomustine and nimustine exert efficient antitumor effects
against glioblastoma models with acquired temozolomide resistance.
Cancer Sci. 112:4736–4747. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Rottenberg S, Disler C and Perego P: The
rediscovery of platinum-based cancer therapy. Nat Rev Cancer.
21:37–50. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yang W, Barth RF, Huo T, Nakkula RJ,
Weldon M, Gupta N, Agius L and Grecula JC: Radiation therapy
combined with intracerebral administration of carboplatin for the
treatment of brain tumors. Radiat Oncol. 9:252014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Shi M, Fortin D, Sanche L and Paquette B:
Convection-enhance-ment delivery of platinum-based drugs and
Lipoplatin(TM) to optimize the concomitant effect with radiotherapy
in F98 glioma rat model. Invest New Drugs. 33:555–563. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Charest G, Sanche L, Fortin D, Mathieu D
and Paquette B: Optimization of the route of platinum drugs
administration to optimize the concomitant treatment with
radiotherapy for glioblastoma implanted in the Fischer rat brain. J
Neurooncol. 115:365–373. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
da Ros M, Iorio AL, Lucchesi M, Stival A,
de Martino M and Sardi I: The use of anthracyclines for therapy of
CNS tumors. Anticancer Agents Med Chem. 15:721–727. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Nwagwu CD, Immidisetti AV, Jiang MY,
Adeagbo O, Adamson DC and Carbonell AM: Convection enhanced
delivery in the setting of high-grade gliomas. Pharmaceutics.
13:5612021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Han Y and Park JH: Convection-enhanced
delivery of liposomal drugs for effective treatment of glioblastoma
multiforme. Drug Deliv Transl Res. 10:1876–1887. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
El Demerdash N, Kedda J, Ram N, Brem H and
Tyler B: Novel therapeutics for brain tumors: Current practice and
future prospects. Expert Opin Drug Deliv. 17:9–21. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Mizuta Y, Tokuda K, Guo J, Zhang S,
Narahara S, Kawano T, Murata M, Yamaura K, Hoka S, Hashizume M and
Akahoshi T: Sodium thiosulfate prevents doxorubicin-induced DNA
damage and apoptosis in cardiomyocytes in mice. Life Sci.
257:1180742020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Du K, Xia Q, Heng H and Feng F:
Temozolomide-doxorubicin conjugate as a double intercalating agent
and delivery by apoferritin for glioblastoma chemotherapy. ACS Appl
Mater Interfaces. 12:34599–34609. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Liu J, Zhang Y, Chen T, Chen H, He H, Jin
T, Wang J and Ke Y: Environmentally self-adaptative nanocarriers
suppress glioma proliferation and stemness via codelivery of
shCD163 and doxorubicin. ACS Appl Mater Interfaces. 12:52354–52369.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Horescu C, Elena Cioc C, Tuta C, Sevastre
AS, Tache DE, Alexandru O, Artene SA, Danoiu S, Dricu A and Stefana
Oana P: The effect of temozolomide in combination with doxorubicin
in glioblastoma cells in vitro. J Immunoassay Immunochem.
41:1033–1043. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Maksimenko O, Malinovskaya J, Shipulo E,
Osipova N, Razzhivina V, Arantseva D, Yarovaya O, Mostovaya U,
Khalansky A, Fedoseeva V, et al: Doxorubicin-loaded PLGA
nanoparticles for the chemotherapy of glioblastoma: Towards the
pharmaceutical development. Int J Pharm. 572:1187332019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Muniswamy VJ, Raval N, Gondaliya P, Tambe
V, Kalia K and Tekade RK: ‘Dendrimer-Cationized-Albumin’ encrusted
polymeric nanoparticle improves BBB penetration and anticancer
activity of doxorubicin. Int J Pharm. 555:77–99. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Li GZ, Hu YH, Li DY, Zhang Y, Guo HL, Li
YM, Chen F and Xu J: Vincristine-induced peripheral neuropathy: A
mini-review. Neurotoxicology. 81:161–171. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yang L, Xu X and Zheng J:
Microtubule-associated protein 2 knockdown sensitizes glioma cells
to vincristine treatment. Neuroreport. 31:197–204. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
De Witt M, Gamble A, Hanson D, Markowitz
D, Powell C, Al Dimassi S, Atlas M, Boockvar J, Ruggieri R and
Symons M: Repurposing mebendazole as a replacement for vincristine
for the treatment of brain tumors. Mol Med. 23:50–56. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Bernstock JD, Ye D, Gessler FA, Lee YJ,
Peruzzotti-Jametti L, Baumgarten P, Johnson KR, Maric D, Yang W,
Kögel D, et al: Topotecan is a potent inhibitor of SUMOylation in
glioblastoma multiforme and alters both cellular replication and
metabolic programming. Sci Rep. 7:74252017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Serwer LP, Noble CO, Michaud K, Drummond
DC, Kirpotin DB, Ozawa T, Prados MD, Park JW and James CD:
Investigation of intravenous delivery of nanoliposomal topotecan
for activity against orthotopic glioblastoma xenografts. Neuro
Oncol. 13:1288–1295. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Upadhyayula PS, Spinazzi EF, Argenziano
MG, Canoll P and Bruce JN: Convection enhanced delivery of
topotecan for gliomas: A single-center experience. Pharmaceutics.
13:392020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Kaiser MG, Parsa AT, Fine RL, Hall JS,
Chakrabarti I and Bruce JN: Tissue distribution and antitumor
activity of topotecan delivered by intracerebral clysis in a rat
glioma model. Neurosurgery. 47:1391–1399. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wang Y, Kong X, Guo Y, Wang R and Ma W:
Continuous dose-intense temozolomide and cisplatin in recurrent
glioblastoma patients. Medicine (Baltimore). 96:e62612017.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Badruddoja MA, Pazzi M, Sanan A, Schroeder
K, Kuzma K, Norton T, Scully T, Mahadevan D and Ahmadi MM: Phase II
study of bi-weekly temozolomide plus bevacizumab for adult patients
with recurrent glioblastoma. Cancer Chemother Pharmacol.
80:715–721. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Herrlinger U, Tzaridis T, Mack F,
Steinbach JP, Schlegel U, Sabel M, Hau P, Kortmann RD, Krex D,
Grauer O, et al: Lomustine-temozolomide combination therapy versus
standard temozolomide therapy in patients with newly diagnosed
glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): A
randomised, open-label, phase 3 trial. Lancet. 393:678–688. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Kim SH, Yoo H, Chang JH, Kim CY, Chung DS,
Kim SH, Park SH, Lee YS and Yang SH: Procarbazine and CCNU
chemotherapy for recurrent glioblastoma with MGMT promoter
methylation. J Korean Med Sci. 33:e1672018. View Article : Google Scholar : PubMed/NCBI
|