Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
June-2022 Volume 47 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2022 Volume 47 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

D‑allose enhances the efficacy of hydroxychloroquine against Lewis lung carcinoma cell growth by inducing autophagy

  • Authors:
    • Kyoka Yamazaki
    • Masato Hoshi
    • Hiroyuki Tezuka
    • Nanaka Morita
    • Masaya Hirayama
    • Fumiaki Sato
    • Sayaka Yoshida
    • Kuniaki Saito
  • View Affiliations / Copyright

    Affiliations: Department of Disease Control and Prevention, Fujita Health University, Aichi 470‑1192, Japan, Department of Informative Clinical Medicine, Fujita Health University, Aichi 470‑1192, Japan, Department of Cellular Function Analysis, Research Promotion Headquarters, Fujita Health University, Aichi 470‑1192, Japan, Department of Morphology and Diagnostic Pathology, Fujita Health University, Aichi 470‑1192, Japan
    Copyright: © Yamazaki et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 117
    |
    Published online on: May 10, 2022
       https://doi.org/10.3892/or.2022.8328
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Various cancer cells require massive amounts of glucose as an energy source for their dysregulated growth. Although D‑allose, a rare sugar, inhibits tumor cell growth via inhibition of glucose uptake, a few cells can survive after treatment. However, the mechanism by which D‑allose‑resistant cells are generated remains unclear. Here, we investigated the properties of D‑allose‑resistant cells and evaluated the efficacy of combined treatment with this rare sugar and antitumor drugs. To this end, we established a D‑allose‑resistant tumor cell line and prepared a C57BL/6J mouse tumor xenograft model using Lewis lung carcinoma (LLC) cells. Xenograft‑bearing mice were treated with D‑allose (9 g/kg) and/or hydroxychloroquine (HCQ, 60 mg/kg), an autophagy inhibitor, for two weeks. Although D‑allose inhibited LLC cell growth in a dose‑dependent manner, a few cells survived. The upregulation of LC3‑II, a classical autophagy marker, and the downregulation of mTOR and its downstream molecule Beclin1 were observed in established D‑allose‑resistant LLC cells, which were more sensitive to cell death induced by HCQ. Similarly, in the tumor xenograft model, the tumor volume in mice co‑treated with D‑allose and HCQ was considerably smaller than that in untreated or HCQ‑treated mice. Importantly, the administration of D‑allose induced autophagy selectively at the tumor site of the xenograft‑bearing mice. These results provide a new therapeutic strategy targeting autophagy which is induced in tumor cells by D‑allose administration, and may be used to improve therapies for lung cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Mooradian AD, Smith M and Tokuda M: The role of artificial and natural sweeteners in reducing the consumption of table sugar: A narrative review. Clin Nutr ESPEN. 18:1–8. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Iga Y, Nakamichi K, Shirai Y and Matsuo T: Acute and sub-chronic toxicity of D-allose in rats. Biosci Biotechnol Biochem. 74:1476–1478. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Yamada T, Iida T, Takamine S, Hayashi N and Okuma K: Safety evaluation of rare sugar syrup: Single-dose oral toxicity in rats, reverse mutation assay, chromosome aberration assay, and acute non-effect level for diarrhea of a single dose in humans. Shokuhin Eiseigaku Zasshi. 56:211–216. 2015.(In Japanese). View Article : Google Scholar

6 

Liu Y, Nakamura T, Toyoshima T, Shinomiya A, Tamiya T, Tokuda M, Keep RF and Itano T: The effects of D-allose on transient ischemic neuronal death and analysis of its mechanism. Brain Res Bull. 109:127–131. 2014. View Article : Google Scholar

7 

Yamaguchi F, Takata M, Kamitori K, Nonaka M, Dong Y, Sui L and Tokuda M: Rare sugar D-allose induces specific up-regulation of TXNIP and subsequent G1 cell cycle arrest in hepatocellular carcinoma cells by stabilization of p27kip1. Int J Oncol. 32:377–385. 2008.

8 

Noguchi C, Kamitori K, Hossain A, Hoshikawa H, Katagi A, Dong Y, Sui L, Tokuda M and Yamaguchi F: D-allose inhibits cancer cell growth by reducing GLUT1 expression. Tohoku J Exp Med. 238:131–141. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Hoshikawa H, Mori T and Mori N: In vitro and in vivo effects of D-allose: Up-regulation of thioredoxin-interacting protein in head and neck cancer cells. Ann Otol Rhinol Laryngol. 119:567–571. 2010. View Article : Google Scholar

10 

Hoshikawa H, Kamitori K, Indo K, Mori T, Kamata M, Takahashi T and Tokuda M: Combined treatment with D-allose, docetaxel and radiation inhibits the tumor growth in an in vivo model of head and neck cancer. Oncol Lett. 15:3422–3428. 2018.

11 

Balamurugan K: HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer. 138:1058–1066. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Rabinowitz JD and White E: Autophagy and metabolism. Science. 330:1344–1348. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Heitman J, Movva NR and Hall MN: Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 253:905–909. 1991. View Article : Google Scholar : PubMed/NCBI

14 

Noda T and Ohsumi Y: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem. 273:3963–3966. 1998. View Article : Google Scholar : PubMed/NCBI

15 

Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar

16 

Mathew R, Karantza-Wadsworth V and White E: Role of autophagy in cancer. Nat Rev Cancer. 7:961–967. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Gao L, Wang Z, Lu D, Huang J, Liu J and Hong L: Paeonol induces cytoprotective autophagy via blocking the Akt/mTOR pathway in ovarian cancer cells. Cell Death Dis. 10:6092019. View Article : Google Scholar : PubMed/NCBI

18 

Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q, et al: Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis. 4:e8382013. View Article : Google Scholar : PubMed/NCBI

19 

Chude CI and Amaravadi RK: Targeting autophagy in cancer: Update on clinical trials and novel inhibitors. Int J Mol Sci. 18:1272017. View Article : Google Scholar

20 

Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W, DiPaola RS, Lotze MT and White E: Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res. 17:654–666. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, et al: Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 136:521–534. 2009. View Article : Google Scholar

22 

Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N, Zhao Y, Liu Z, Wan F, et al: Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 465:942–946. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Kim YC and Guan KL: mTOR: A pharmacologic target for autophagy regulation. J Clin Invest. 125:25–32. 2015. View Article : Google Scholar

24 

Mrakovcic M and Frohlich LF: p53-mediated molecular control of autophagy in tumor cells. Biomolecules. 8:142018. View Article : Google Scholar

25 

Kim E, Goraksha-Hicks P, Li L, Neufeld TP and Guan KL: Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol. 10:935–945. 2008. View Article : Google Scholar

26 

Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S and Sabatini DM: Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 141:290–303. 2010. View Article : Google Scholar

27 

Corcelle E, Djerbi N, Mari M, Nebout M, Fiorini C, Fenichel P, Hofman P, Poujeol P and Mograbi B: Control of the autophagy maturation step by the MAPK ERK and p38: Lessons from environmental carcinogens. Autophagy. 3:57–59. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B and Sadoshima J: Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 100:914–922. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Jozwiak P, Krzeslak A, Bryś M and Lipinska A: Glucose-dependent glucose transporter 1 expression and its impact on viability of thyroid cancer cells. Oncol Rep. 33:913–920. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Ao H, Li H, Zhao X, Liu B and Lu L: TXNIP positively regulates the autophagy and apoptosis in the rat muller cell of diabetic retinopathy. Life Sci. 267:1189882021. View Article : Google Scholar

31 

Zhang X, Cheng D, Liu Y, Wu Y and He Z: Gephyrin suppresses lung squamous cell carcinoma development by reducing mTOR pathway activation. Cancer Manag Res. 11:5333–5341. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Yang Z, Zhang L, Ma A, Liu L, Li J, Gu J and Liu Y: Transient mTOR inhibition facilitates continuous growth of liver tumors by modulating the maintenance of CD133+ cell populations. PLoS One. 6:e284052011. View Article : Google Scholar : PubMed/NCBI

33 

Kenerson HL, Aicher LD, True LD and Yeung RS: Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Res. 62:5645–5650. 2002.PubMed/NCBI

34 

Inoki K, Corradetti MN and Guan KL: Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet. 37:19–24. 2005. View Article : Google Scholar

35 

Nazio F, Bordi M, Cianfanelli V, Locatelli F and Cecconi F: Autophagy and cancer stem cells: Molecular mechanisms and therapeutic applications. Cell Death Differ. 26:690–702. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Han W, Pan H, Chen Y, Sun J, Wang Y, Li J, Ge W, Feng L, Lin X, Wang X, et al: EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells. PLoS One. 6:e186912011. View Article : Google Scholar : PubMed/NCBI

37 

Chen K and Shi W: Autophagy regulates resistance of non-small cell lung cancer cells to paclitaxel. Tumour Biol. 37:10539–10544. 2016. View Article : Google Scholar

38 

Ojha R, Bhattacharyya S and Singh SK: Autophagy in cancer stem cells: A potential link between chemoresistance, recurrence, and metastasis. Biores Open Access. 4:97–108. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Chi KH, Ko HL, Yang KL, Lee CY, Chi MS and Kao SJ: Addition of rapamycin and hydroxychloroquine to metronomic chemotherapy as a second line treatment results in high salvage rates for refractory metastatic solid tumors: A pilot safety and effectiveness analysis in a small patient cohort. Oncotarget. 6:16735–16745. 2015. View Article : Google Scholar

40 

Kimura T, Takabatake Y, Takahashi A and Isaka Y: Chloroquine in cancer therapy: A double-edged sword of autophagy. Cancer Res. 73:3–7. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yamazaki K, Hoshi M, Tezuka H, Morita N, Hirayama M, Sato F, Yoshida S and Saito K: D‑allose enhances the efficacy of hydroxychloroquine against Lewis lung carcinoma cell growth by inducing autophagy. Oncol Rep 47: 117, 2022.
APA
Yamazaki, K., Hoshi, M., Tezuka, H., Morita, N., Hirayama, M., Sato, F. ... Saito, K. (2022). D‑allose enhances the efficacy of hydroxychloroquine against Lewis lung carcinoma cell growth by inducing autophagy. Oncology Reports, 47, 117. https://doi.org/10.3892/or.2022.8328
MLA
Yamazaki, K., Hoshi, M., Tezuka, H., Morita, N., Hirayama, M., Sato, F., Yoshida, S., Saito, K."D‑allose enhances the efficacy of hydroxychloroquine against Lewis lung carcinoma cell growth by inducing autophagy". Oncology Reports 47.6 (2022): 117.
Chicago
Yamazaki, K., Hoshi, M., Tezuka, H., Morita, N., Hirayama, M., Sato, F., Yoshida, S., Saito, K."D‑allose enhances the efficacy of hydroxychloroquine against Lewis lung carcinoma cell growth by inducing autophagy". Oncology Reports 47, no. 6 (2022): 117. https://doi.org/10.3892/or.2022.8328
Copy and paste a formatted citation
x
Spandidos Publications style
Yamazaki K, Hoshi M, Tezuka H, Morita N, Hirayama M, Sato F, Yoshida S and Saito K: D‑allose enhances the efficacy of hydroxychloroquine against Lewis lung carcinoma cell growth by inducing autophagy. Oncol Rep 47: 117, 2022.
APA
Yamazaki, K., Hoshi, M., Tezuka, H., Morita, N., Hirayama, M., Sato, F. ... Saito, K. (2022). D‑allose enhances the efficacy of hydroxychloroquine against Lewis lung carcinoma cell growth by inducing autophagy. Oncology Reports, 47, 117. https://doi.org/10.3892/or.2022.8328
MLA
Yamazaki, K., Hoshi, M., Tezuka, H., Morita, N., Hirayama, M., Sato, F., Yoshida, S., Saito, K."D‑allose enhances the efficacy of hydroxychloroquine against Lewis lung carcinoma cell growth by inducing autophagy". Oncology Reports 47.6 (2022): 117.
Chicago
Yamazaki, K., Hoshi, M., Tezuka, H., Morita, N., Hirayama, M., Sato, F., Yoshida, S., Saito, K."D‑allose enhances the efficacy of hydroxychloroquine against Lewis lung carcinoma cell growth by inducing autophagy". Oncology Reports 47, no. 6 (2022): 117. https://doi.org/10.3892/or.2022.8328
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team