Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
September-2022 Volume 48 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2022 Volume 48 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Research progress on the interaction between long non‑coding RNAs and RNA‑binding proteins to influence the reprogramming of tumor glucose metabolism (Review)

  • Authors:
    • Weizheng Wu
    • Kunming Wen
  • View Affiliations / Copyright

    Affiliations: Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
    Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 153
    |
    Published online on: July 15, 2022
       https://doi.org/10.3892/or.2022.8365
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

As epigenetic regulators, long non‑coding RNAs (lncRNAs) are involved in various important regulatory processes and typically interact with RNA‑binding proteins (RBPs) to exert their core functional effects. An increasing number of studies have demonstrated that lncRNAs can regulate the occurrence and development of cancer through a variety of complex mechanisms and can also participate in tumor glucose metabolism by directly or indirectly regulating the Warburg effect. As one of the metabolic characteristics of tumor cells, the Warburg effect provides a large amount of energy and numerous intermediate products to meet the consumption demands of tumor metabolism, providing advantages for the occurrence and development of tumors. The present review article summarizes the regulatory effects of lncRNAs on the reprogramming of glucose metabolism after interacting with RBPs in tumors. The findings discussed herein may aid in the better understanding of the pathogenesis of malignancies, and may provide novel therapeutic targets, as well as new diagnostic and prognostic markers for human cancers.
View Figures

Figure 1

Figure 2

View References

1 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Hsu PP and Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 134:703–707. 2008. View Article : Google Scholar

3 

Kroemer G and Pouyssegur J: Tumor cell metabolism: Cancer's Achilles' heel. Cancer Cell. 13:472–482. 2008. View Article : Google Scholar

4 

Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B and Gillies RJ: Acid-mediated tumor invasion: A multidisciplinary study. Cancer Res. 66:5216–5223. 2006. View Article : Google Scholar : PubMed/NCBI

5 

Koppenol WH, Bounds PL and Dang CV: Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer. 11:325–337. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Mueckler M and Thorens B: The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 34:121–138. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Ancey PB, Contat C and Meylan E: Glucose transporters in cancer-from tumor cells to the tumor microenvironment. FEBS J. 285:2926–2943. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Li L, Liang Y, Kang L, Liu Y, Gao S, Chen S, Li Y, You W, Dong Q, Hong T, et al: Transcriptional regulation of the warburg effect in cancer by SIX1. Cancer Cell. 33:368–385.e7. 2018. View Article : Google Scholar

9 

Akins NS, Nielson TC and Le HV: Inhibition of glycolysis and glutaminolysis: An emerging drug discovery approach to combat cancer. Curr Top Med Chem. 18:494–504. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Zheng Y, Liu P, Wang N, Wang S, Yang B, Li M, Chen J, Situ H, Xie M, Lin Y and Wang Z: Betulinic acid suppresses breast cancer metastasis by targeting GRP78-mediated glycolysis and ER stress apoptotic pathway. Oxid Med Cell Longev. 2019:87816902019. View Article : Google Scholar : PubMed/NCBI

11 

Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W and Guo C: Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res. 39:1262020. View Article : Google Scholar : PubMed/NCBI

12 

Liu C, Li H, Chu F, Zhou X, Xie R, Wei Q, Yang S, Li T, Liang S and Lü M: Long noncoding RNAs: Key regulators involved in metabolic reprogramming in cancer (Review). Oncol Rep. 45:542021. View Article : Google Scholar : PubMed/NCBI

13 

Li Z and Sun X: Non-coding RNAs Operate in the crosstalk between cancer metabolic reprogramming and metastasis. Front Oncol. 10:8102020. View Article : Google Scholar

14 

Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A and Rinn JL: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25:1915–1927. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Schmitt AM and Chang HY: Long noncoding RNAs in cancer pathways. Cancer Cell. 29:452–463. 2016. View Article : Google Scholar

16 

Hentze MW, Castello A, Schwarzl T and Preiss T: A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol. 19:327–341. 2018. View Article : Google Scholar

17 

Ferre F, Colantoni A and Helmer-Citterich M: Revealing protein-lncRNA interaction. Brief Bioinform. 17:106–116. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Wei S, Fan Q, Yang L, Zhang X, Ma Y, Zong Z, Hua X, Su D, Sun H, Li H and Liu Z: Promotion of glycolysis by HOTAIR through GLUT1 upregulation via mTOR signaling. Oncol Rep. 38:1902–1908. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Song H, Liu Y, Li X, Chen S, Xie R, Chen D, Gao H, Wang G, Cai B and Yang X: Long noncoding RNA CASC11 promotes hepatocarcinogenesis and HCC progression through EIF4A3-mediated E2F1 activation. Clin Transl Med. 10:e2202020. View Article : Google Scholar : PubMed/NCBI

20 

Luo J, Wang H, Wang L, Wang G, Yao Y, Xie K, Li X, Xu L, Shen Y and Ren B: lncRNA GAS6-AS1 inhibits progression and glucose metabolism reprogramming in LUAD via repressing E2F1-mediated transcription of GLUT1. Mol Ther Nucleic Acids. 25:11–24. 2021. View Article : Google Scholar : PubMed/NCBI

21 

Lu WT, Wilczynska A, Smith E and Bushell M: The diverse roles of the eIF4A family: you are the company you keep. Biochem Soc Trans. 42:166–172. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Chan CC, Dostie J, Diem MD, Feng W, Mann M, Rappsilber J and Dreyfuss G: eIF4A3 is a novel component of the exon junction complex. RNA. 10:200–209. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Wu M, Seto E and Zhang J: E2F1 enhances glycolysis through suppressing Sirt6 transcription in cancer cells. Oncotarget. 6:11252–11263. 2015. View Article : Google Scholar

24 

Chen HZ, Tsai SY and Leone G: Emerging roles of E2Fs in cancer: An exit from cell cycle control. Nat Rev Cancer. 9:785–797. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Farra R, Grassi G, Tonon F, Abrami M, Grassi M, Pozzato G, Fiotti N, Forte G and Dapas B: The role of the transcription factor E2F1 in hepatocellular carcinoma. Curr Drug Deliv. 14:272–281. 2017.PubMed/NCBI

26 

Lis P, Dylag M, Niedzwiecka K, Ko YH, Pedersen PL, Goffeau A and Ułaszewski S: The HK2 dependent ‘Warburg Effect’ and mitochondrial oxidative phosphorylation in cancer: Targets for effective therapy with 3-Bromopyruvate. Molecules. 21:17302016. View Article : Google Scholar

27 

Gong L, Cui Z, Chen P, Han H, Peng J and Leng X: Reduced survival of patients with hepatocellular carcinoma expressing hexokinase II. Med Oncol. 29:909–914. 2012. View Article : Google Scholar

28 

Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C and Guha A: Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 208:313–326. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Wolf A, Agnihotri S and Guha A: Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget. 1:552–562. 2010. View Article : Google Scholar

30 

Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, Chandel N, Laakso M, Muller WJ, Allen EL, et al: Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell. 24:213–228. 2013. View Article : Google Scholar

31 

Kanai S, Shimada T, Narita T and Okabayashi K: Phosphofructokinase-1 subunit composition and activity in the skeletal muscle, liver, and brain of dogs. J Vet Med Sci. 81:712–716. 2019. View Article : Google Scholar

32 

Al Hasawi N, Alkandari MF and Luqmani YA: Phosphofructokinase: A mediator of glycolytic flux in cancer progression. Crit Rev Oncol Hematol. 92:312–321. 2014. View Article : Google Scholar

33 

Bartrons R, Rodríguez-García A, Simon-Molas H, Castaño E, Manzano A and Navarro-Sabaté À: The potential utility of PFKFB3 as a therapeutic target. Expert Opin Ther Targets. 22:659–674. 2018. View Article : Google Scholar : PubMed/NCBI

34 

van Niekerk G and Engelbrecht AM: Role of PKM2 in directing the metabolic fate of glucose in cancer: A potential therapeutic target. Cell Oncol (Dordr). 41:343–351. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Shang RZ, Qu SB and Wang DS: Reprogramming of glucose metabolism in hepatocellular carcinoma: Progress and prospects. World J Gastroenterol. 22:9933–9943. 2016. View Article : Google Scholar

36 

Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, Tempel W, Dimov S, Shen M, Jha A, et al: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol. 8:839–847. 2012. View Article : Google Scholar

37 

Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, Simmet T and Seufferlein T: PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer. 15:32016. View Article : Google Scholar : PubMed/NCBI

38 

He Y, Luo Y, Zhang D, Wang X, Zhang P, Li H, Ejaz S and Liang S: PGK1-mediated cancer progression and drug resistance. Am J Cancer Res. 9:2280–2302. 2019.PubMed/NCBI

39 

Daly EB, Wind T, Jiang XM, Sun L and Hogg PJ: Secretion of phosphoglycerate kinase from tumour cells is controlled by oxygen-sensing hydroxylases. Biochim Biophys Acta. 1691:17–22. 2004. View Article : Google Scholar

40 

Hu H, Zhu W, Qin J, Chen M, Gong L, Li L, Liu X, Tao Y, Yin H, Zhou H, et al: Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology. 65:515–528. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Feng Y, Xiong Y, Qiao T, Li X, Jia L and Han Y: Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 7:6124–6136. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Fan J, Hitosugi T, Chung TW, Xie J, Ge Q, Gu TL, Polakiewicz RD, Chen GZ, Boggon TJ, Lonial S, et al: Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells. Mol Cell Biol. 31:4938–4950. 2011. View Article : Google Scholar

43 

Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, et al: Tyrosine phosphorylation inhibits PKM2 to promote the warburg effect and tumor growth. Sci Signal. 2:ra732009. View Article : Google Scholar

44 

Wang C, Li Y, Yan S, Wang H, Shao X, Xiao M, Yang B, Qin G, Kong R, Chen R and Zhang N: Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nat Commun. 11:31622020. View Article : Google Scholar : PubMed/NCBI

45 

Hu R, Zhong P, Xiong L and Duan L: Long Noncoding RNA cancer susceptibility candidate 8 suppresses the proliferation of bladder cancer cells via regulating glycolysis. DNA Cell Biol. 36:767–774. 2017. View Article : Google Scholar

46 

Chen H, Pei H, Hu W, Ma J, Zhang J, Mao W, Nie J, Xu C, Li B, Hei TK, et al: Long non-coding RNA CRYBG3 regulates glycolysis of lung cancer cells by interacting with lactate dehydrogenase A. J Cancer. 9:2580–2588. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Dai F, Wu Y, Lu Y, An C, Zheng X, Dai L, Guo Y, Zhang L, Li H, Xu W and Gao W: Crosstalk between RNA m6A Modification and Non-coding RNA Contributes to Cancer Growth and Progression. Mol Ther Nucleic Acids. 22:62–71. 2020. View Article : Google Scholar : PubMed/NCBI

48 

Yang J, Liu J, Zhao S and Tian F: NN 6-Methyladenosine METTL3 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract. Mol Ther Nucleic Acids. 20:111–116. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Zhong L, He X, Song H, Sun Y, Chen G, Si X, Sun J, Chen X, Liao W, Liao Y and Bin J: METTL3 Induces AAA development and progression by modulating N6-methyladenosine-dependent primary miR34a processing. Mol Ther Nucleic Acids. 21:394–411. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Wang J, Chen L and Qiang P: The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell Int. 21:992021. View Article : Google Scholar

51 

Lu S, Han L, Hu X, Sun T, Xu D, Li Y, Chen Q, Yao W, He M, Wang Z, et al: N6-methyladenosine reader IMP2 stabilizes the ZFAS1/OLA1 axis and activates the Warburg effect: Implication in colorectal cancer. J Hematol Oncol. 14:1882021. View Article : Google Scholar

52 

Liu H, Qin S, Liu C, Jiang L, Li C, Yang J, Zhang S, Yan Z, Liu X, Yang J and Sun X: m 6 A reader IGF2BP2-stabilized CASC9 accelerates glioblastoma aerobic glycolysis by enhancing HK2 mRNA stability. Cell Death Discov. 7:2922021. View Article : Google Scholar : PubMed/NCBI

53 

Zhang Y, Zhao L, Yang S, Cen Y, Zhu T, Wang L, Xia L, Liu Y, Zou J, Xu J, et al: CircCDKN2B-AS1 interacts with IMP3 to stabilize hexokinase 2 mRNA and facilitate cervical squamous cell carcinoma aerobic glycolysis progression. J Exp Clin Cancer Res. 39:2812020. View Article : Google Scholar : PubMed/NCBI

54 

Jiang D, Zhang Y, Yang L, Lu W, Mai L, Guo H and Liu X: Long noncoding RNA HCG22 suppresses proliferation and metastasis of bladder cancer cells by regulation of PTBP1. J Cell Physiol. 235:1711–1722. 2020. View Article : Google Scholar

55 

Minami K, Taniguchi K, Sugito N, Kuranaga Y, Inamoto T, Takahara K, Takai T, Yoshikawa Y, Kiyama S, Akao Y and Azuma H: MiR-145 negatively regulates Warburg effect by silencing KLF4 and PTBP1 in bladder cancer cells. Oncotarget. 8:33064–33077. 2017. View Article : Google Scholar

56 

Taniguchi K, Sakai M, Sugito N, Kumazaki M, Shinohara H, Yamada N, Nakayama T, Ueda H, Nakagawa Y, Ito Y, et al: PTBP1-associated microRNA-1 and −133b suppress the Warburg effect in colorectal tumors. Oncotarget. 7:18940–18952. 2016. View Article : Google Scholar

57 

Wang J and Maldonado MA: The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol. 3:255–261. 2006.

58 

Liu C, Zhang Y, She X, Fan L, Li P, Feng J, Fu H, Liu Q, Liu Q, Zhao C, et al: A cytoplasmic long noncoding RNA LINC00470 as a new AKT activator to mediate glioblastoma cell autophagy. J Hematol Oncol. 11:772018. View Article : Google Scholar

59 

Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J and Levine B: Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science. 338:956–959. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Le Grand M, Berges R, Pasquier E, Montero MP, Borge L, Carrier A, Vasseur S, Bourgarel V, Buric D, André N, et al: Akt targeting as a strategy to boost chemotherapy efficacy in non-small cell lung cancer through metabolism suppression. Sci Rep. 7:451362017. View Article : Google Scholar : PubMed/NCBI

61 

Polivka J Jr and Janku F: Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 142:164–175. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Chen C, Wei M, Wang C, Sun D, Liu P, Zhong X and Yu W: Long noncoding RNA KCNQ1OT1 promotes colorectal carcinogenesis by enhancing aerobic glycolysis via hexokinase-2. Aging (Albany NY). 12:11685–11697. 2020. View Article : Google Scholar : PubMed/NCBI

63 

Hua Q, Mi B, Xu F, Wen J, Zhao L, Liu J and Huang G: Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1α axis. Theranostics. 10:4762–4778. 2020. View Article : Google Scholar : PubMed/NCBI

64 

Bian Z, Zhang J, Li M, Feng Y, Wang X, Zhang J, Yao S, Jin G, Du J, Han W, et al: LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling. Clin Cancer Res. 24:4808–4819. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Jiang B, Chen Y, Xia F and Li X: PTCSC3-mediated glycolysis suppresses thyroid cancer progression via interfering with PGK1 degradation. J Cell Mol Med. 25:8454–8463. 2021. View Article : Google Scholar : PubMed/NCBI

66 

Ullah K, Chen S, Lu J, Wang X, Liu Q, Zhang Y, Long Y, Hu Z and Xu G: The E3 ubiquitin ligase STUB1 attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. J Biol Chem. 295:4696–4708. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Chu Z, Huo N, Zhu X, Liu H, Cong R, Ma L, Kang X, Xue C, Li J, Li Q, et al: FOXO3A-induced LINC00926 suppresses breast tumor growth and metastasis through inhibition of PGK1-mediated Warburg effect. Mol Ther. 29:2737–2753. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Chen M, Zhang J and Manley JL: Turning on a fuel switch of cancer: HnRNP proteins regulate alternative splicing of pyruvate kinase mRNA. Cancer Res. 70:8977–8980. 2010. View Article : Google Scholar : PubMed/NCBI

69 

Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL and Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 452:230–233. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Lan Z, Yao X, Sun K, Li A, Liu S and Wang X: The interaction between lncRNA SNHG6 and hnRNPA1 contributes to the growth of colorectal cancer by enhancing aerobic glycolysis through the regulation of alternative splicing of PKM. Front Oncol. 10:3632020. View Article : Google Scholar

71 

Zhou Z, Gong Q, Lin Z, Wang Y, Li M, Wang L, Ding H and Li P: Emerging roles of SRSF3 as a therapeutic target for cancer. Front Oncol. 10:5776362020. View Article : Google Scholar

72 

Jia G, Wang Y, Lin C, Lai S, Dai H, Wang Z, Dai L, Su H, Song Y, Zhang N, et al: LNCAROD enhances hepatocellular carcinoma malignancy by activating glycolysis through induction of pyruvate kinase isoform PKM2. J Exp Clin Cancer Res. 40:2992021. View Article : Google Scholar : PubMed/NCBI

73 

Lu J, Liu X, Zheng J, Song J, Liu Y, Ruan X, Shen S, Shao L, Yang C, Wang D, et al: Lin28A promotes IRF6-regulated aerobic glycolysis in glioma cells by stabilizing SNHG14. Cell Death Dis. 11:4472020. View Article : Google Scholar : PubMed/NCBI

74 

Ferretti E, Li B, Zewdu R, Wells V, Hebert JM, Karner C, Anderson MJ, Williams T, Dixon J, Dixon MJ, et al: A conserved Pbx-Wnt-p63-Irf6 regulatory module controls face morphogenesis by promoting epithelial apoptosis. Dev Cell. 21:627–641. 2011. View Article : Google Scholar

75 

Rotondo JC, Borghi A, Selvatici R, Magri E, Bianchini E, Montinari E, Corazza M, Virgili A, Tognon M and Martini F: Hypermethylation-Induced inactivation of the IRF6 gene as a possible early event in progression of vulvar squamous cell carcinoma associated with lichen sclerosus. JAMA Dermatol. 152:928–933. 2016. View Article : Google Scholar

76 

Bailey CM, Abbott DE, Margaryan NV, Khalkhali-Ellis Z and Hendrix MJ: Interferon regulatory factor 6 promotes cell cycle arrest and is regulated by the proteasome in a cell cycle-dependent manner. Mol Cell Biol. 28:2235–2243. 2008. View Article : Google Scholar

77 

Song H, Li D, Wang X, Fang E, Yang F, Hu A, Wang J, Guo Y, Liu Y, Li H, et al: HNF4A-AS1/hnRNPU/CTCF axis as a therapeutic target for aerobic glycolysis and neuroblastoma progression. J Hematol Oncol. 13:242020. View Article : Google Scholar

78 

Ma F, Liu X, Zhou S, Li W, Liu C, Chadwick M and Qian C: Long non-coding RNA FGF13-AS1 inhibits glycolysis and stemness properties of breast cancer cells through FGF13-AS1/IGF2BPs/Myc feedback loop. Cancer Lett. 450:63–75. 2019. View Article : Google Scholar

79 

Ruan K, Song G and Ouyang G: Role of hypoxia in the hallmarks of human cancer. J Cell Biochem. 107:1053–1062. 2009. View Article : Google Scholar : PubMed/NCBI

80 

Kaelin WG Jr and Ratcliffe PJ: Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol Cell. 30:393–402. 2008. View Article : Google Scholar

81 

Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS and Kaelin WG Jr: HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science. 292:464–468. 2001. View Article : Google Scholar : PubMed/NCBI

82 

Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, et al: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292:468–472. 2001. View Article : Google Scholar : PubMed/NCBI

83 

Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER and Ratcliffe PJ: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 399:271–275. 1999. View Article : Google Scholar : PubMed/NCBI

84 

Yao J, Man S, Dong H, Yang L, Ma L and Gao W: Combinatorial treatment of Rhizoma Paridis saponins and sorafenib overcomes the intolerance of sorafenib. J Steroid Biochem Mol Biol. 183:159–166. 2018. View Article : Google Scholar

85 

Marín-Hernández A, Gallardo-Pérez JC, Ralph SJ, Rodríguez-Enríquez S and Moreno-Sánchez R: HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem. 9:1084–1101. 2009. View Article : Google Scholar

86 

Zheng F, Chen J, Zhang X, Wang Z, Chen J, Lin X, Huang H, Fu W, Liang J, Wu W, et al: The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis. Nat Commun. 12:13412021. View Article : Google Scholar : PubMed/NCBI

87 

Kim JW, Tchernyshyov I, Semenza GL and Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3:177–185. 2006. View Article : Google Scholar : PubMed/NCBI

88 

Yeung SJ, Pan J and Lee MH: Roles of p53, MYC and HIF-1 in regulating glycolysis-the seventh hallmark of cancer. Cell Mol Life Sci. 65:3981–3999. 2008. View Article : Google Scholar

89 

Su X, Li G and Liu W: The long noncoding RNA cancer susceptibility candidate 9 promotes nasopharyngeal carcinogenesis via stabilizing HIF1α. DNA Cell Biol. 36:394–400. 2017. View Article : Google Scholar

90 

Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, Wang C, Hawke DH, Wang S, Zhang Y, et al: The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat Cell Biol. 18:213–224. 2016. View Article : Google Scholar

91 

Yang F, Zhang H, Mei Y and Wu M: Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. Mol Cell. 53:88–100. 2014. View Article : Google Scholar

92 

Liu D and Li H: Long non-coding RNA GEHT1 promoted the proliferation of ovarian cancer cells via modulating the protein stability of HIF1α. Biosci Rep. 39:2019.

93 

Liao M, Liao W, Xu N, Li B, Liu F, Zhang S, Wang Y, Wang S, Zhu Y, Chen D, et al: LncRNA EPB41L4A-AS1 regulates glycolysis and glutaminolysis by mediating nucleolar translocation of HDAC2. EBioMedicine. 41:200–213. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Yoshida GJ: Emerging roles of Myc in stem cell biology and novel tumor therapies. J Exp Clin Cancer Res. 37:1732018. View Article : Google Scholar : PubMed/NCBI

95 

Dang CV: Gene regulation: Fine-tuned amplification in cells. Nature. 511:417–418. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Sabò A, Kress TR, Pelizzola M, de Pretis S, Gorski MM, Tesi A, Morelli MJ, Bora P, Doni M, Verrecchia A, et al: Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature. 511:488–492. 2014. View Article : Google Scholar

97 

Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S, Rycak L, Dumay-Odelot H, Karim S, Bartkuhn M, et al: Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature. 511:483–487. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Dang CV, Kim JW, Gao P and Yustein J: The interplay between MYC and HIF in cancer. Nat Rev Cancer. 8:51–56. 2008. View Article : Google Scholar : PubMed/NCBI

99 

Grüning NM, Lehrach H and Ralser M: Regulatory crosstalk of the metabolic network. Trends Biochem Sci. 35:220–227. 2010. View Article : Google Scholar

100 

Kim JW, Gao P, Liu YC, Semenza GL and Dang CV: Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 27:7381–7393. 2007. View Article : Google Scholar

101 

Xiao ZD, Han L, Lee H, Zhuang L, Zhang Y, Baddour J, Nagrath D, Wood CG, Gu J, Wu X, et al: Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development. Nat Commun. 8:7832017. View Article : Google Scholar : PubMed/NCBI

102 

Liao B, Hu Y and Brewer G: Competitive binding of AUF1 and TIAR to MYC mRNA controls its translation. Nat Struct Mol Biol. 14:511–518. 2007. View Article : Google Scholar

103 

Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20:285–295. 2018. View Article : Google Scholar

104 

Guo C, Shi H, Shang Y, Zhang Y, Cui J and Yu H: LncRNA LINC00261 overexpression suppresses the growth and metastasis of lung cancer via regulating miR-1269a/FOXO1 axis. Cancer Cell Int. 20:2752020. View Article : Google Scholar

105 

Yu Y, Li L, Zheng Z, Chen S, Chen E and Hu Y: Long non-coding RNA linc00261 suppresses gastric cancer progression via promoting Slug degradation. J Cell Mol Med. 21:955–967. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Yan D, Liu W, Liu Y and Luo M: LINC00261 suppresses human colon cancer progression via sponging miR-324-3p and inactivating the Wnt/β-catenin pathway. J Cell Physiol. 234:22648–22656. 2019. View Article : Google Scholar

107 

Zhai S, Xu Z, Xie J, Zhang J, Wang X, Peng C, Li H, Chen H, Shen B and Deng X: Epigenetic silencing of LncRNA LINC00261 promotes c-myc-mediated aerobic glycolysis by regulating miR-222-3p/HIPK2/ERK axis and sequestering IGF2BP1. Oncogene. 40:277–291. 2021. View Article : Google Scholar : PubMed/NCBI

108 

Wang Y, Lu JH, Wu QN, Jin Y, Wang DS, Chen YX, Liu J, Luo XJ, Meng Q, Pu HY, et al: LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer. 18:1742019. View Article : Google Scholar : PubMed/NCBI

109 

Zhou Y, Li Y, Wang N, Li X, Zheng J and Ge L: UPF1 inhibits the hepatocellular carcinoma progression by targeting long non-coding RNA UCA1. Sci Rep. 9:66522019. View Article : Google Scholar : PubMed/NCBI

110 

Koller-Eichhorn R, Marquardt T, Gail R, Wittinghofer A, Kostrewa D, Kutay U and Kambach C: Human OLA1 defines an ATPase subfamily in the Obg family of GTP-binding proteins. J Biol Chem. 282:19928–19937. 2007. View Article : Google Scholar : PubMed/NCBI

111 

Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Pavlides S, Tsirigos A, Ertel A, Pestell RG, et al: Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: Visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle. 10:4047–4064. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wu W and Wen K: Research progress on the interaction between long non‑coding RNAs and RNA‑binding proteins to influence the reprogramming of tumor glucose metabolism (Review). Oncol Rep 48: 153, 2022.
APA
Wu, W., & Wen, K. (2022). Research progress on the interaction between long non‑coding RNAs and RNA‑binding proteins to influence the reprogramming of tumor glucose metabolism (Review). Oncology Reports, 48, 153. https://doi.org/10.3892/or.2022.8365
MLA
Wu, W., Wen, K."Research progress on the interaction between long non‑coding RNAs and RNA‑binding proteins to influence the reprogramming of tumor glucose metabolism (Review)". Oncology Reports 48.3 (2022): 153.
Chicago
Wu, W., Wen, K."Research progress on the interaction between long non‑coding RNAs and RNA‑binding proteins to influence the reprogramming of tumor glucose metabolism (Review)". Oncology Reports 48, no. 3 (2022): 153. https://doi.org/10.3892/or.2022.8365
Copy and paste a formatted citation
x
Spandidos Publications style
Wu W and Wen K: Research progress on the interaction between long non‑coding RNAs and RNA‑binding proteins to influence the reprogramming of tumor glucose metabolism (Review). Oncol Rep 48: 153, 2022.
APA
Wu, W., & Wen, K. (2022). Research progress on the interaction between long non‑coding RNAs and RNA‑binding proteins to influence the reprogramming of tumor glucose metabolism (Review). Oncology Reports, 48, 153. https://doi.org/10.3892/or.2022.8365
MLA
Wu, W., Wen, K."Research progress on the interaction between long non‑coding RNAs and RNA‑binding proteins to influence the reprogramming of tumor glucose metabolism (Review)". Oncology Reports 48.3 (2022): 153.
Chicago
Wu, W., Wen, K."Research progress on the interaction between long non‑coding RNAs and RNA‑binding proteins to influence the reprogramming of tumor glucose metabolism (Review)". Oncology Reports 48, no. 3 (2022): 153. https://doi.org/10.3892/or.2022.8365
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team