|
1
|
O'Neill JP and Shaha AR: Anaplastic
thyroid cancer. Oral Oncol. 49:702–706. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Saini S, Tulla K, Maker AV, Burman KD and
Prabhakar BS: Therapeutic advances in anaplastic thyroid cancer: A
current perspective. Mol Cancer. 17:1542018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Tesselaar MH, Crezee T, Schuurmans I,
Gerrits D, Nagarajah J, Boerman OC, van Engen-van Grunsven I, Smit
JWA, Netea-Maier RT and Plantinga TS: Digitalislike compounds
restore hNIS expression and iodide uptake capacity in anaplastic
thyroid cancer. J Nucl Med. 59:780–786. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Haugen BR, Sawka AM, Alexander EK, Bible
KC, Caturegli P, Doherty GM, Mandel SJ, Morris JC, Nassar A, Pacini
F, et al: American thyroid association guidelines on the management
of thyroid nodules and differentiated thyroid cancer task force
review and recommendation on the proposed renaming of encapsulated
follicular variant papillary thyroid carcinoma without invasion to
noninvasive follicular thyroid neoplasm with papillary-like nuclear
features. Thyroid. 27:481–483. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Haddad RI, Nasr C, Bischoff L, Busaidy NL,
Byrd D, Callender G, Dickson P, Duh QY, Ehya H, Goldner W, et al:
NCCN guidelines insights: Thyroid carcinoma, version 2.2018. J Natl
Compr Cancer Netw. 16:1429–1440. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zheng X, Cui D, Xu S, Brabant G and
Derwahl M: Doxorubicin fails to eradicate cancer stem cells derived
from anaplastic thyroid carcinoma cells: Characterization of
resistant cells. Int J Oncol. 37:307–315. 2010.PubMed/NCBI
|
|
7
|
Xu Y, Han YF, Ye B, Zhang YL, Dong JD, Zhu
SJ and Chen J: MiR-27b-3p is involved in doxorubicin resistance of
human anaplastic thyroid cancer cells via targeting peroxisome
proliferator-activated receptor gamma. Basic Clin Pharmacol
Toxicol. 123:670–677. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Abbasifarid E, Sajjadi-Jazi SM, Beheshtian
M, Samimi H, Larijani B and Haghpanah V: The role of ATP-binding
cassette transporters in the chemoresistance of anaplastic thyroid
cancer: A systematic review. Endocrinology. 160:2015–2023. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lan L, Basourakos S, Cui D, Zuo X, Deng W,
Huo L, Chen H, Zhang G, Deng L, Shi B and Luo Y: ATRA increases
iodine uptake and inhibits the proliferation and invasiveness of
human anaplastic thyroid carcinoma SW1736 cells: Involvement of
β-catenin phosphorylation inhibition. Oncol Lett. 14:7733–7738.
2017.PubMed/NCBI
|
|
10
|
Avila-Carrasco L, Majano P, Sánchez-Toméro
JA, Selgas R, López-Cabrera M, Aguilera A and Mateo GG: Natural
plants compounds as modulators of epithelial-to-mesenchymal
transition. Front Pharmacol. 10:7152019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chen CY, Kao CL and Liu CM: The cancer
prevention, anti-inflammatory and anti-oxidation of bioactive
phytochemicals targeting the TLR4 signaling pathway. Int J Mol Sci.
19:27292018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Asadi-Samani M, Kooti W, Aslani E and
Shirzad H: A systematic review of Iran's medicinal plants with
anticancer effects. J Evid Based Complement Altern Med. 21:143–153.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Li YT, Tian XT, Wu ML, Zheng X, Kong QY,
Cheng XX, Zhu GW, Liu J and Li H: Resveratrol suppresses the growth
and enhances retinoic acid sensitivity of anaplastic thyroid cancer
cells. Int J Mol Sci. 19:10302018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang R, Deng X, Gao Q, Wu X, Han L, Gao X,
Zhao S, Chen W, Zhou R, Li Z and Bai C: Sophora alopecuroides L: An
ethnopharmacological, phytochemical, and pharmacological review. J
Ethnopharmacol. 248:1121722020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Tian D, Li Y, Li X and Tian Z: Aloperine
inhibits proliferation, migration and invasion and induces
apoptosis by blocking the Ras signaling pathway in human breast
cancer cells. Mol Med Rep. 18:3699–3710. 2018.PubMed/NCBI
|
|
16
|
Ling Z, Guan H, You Z, Wang C, Hu L, Zhang
L, Wang Y, Chen S, Xu B and Chen M: Aloperine executes antitumor
effects through the induction of apoptosis and cell cycle arrest in
prostate cancer in vitro and in vivo. Onco Targets Ther.
11:2735–2743. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Qiu M, Liu J, Su Y, Liu J, Wu C and Zhao
B: Aloperine induces apoptosis by a reactive oxygen species
activation mechanism in human ovarian cancer cells. Protein Pept
Lett. 27:860–869. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yu HI, Shen HC, Chen SH, Lim YP, Chuang
HH, Tai TS, Kung FP, Lu CH, Hou CY, Lee YR, et al: Autophagy
modulation in human thyroid cancer cells following aloperine
treatment. Int J Mol Sci. 20:53152019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lee YR, Chen SH, Lin CY, Chao WY, Lim YP,
Yu HI and Lu CH: In vitro antitumor activity of aloperine on human
thyroid cancer cells through caspase-dependent apoptosis. Int J Mol
Sci. 19:3122018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sharma A, Ghani A, Sak K, Tuli HS, Sharma
AK, Setzer WN, Sharma S and Das AK: Probing into therapeutic
anti-cancer potential of apigenin: Recent trends and future
directions. Recent Pat Inflamm Allergy Drug Discov. 13:124–133.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhao G, Han X, Cheng W, Ni J, Zhang Y, Lin
J and Song Z: Apigenin inhibits proliferation and invasion, and
induces apoptosis and cell cycle arrest in human melanoma cells.
Oncol Rep. 37:2277–2285. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yin F, Giuliano AE and Van Herle AJ:
Growth inhibitory effects of flavonoids in human thyroid cancer
cell lines. Thyroid. 9:369–376. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG,
Yoo HJ and Lee SJ: Apigenin induces c-Myc-mediated apoptosis in FRO
anaplastic thyroid carcinoma cells. Mol Cell Endocrinol.
369:130–139. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Yin F, Giuliano AE and Van Herle AJ:
Signal pathways involved in apigenin inhibition of growth and
induction of apoptosis of human anaplastic thyroid cancer cells
(ARO). Anticancer Res. 19:4297–4303. 1999.PubMed/NCBI
|
|
25
|
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG,
Yoo HJ and Lee SJ: Akt inhibition enhances the cytotoxic effect of
apigenin in combination with PLX4032 in anaplastic thyroid
carcinoma cells harboring BRAFV600E. J Endocrinol Invest.
36:1099–1104. 2013.PubMed/NCBI
|
|
26
|
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG,
Yoo HJ and Lee SJ: Suppression of AKT potentiates synergistic
cytotoxicity of apigenin with trail in anaplastic thyroid carcinoma
cells. Anticancer Res. 35:6529–6537. 2015.PubMed/NCBI
|
|
27
|
Ma N, Zhang Z, Liao F, Jiang T and Tu Y:
The birth of artemisinin. Pharmacol Ther. 216:1076582020.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhu S, Yu Q, Huo C, Li Y, He L, Ran B,
Chen J, Li Y and Liu W: Ferroptosis: A novel mechanism of
artemisinin and its derivatives in cancer therapy. Curr Med Chem.
28:329–345. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Li Y: Pyrvinium pamoate can overcome
artemisinin's resistance in anaplastic thyroid cancer. BMC
Complement Med Ther. 21:1562021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zeng Q, Zhang Y, Zhang W and Guo Q:
Baicalein suppresses the proliferation and invasiveness of
colorectal cancer cells by inhibiting snail-induced
epithelial-mesenchymal transition. Mol Med Rep. 21:2544–2552.
2020.PubMed/NCBI
|
|
31
|
Yu G, Chen L, Hu Y, Yuan Z, Luo Y and
Xiong Y: Antitumor effects of baicalein and its mechanism via TGFβ
pathway in cervical cancer hela cells. Evid Based Complement Altern
Med. 2021:55271902021.PubMed/NCBI
|
|
32
|
Yan W, Ma X, Zhao X and Zhang S: Baicalein
induces apoptosis and autophagy of breast cancer cells via
inhibiting PI3K/AKT pathway in vivo and vitro. Drug Des Devel Ther.
12:3961–3972. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Park CH, Han SE, Nam-Goong IS, Kim YI and
Kim ES: Combined effects of baicalein and docetaxel on apoptosis in
8505c anaplastic thyroid cancer cells via downregulation of the ERK
and Akt/mTOR pathways. Endocrinol Metab (Seoul). 33:121–132. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Han SE, Park CH, Nam-Goong IS, Kim YI and
Kim ES: Anticancer effects of baicalein in FRO thyroid cancer cells
through the up-regulation of ERK/p38 MAPK and Akt pathway. In Vivo.
33:375–382. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Naz S, Imran M, Rauf A, Orhan IE, Shariati
MA, Iahtisham-Ul-Haq, IqraYasmin, Shahbaz M, Qaisrani TB, Shah ZA,
et al: Chrysin: Pharmacological and therapeutic properties. Life
Sci. 235:1167972019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jung J: Emerging utilization of chrysin
using nanoscale modification. J Nanomater. 2016:e28940892016.
View Article : Google Scholar
|
|
37
|
Kasala ER, Bodduluru LN, Madana RM, Athira
KV, Gogoi R and Barua CC: Chemopreventive and therapeutic potential
of chrysin in cancer: Mechanistic perspectives. Toxicol Lett.
233:214–225. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Phan T, Yu XM, Kunnimalaiyaan M and Chen
H: Antiproliferative effect of chrysin on anaplastic thyroid
cancer. J Surg Res. 170:84–88. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yu XM, Phan T, Patel PN, Jaskula-Sztul R
and Chen H: Chrysin activates notch1 signaling and suppresses tumor
growth of anaplastic thyroid carcinoma in vitro and in vivo.
Cancer. 119:774–781. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Giordano A and Tommonaro G: Curcumin and
cancer. Nutrients. 11:23762019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Allegri L, Rosignolo F, Mio C, Filetti S,
Baldan F and Damante G: Effects of nutraceuticals on anaplastic
thyroid cancer cells. J Cancer Res Clin Oncol. 144:285–294. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kocdor MA, Cengiz H, Ates H and Kocdor H:
Inhibition of cancer stem-like phenotype by curcumin and deguelin
in CAL-62 anaplastic thyroid cancer cells. Anticancer Agents Med
Chem. 19:1887–1898. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hong JM, Park CS, Nam-Goong IS, Kim YS,
Lee JC, Han MW, Choi JI, Kim YI and Kim ES: Curcumin enhances
docetaxel-induced apoptosis of 8505C anaplastic thyroid carcinoma
cells. Endocrinol Metab (Seoul). 29:54–61. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Boyd J and Han A: Deguelin and its role in
chronic diseases. Adv Exp Med Biol. 929:363–375. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Tuli HS, Mittal S, Loka M, Aggarwal V,
Aggarwal D, Masurkar A, Kaur G, Varol M, Sak K, Kumar M, et al:
Deguelin targets multiple oncogenic signaling pathways to combat
human malignancies. Pharmacol Res. 166:1054872021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kim HS, Quon MJ and Kim JA: New insights
into the mechanisms of polyphenols beyond antioxidant properties;
lessons from the green tea polyphenol, epigallocatechin 3-gallate.
Redox Biol. 2:187–195. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hayakawa S, Ohishi T, Miyoshi N, Oishi Y,
Nakamura Y and Isemura M: Anti-cancer effects of green tea
epigallocatchin–3-gallate and coffee chlorogenic acid. Molecules.
25:45532020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wu D, Liu Z, Li J, Zhang Q, Zhong P, Teng
T, Chen M, Xie Z, Ji A and Li Y: Epigallocatechin-3-gallate
inhibits the growth and increases the apoptosis of human thyroid
carcinoma cells through suppression of EGFR/RAS/RAF/MEK/ERK
signaling pathway. Cancer Cell Int. 19:432019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Li T, Zhao N, Lu J, Zhu Q, Liu X, Hao F
and Jiao X: Epigallocatechin gallate (EGCG) suppresses
epithelial-mesenchymal transition (EMT) and invasion in anaplastic
thyroid carcinoma cells through blocking of TGF-β1/smad signaling
pathways. Bioengineered. 10:282–291. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jiang ZB, Huang JM, Xie YJ, Zhang YZ,
Chang C, Lai HL, Wang W, Yao XJ, Fan XX, Wu QB, et al: Evodiamine
suppresses non-small cell lung cancer by elevating CD8+ T cells and
downregulating the MUC1-C/PD-L1 axis. J Exp Clin Cancer Res.
39:2492020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Luo C, Ai J, Ren E, Li J, Feng C, Li X and
Luo X: Research progress on evodiamine, a bioactive alkaloid of
Evodiae fructus: Focus on its anti-cancer activity and
bioavailability (Review). Exp Ther Med. 22:13272021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chen MC, Yu CH, Wang SW, Pu HF, Kan SF,
Lin LC, Chi CW, Ho LLT, Lee CH and Wang PS: Anti-proliferative
effects of evodiamine on human thyroid cancer cell line ARO. J Cell
Biochem. 110:1495–1503. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yu HI, Chou HC, Su YC, Lin LH, Lu CH,
Chuang HH, Tsai YT, Liao EC, Wei YS, Yang YT, et al: Proteomic
analysis of evodiamine-induced cytotoxicity in thyroid cancer
cells. J Pharm Biomed Anal. 160:344–350. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG
and Lee SJ: Evodiamine suppresses survival, proliferation,
migration and epithelial-mesenchymal transition of thyroid
carcinoma cells. Anticancer Res. 38:6339–6352. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG
and Lee SJ: Evodiamine in combination with histone deacetylase
inhibitors has synergistic cytotoxicity in thyroid carcinoma cells.
Endocrine. 65:110–120. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chien CC, Wu MS, Chou SW, Jargalsaikhan G
and Chen YC: Roles of reactive oxygen species, mitochondrial
membrane potential, and p53 in evodiamine-induced apoptosis and
G2/M arrest of human anaplastic thyroid carcinoma cells. Chin Med.
16:1342021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Xiao Z, Hao Y, Liu B and Qian L: Indirubin
and meisoindigo in the treatment of chronic myelogenous leukemia in
China. Leuk Lymphoma. 43:1763–1768. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hoessel R, Leclerc S, Endicott JA, Nobel
ME, Lawrie A, Tunnah P, Leost M, Damiens E, Marie D, Marko D, et
al: Indirubin, the active constituent of a Chinese antileukaemia
medicine, inhibits cyclin-dependent kinases. Nat Cell Biol.
1:60–67. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
59
|
Broecker-Preuss M, Becher-Boveleth N, Gall
S, Rehmann K, Schenke S and Mann K: Induction of atypical cell
death in thyroid carcinoma cells by the indirubin derivative
7-bromoindirubin-3′-oxime (7BIO). Cancer Cell Int. 15:972015.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mukund V, Mukund D, Sharma V, Mannarapu M
and Alam A: Genistein: Its role in metabolic diseases and cancer.
Crit Rev Oncol Hematol. 119:13–22. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ahn JC, Biswas R and Chung PS: Combination
with genistein enhances the efficacy of photodynamic therapy
against human anaplastic thyroid cancer cells. Lasers Surg Med.
44:840–849. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li M, Chen J, Yu X, Xu S, Li D, Zheng Q
and Yin Y: Myricetin suppresses the propagation of hepatocellular
carcinoma via down-regulating expression of YAP. Cells. 8:3582019.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Knickle A, Fernando W, Greenshields AL,
Rupasinghe HPV and Hoskin DW: Myricetin-induced apoptosis of
triple-negative breast cancer cells is mediated by the
iron-dependent generation of reactive oxygen species from hydrogen
peroxide. Food Chem Toxicol. 118:154–167. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xu Y, Xie Q, Wu S, Yi D, Yu Y, Liu S, Li S
and Li Z: Myricetin induces apoptosis via endoplasmic reticulum
stress and DNA double-strand breaks in human ovarian cancer cells.
Mol Med Rep. 13:2094–2100. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ma L, Cao X, Wang H, Lu K, Wang Y, Tu C,
Dai Y, Meng Y, Li Y, Yu P, et al: Discovery of Myricetin as a
potent inhibitor of human flap endonuclease 1, which potentially
can be used as sensitizing agent against HT-29 human colon cancer
cells. J Agric Food Chem. 67:1656–1665. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Jo S, Ha TK, Han SH, Kim ME, Jung I, Lee
HW, Bae SK and Lee JS: Myricetin induces apoptosis of human
anaplastic thyroid cancer cells via mitochondria dysfunction.
Anticancer Res. 37:1705–1710. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tang SM, Deng XT, Zhou J, Li QP, Ge XX and
Miao L: Pharmacological basis and new insights of quercetin action
in respect to its anti-cancer effects. Biomed Pharmacother.
121:1096042020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kang HJ, Youn YK, Hong MK and Kim LS:
Antiproliferation and redifferentiation in thyroid cancer cell
lines by polyphenol phytochemicals. J Korean Med Sci. 26:893–899.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hoang-Vu C, Bull K, Schwarz I, Krause G,
Schmutzler C, Aust G, Köhrle J and Dralle H: Regulation of CD97
protein in thyroid carcinoma. J Clin Endocrinol Metab.
84:1104–1109. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ren B, Kwah MXY, Liu C, Ma Z, Shanmugam
MK, Ding L, Xiang X, Ho PCL, Wang L, Ong PS and Goh BC: Resveratrol
for cancer therapy: Challenges and future perspectives. Cancer
Lett. 515:63–72. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Rauf A, Imran M, Butt MS, Nadeem M, Peters
DG and Mubarak MS: Resveratrol as an anti-cancer agent: A review.
Crit Rev Food Sci Nutr. 58:1428–1447. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yu XM, Jaskula-Sztul R, Ahmed K, Harrison
AD, Kunnimalaiyaan M and Chen H: Resveratrol induces
differentiation markers expression in anaplastic thyroid carcinoma
via activation of notch1 signaling and suppresses cell growth. Mol
Cancer Ther. 12:1276–1287. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Liu X, Li H, Wu ML, Wu J, Sun Y, Zhang KL
and Liu J: Resveratrol reverses retinoic acid resistance of
anaplastic thyroid cancer cells via demethylating CRABP2 gene.
Front Endocrinol (Lausanne). 10:7342019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wu J, Li YT, Tian XT, Liu YS, Wu ML, Li PN
and Liu J: STAT3 signaling statuses determine the fate of
resveratrol-treated anaplastic thyroid cancer cells. Cancer Biomark
Sect Dis Markers. 27:461–469. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zheng X, Jia B, Tian XT, Song X, Wu ML,
Kong QY, Li H and Liu J: Correlation of reactive oxygen species
levels with resveratrol sensitivities of anaplastic thyroid cancer
cells. Oxid Med Cell Longev. 2018:62354172018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Xiong L, Nie JH, Lin XM, Wu JB, Chen Z, Xu
B and Liu J: Biological implications of PTEN upregulation and
altered sodium/iodide symporter intracellular distribution in
resveratrol-suppressed anaplastic thyroid cancer cells. J Cancer.
11:6883–6891. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Xiong L, Lin XM, Nie JH, Ye HS and Liu J:
Resveratrol and its nanoparticle suppress
doxorubicin/docetaxel-resistant anaplastic thyroid cancer cells in
vitro and in vivo. Nanotheranostics. 5:143–154. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Imran M, Rauf A, Khan IA, Shahbaz M,
Qaisrani TB, Fatmawati S, Abu-Izneid T, Imran A, Rahman KU and
Gondal TA: Thymoquinone: A novel strategy to combat cancer: A
review. Biomed Pharmacother Biomedecine Pharmacother. 106:390–402.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhang M, Du H, Wang L, Yue Y, Zhang P,
Huang Z, Lv W, Ma J, Shao Q, Ma M, et al: Thymoquinone suppresses
invasion and metastasis in bladder cancer cells by reversing EMT
through the Wnt/β-catenin signaling pathway. Chem Biol Interact.
320:1090222020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ozturk SA, Alp E, Saglam ASY, Konac E and
Menevse ES: The effects of thymoquinone and genistein treatment on
telomerase activity, apoptosis, angiogenesis, and survival in
thyroid cancer cell lines. J Cancer Res Ther. 14:328–334.
2018.PubMed/NCBI
|
|
81
|
Kupchan SM, Court WA, Dailey RG Jr,
Gilmore CJ and Bryan RF: Triptolide and tripdiolide, novel
antileukemic diterpenoid triepoxides from Tripterygium wilfordii. J
Am Chem Soc. 94:7194–7195. 1972. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Noel P, Von Hoff DD, Saluja AK, Velagapudi
M, Borazanci E and Han H: Triptolide and its derivatives as cancer
therapies. Trends Pharmacol Sci. 40:327–341. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhu W, Hu H, Qiu P and Yan G: Triptolide
induces apoptosis in human anaplastic thyroid carcinoma cells by a
p53-independent but NF-kappaB-related mechanism. Oncol Rep.
22:1397–1401. 2009.PubMed/NCBI
|
|
84
|
Zhu W, Ou Y, Li Y, Xiao R, Shu M, Zhou Y,
Xie J, He S, Qiu P and Yan G: A small-molecule triptolide
suppresses angiogenesis and invasion of human anaplastic thyroid
carcinoma cells via down-regulation of the nuclear factor-kappa B
pathway. Mol Pharmacol. 75:812–819. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhu W, He S, Li Y, Qiu P, Shu M, Ou Y,
Zhou Y, Leng T, Xie J, Zheng X, et al: Anti-angiogenic activity of
triptolide in anaplastic thyroid carcinoma is mediated by targeting
vascular endothelial and tumor cells. Vascul Pharmacol. 52:46–54.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG,
Yoo HJ and Lee SJ: Synergistic cytotoxicity of BIIB021 with
triptolide through suppression of PI3K/Akt/mTOR and NF-κB signal
pathways in thyroid carcinoma cells. Biomed Pharmacother. 83:22–32.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chikara S, Nagaprashantha LD, Singhal J,
Horne D, Awasthi S and Singhal SS: Oxidative stress and dietary
phytochemicals: Role in cancer chemoprevention and treatment.
Cancer Lett. 413:122–134. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ahmad SS, Waheed T, Rozeen S, Mahmood S
and Kamal MA: Therapeutic study of phytochemicals against cancer
and Alzheimer's disease management. Curr Drug Metab. 20:1006–1013.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Tendulkar S and Dodamani S:
Chemoresistance in ovarian cancer: Prospects for new drugs.
Anticancer Agents Med Chem. 21:668–678. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Shin HJ, Hwang KA and Choi KC: Antitumor
effect of various phytochemicals on diverse types of thyroid
cancers. Nutrients. 11:1252019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Manach C, Williamson G, Morand C, Scalbert
A and Rémésy C: Bioavailability and bioefficacy of polyphenols in
humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 81
(1 Suppl):230S–242S. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Pannu N and Bhatnagar A: Resveratrol: From
enhanced biosynthesis and bioavailability to multitargeting chronic
diseases. Biomed Pharmacother. 109:2237–2251. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Somjen D, Grafi-Cohen M, Katzburg S,
Weisinger G, Izkhakov E, Nevo N, Sharon O, Kraiem Z, Kohen F and
Stern N: Anti-thyroid cancer properties of a novel isoflavone
derivative, 7-(O)-carboxymethyl daidzein conjugated to
N-t-Boc-hexylenediamine in vitro and in vivo. J Steroid Biochem Mol
Biol. 126:95–103. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zheng X, Jia B, Song X, Kong QY, Wu ML,
Qiu ZW, Li H and Liu J: Preventive potential of resveratrol in
carcinogen-induced rat thyroid tumorigenesis. Nutrients.
10:2792018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Jafarpour SM, Safaei M, Mohseni M,
Salimian M, Aliasgharzadeh A and Farhood B: The radioprotective
effects of curcumin and trehalose against genetic damage caused by
I-131. Indian J Nucl Med. 33:99–104. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Stancioiu F, Mihai D, Papadakis GZ,
Tsatsakis A, Spandidos DA and Badiu C: Treatment for benign thyroid
nodules with a combination of natural extracts. Mol Med Rep.
20:2332–2338. 2019.PubMed/NCBI
|
|
97
|
Chmielik E, Rusinek D, Oczko-Wojciechowska
M, Jarzab M, Krajewska J, Czarniecka A and Jarzab B: Heterogeneity
of thyroid cancer. Pathobiolgy. 85:117–129. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Cabanillas ME, McFadden DG and Durante C:
Thyroid cancer. Lancet. 388:2783–2795. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Howlader N, Noone AM, Krapcho M, Miller D,
Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS,
Feuer EJ and Cronin KA: SEER Cancer Statistics Review, 1975–2018.
National Cancer Institute; Bethesda, MD: 2018
|
|
100
|
La Vecchia C, Malvezzi M, Bosetti C,
Garavello W, Bertuccio P, Levi F and Negri E: Thyroid cancer
mortality and incidence: A global overview. Int J Cancer.
136:2187–2195. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Molinaro E, Romei C, Biagini A, Sabini E,
Agate L, Mazzeo S, Materazzi G, Sellari-Franceschini S, Ribechini
A, Torregrossa L, et al: Anaplastic thyroid carcinoma: From
clinicopathology to genetics and advanced therapies. Nat Rev
Endocrinol. 13:644–660. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Smallridge RC and Copland JA: Anaplastic
thyroid carcinoma: Pathogenesis and emerging therapies. Clin Oncol
(R Coll Radiol). 22:486–497. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Ain KB: Anaplastic thyroid carcinoma:
Behavior, biology, and therapeutic approaches. Thyroid. 8:715–726.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Glaser SM, Mandish SF, Gill BS,
Balasubramani GK, Clump DA and Beriwal S: Anaplastic thyroid
cancer: Prognostic factors, patterns of care, and overall survival.
Head Neck. 38 (Suppl 1):E2083–E2090. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ferrari SM, Elia G, Ragusa F, Ruffilli I,
Motta CL, Paparo SR, Patrizio A, Vita R, Benvenga S, Materazzi G,
et al: Novel treatments for anaplastic thyroid carcinoma. Gland
Surg. 9 (Suppl 1):S28–S42. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Xu G, Chen J, Wang G, Xiao J, Zhang N,
Chen Y, Yu H, Wang G and Zhao Y: Resveratrol inhibits the
tumorigenesis of follicular thyroid cancer via ST6GAL2-regulated
activation of the hippo signaling pathway. Mol Ther Oncolytics.
16:124–133. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Shih A, Davis FB, Lin HY and Davis PJ:
Resveratrol induces apoptosis in thyroid cancer cell lines via a
MAPK- and p53-dependent mechanism. J Clin Endocrinol Metab.
87:1223–1232. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Ferretti E, Tosi E, Po A, Scipioni A,
Morisi R, Espinola MS, Russo D, Durante C, Schlumberger M,
Screpanti I, et al: Notch signaling is involved in expression of
thyrocyte differentiation markers and is down-regulated in thyroid
tumors. J Clin Endocrinol Metab. 93:4080–4087. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Davis RJ, Pinchot S, Jarjour S,
Kunnimalaiyaan M and Chen H: Resveratrol-induced notch activation
potentially mediates autophagy in human follicular thyroid cancer
cells. J Surg Res. 2:331–332. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Wang Y, Hu Z, Ma W, Niu Y, Su J, Zhang L
and Zhao P: Signal transducer and activator of transcription 3
inhibition alleviates resistance to BRAF inhibition in anaplastic
thyroid cancer. Invest New Drugs. 39:764–774. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kartal-Yandim M, Adan-Gokbulut A and Baran
Y: Molecular mechanisms of drug resistance and its reversal in
cancer. Crit Rev Biotechnol. 36:716–726. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Pick A and Wiese M: Tyrosine kinase
inhibitors influence ABCG2 expression in EGFR-positive MDCK BCRP
cells via the PI3K/Akt signaling pathway. ChemMedChem. 7:650–662.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Hoffmann K, Shibo L, Xiao Z, Longerich T,
Büchler MW and Schemmer P: Correlation of gene expression of
ATP-binding cassette protein and tyrosine kinase signaling pathway
in patients with hepatocellular carcinoma. Anticancer Res.
31:3883–3890. 2011.PubMed/NCBI
|
|
114
|
Wang Z, Li Y, Ahmad A, Azmi AS, Banerjee
S, Kong D and Sarkar FH: Targeting notch signaling pathway to
overcome drug resistance for cancer therapy. Biochim Biophys Acta.
1806:258–267. 2010.PubMed/NCBI
|
|
115
|
Ma L and Cheng Q: Inhibiting
6-phosphogluconate dehydrogenase reverses doxorubicin resistance in
anaplastic thyroid cancer via inhibiting NADPH-dependent metabolic
reprogramming. Biochem Biophys Res Commun. 498:912–917. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Li Y: Inactivation of PDH can reduce
anaplastic thyroid cancer cells' sensitivity to artemisinin.
Anticancer Agents Med Chem. 22:1753–1760. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Enriquez-Navas PM, Wojtkowiak JW and
Gatenby RA: Application of evolutionary principles to cancer
therapy. Cancer Res. 75:4675–4680. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Siddiqui FA, Prakasam G, Chattopadhyay S,
Rehman AU, Padder RA, Ansari MA, Irshad R, Mangalhara K, Bamezai
RNK, Husain M, et al: Curcumin decreases Warburg effect in cancer
cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α
inhibition. Sci Rep. 8:83232018. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Gibellini L, Bianchini E, De Biasi S, Nasi
M, Cossarizza A and Pinti M: Natural compounds modulating
mitochondrial functions. Evid Based Complement Altern Med.
2015:5272092015. View Article : Google Scholar : PubMed/NCBI
|