Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
October-2022 Volume 48 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2022 Volume 48 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review)

  • Authors:
    • Kai Yang
    • Xiaoxiang Liang
    • Kunming Wen
  • View Affiliations / Copyright

    Affiliations: Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
    Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 175
    |
    Published online on: August 19, 2022
       https://doi.org/10.3892/or.2022.8390
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Genomic instability, a feature of most cancers, contributes to malignant cell transformation and cancer progression due to the accumulation of genetic alterations. Genomic instability is reflected at numerous levels, from single nucleotide to the chromosome levels. However, the exact molecular mechanisms and regulators of genomic instability in cancer remain unclear. Growing evidence indicates that the binding of long non‑coding RNAs (lncRNAs) to protein chaperones confers a variety of regulatory functions, including managing of genomic instability. The aim of the present review was to examine the roles of mitosis, telomeres, DNA repair, and epigenetics in genomic instability, and the mechanisms by which lncRNAs regulate them by binding proteins in cancer cells. This review contributes to our understanding of the role of lncRNAs and genomic instability in cancer and can potentially provide entry points and molecular targets for cancer therapies.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Lee JK, Choi YL, Kwon M and Park PJ: Mechanisms and consequences of cancer genome instability: Lessons from genome sequencing studies. Annu Rev Pathol. 11:283–312. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Aguilera A and Gómez-González B: Genome instability: A mechanistic view of its causes and consequences. Nat Rev Genet. 9:204–217. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Salmaninejad A, Ilkhani K, Marzban H, Navashenaq JG, Rahimirad S, Radnia F, Yousefi M, Bahmanpour Z, Azhdari S and Sahebkar A: Genomic instability in cancer: Molecular mechanisms and therapeutic potentials. Curr Pharm Des. 27:3161–3169. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Mehrotra S and Mittra I: Origin of genome instability and determinants of mutational landscape in cancer cells. Genes (Basel). 11:11012020. View Article : Google Scholar : PubMed/NCBI

5 

Andor N, Maley CC and Ji HP: Genomic instability in cancer: Teetering on the limit of tolerance. Cancer Res. 77:2179–2185. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Abbas T, Keaton MA and Dutta A: Genomic instability in cancer. Cold Spring Harb Perspect Biol. 5:a0129142013. View Article : Google Scholar : PubMed/NCBI

7 

O'Connor MJ: Targeting the DNA damage response in cancer. Mol Cell. 60:547–560. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Sansregret L, Vanhaesebroeck B and Swanton C: Determinants and clinical implications of chromosomal instability in cancer. Nat Rev Clin Oncol. 15:139–150. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Maciejowski J and de Lange T: Telomeres in cancer: Tumour suppression and genome instability. Nat Rev Mol Cell Biol. 18:175–186. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Lord CJ and Ashworth A: The DNA damage response and cancer therapy. Nature. 481:287–294. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Choi JD and Lee JS: Interplay between epigenetics and genetics in cancer. Genomics Inform. 11:164–173. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Zhang W, Guan X and Tang J: The long non-coding RNA landscape in triple-negative breast cancer. Cell Prolif. 54:e129662021. View Article : Google Scholar : PubMed/NCBI

13 

Huang L, Xie Y, Jiang S, Han W, Zeng F and Li D: The lncRNA signatures of genome instability to predict survival in patients with renal cancer. J Healthc Eng. 2021:10906982021. View Article : Google Scholar : PubMed/NCBI

14 

Yin T, Zhao D and Yao S: Identification of a genome instability-associated LncRNA signature for prognosis prediction in colon cancer. Front Genet. 12:6791502021. View Article : Google Scholar : PubMed/NCBI

15 

Kopp F and Mendell JT: Functional classification and experimental dissection of long noncoding RNAs. Cell. 172:393–407. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Mercer TR and Mattick JS: Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 20:300–307. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, Saghatelian A, Nakayama KI, Clohessy JG and Pandolfi PP: mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 541:228–232. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Guttman M and Rinn JL: Modular regulatory principles of large non-coding RNAs. Nature. 482:339–346. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Hentze MW, Castello A, Schwarzl T and Preiss T: A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol. 19:327–341. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Chen B, Dragomir MP, Fabris L, Bayraktar R, Knutsen E, Liu X, Tang C, Li Y, Shimura T, Ivkovic TC, et al: The long noncoding RNA CCAT2 induces chromosomal instability through BOP1-AURKB signaling. Gastroenterology. 159:2146–2162.e33. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Guo Z, Dai Y, Hu W, Zhang Y, Cao Z, Pei W, Liu N, Nie J, Wu A, Mao W, et al: The long noncoding RNA CRYBG3 induces aneuploidy by interfering with spindle assembly checkpoint via direct binding with Bub3. Oncogene. 40:1821–1835. 2021. View Article : Google Scholar : PubMed/NCBI

22 

Zhang Y, He Q, Hu Z, Feng Y, Fan L, Tang Z, Yuan J, Shan W, Li C, Hu X, et al: Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol. 23:522–530. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Zhao K, Wang X, Xue X, Li L and Hu Y: A long noncoding RNA sensitizes genotoxic treatment by attenuating ATM activation and homologous recombination repair in cancers. PLoS Biol. 18:e30006662020. View Article : Google Scholar : PubMed/NCBI

24 

Zhang XD, Huang GW, Xie YH, He JZ, Guo JC, Xu XE, Liao LD, Xie YM, Song YM, Li EM and Xu LY: The interaction of lncRNA EZR-AS1 with SMYD3 maintains overexpression of EZR in ESCC cells. Nucleic Acids Res. 46:1793–1809. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Dong Z, Li S, Wu X, Niu Y, Liang X, Yang L, Guo Y, Shen S, Liang J and Guo W: Aberrant hypermethylation-mediated downregulation of antisense lncRNA ZNF667-AS1 and its sense gene ZNF667 correlate with progression and prognosis of esophageal squamous cell carcinoma. Cell Death Dis. 10:9302019. View Article : Google Scholar : PubMed/NCBI

26 

Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, et al: Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol. 30:413–421. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Negrini S, Gorgoulis VG and Halazonetis TD: Genomic instability-an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 11:220–228. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Jo M, Kusano Y and Hirota T: Unraveling pathologies underlying chromosomal instability in cancers. Cancer Sci. 112:2975–2983. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Piemonte KM, Anstine LJ and Keri RA: Centrosome aberrations as drivers of chromosomal instability in breast cancer. Endocrinology. 162:bqab2082021. View Article : Google Scholar : PubMed/NCBI

30 

Hara M and Fukagawa T: Dynamics of kinetochore structure and its regulations during mitotic progression. Cell Mol Life Sci. 77:2981–2995. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Monda JK and Cheeseman IM: The kinetochore-microtubule interface at a glance. J Cell Sci. 131:jcs2145772018. View Article : Google Scholar : PubMed/NCBI

32 

Welburn JP, Vleugel M, Liu D, Yates JR III, Lampson MA, Fukagawa T and Cheeseman IM: Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol Cell. 38:383–392. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Sacristan C and Kops GJ: Joined at the hip: Kinetochores, microtubules, and spindle assembly checkpoint signaling. Trends Cell Biol. 25:21–28. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Xie X, Lin J, Fan X, Zhong Y, Chen Y, Liu K, Ren Y, Chen X, Lai D, Li X, et al: LncRNA CDKN2B-AS1 stabilized by IGF2BP3 drives the malignancy of renal clear cell carcinoma through epigenetically activating NUF2 transcription. Cell Death Dis. 12:2012021. View Article : Google Scholar : PubMed/NCBI

35 

DeLuca JG, Dong Y, Hergert P, Strauss J, Hickey JM, Salmon ED and McEwen BF: Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol Biol Cell. 16:519–531. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Stojic L, Lun ATL, Mascalchi P, Ernst C, Redmond AM, Mangei J, Barr AR, Bousgouni V, Bakal C, Marioni JC, et al: A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division. Nat Commun. 11:18512020. View Article : Google Scholar : PubMed/NCBI

37 

Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S, Yu H, Xie Y and Mendell JT: Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell. 164:69–80. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Schmidt JC and Cech TR: Human telomerase: Biogenesis, trafficking, recruitment, and activation. Genes Dev. 29:1095–1105. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Frias C, Pampalona J, Genesca A and Tusell L: Telomere dysfunction and genome instability. Front Biosci (Landmark Ed). 17:2181–2196. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Schoeftner S and Blasco MA: Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol. 10:228–236. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Deng Z, Norseen J, Wiedmer A, Riethman H and Lieberman PM: TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol Cell. 35:403–413. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Mei Y, Deng Z, Vladimirova O, Gulve N, Johnson FB, Drosopoulos WC, Schildkraut CL and Lieberman PM: TERRA G-quadruplex RNA interaction with TRF2 GAR domain is required for telomere integrity. Sci Rep. 11:35092021. View Article : Google Scholar : PubMed/NCBI

43 

Zhang Y, Zeng D, Cao J, Wang M, Shu B, Kuang G, Ou TM, Tan JH, Gu LQ, Huang ZS and Li D: Interaction of Quindoline derivative with telomeric repeat-containing RNA induces telomeric DNA-damage response in cancer cells through inhibition of telomeric repeat factor 2. Biochim Biophys Acta Gen Subj. 1861:3246–3256. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Takahama K, Takada A, Tada S, Shimizu M, Sayama K, Kurokawa R and Oyoshi T: Regulation of telomere length by G-quadruplex telomere DNA- and TERRA-binding protein TLS/FUS. Chem Biol. 20:341–350. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Blasco MA: Telomeres and human disease: Ageing, cancer and beyond. Nat Rev Genet. 6:611–622. 2005. View Article : Google Scholar : PubMed/NCBI

46 

Benetti R, García-Cao M and Blasco MA: Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet. 39:243–250. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Zhang QS, Manche L, Xu RM and Krainer AR: hnRNP A1 associates with telomere ends and stimulates telomerase activity. RNA. 12:1116–1128. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Redon S, Zemp I and Lingner J: A three-state model for the regulation of telomerase by TERRA and hnRNPA1. Nucleic Acids Res. 41:9117–9128. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Vohhodina J, Goehring LJ, Liu B, Kong Q, Botchkarev VV Jr, Huynh M, Liu Z, Abderazzaq FO, Clark AP, Ficarro SB, et al: BRCA1 binds TERRA RNA and suppresses R-Loop-based telomeric DNA damage. Nat Commun. 12:35422021. View Article : Google Scholar : PubMed/NCBI

50 

Feretzaki M, Pospisilova M, Valador Fernandes R, Lunardi T, Krejci L and Lingner J: RAD51-dependent recruitment of TERRA lncRNA to telomeres through R-loops. Nature. 587:303–308. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Gala K and Khattar E: Long non-coding RNAs at work on telomeres: Functions and implications in cancer therapy. Cancer Lett. 502:120–132. 2021. View Article : Google Scholar : PubMed/NCBI

52 

Podlevsky JD and Chen JJ: Evolutionary perspectives of telomerase RNA structure and function. RNA Biol. 13:720–732. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Redon S, Reichenbach P and Lingner J: The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res. 38:5797–5806. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Banik SS and Counter CM: Characterization of interactions between PinX1 and human telomerase subunits hTERT and hTR. J Biol Chem. 279:51745–51748. 2004. View Article : Google Scholar : PubMed/NCBI

55 

Raghunandan M and Decottignies A: The multifaceted hTR telomerase RNA from a structural perspective: Distinct domains of hTR differentially interact with protein partners to orchestrate its telomerase-independent functions. Bioessays. 43:e21000992021. View Article : Google Scholar : PubMed/NCBI

56 

Sui JD, Tang Z, Chen BPC, Huang P, Yang MQ, Wang NH, Yang HN, Tu HL, Jiang QM, Zhang J, et al: Protein phosphatase 2A-dependent mitotic hnRNPA1 dephosphorylation and TERRA formation facilitate telomere capping. Mol Cancer Res. 20:583–595. 2022. View Article : Google Scholar : PubMed/NCBI

57 

Pu H, Zheng Q, Li H, Wu M, An J, Gui X, Li T and Lu D: CUDR promotes liver cancer stem cell growth through upregulating TERT and C-Myc. Oncotarget. 6:40775–40798. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Wu M, An J, Zheng Q, Xin X, Lin Z, Li X, Li H and Lu D: Double mutant P53 (N340Q/L344R) promotes hepatocarcinogenesis through upregulation of Pim1 mediated by PKM2 and LncRNA CUDR. Oncotarget. 7:66525–66539. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Wu M, Lin Z, Li X, Xin X, An J, Zheng Q, Yang Y and Lu D: HULC cooperates with MALAT1 to aggravate liver cancer stem cells growth through telomere repeat-binding factor 2. Sci Rep. 6:360452016. View Article : Google Scholar : PubMed/NCBI

60 

Jiang X, Wang L, Xie S, Chen Y, Song S, Lu Y and Lu D: Long noncoding RNA MEG3 blocks telomerase activity in human liver cancer stem cells epigenetically. Stem Cell Res Ther. 11:5182020. View Article : Google Scholar : PubMed/NCBI

61 

Hoeijmakers JH: DNA damage, aging, and cancer. N Engl J Med. 361:1475–1485. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Zhao H, Fuemmeler BF and Shen J: DNA repair in cancer development and aging. Aging (Albany NY). 13:23435–23436. 2021. View Article : Google Scholar : PubMed/NCBI

63 

Tian H, Gao Z, Li H, Zhang B, Wang G, Zhang Q, Pei D and Zheng J: DNA damage response-a double-edged sword in cancer prevention and cancer therapy. Cancer Lett. 358:8–16. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Bever KM and Le DT: DNA repair defects and implications for immunotherapy. J Clin Invest. 128:4236–4242. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Zhao Y and Chen S: Targeting DNA double-strand break (DSB) repair to counteract tumor radio-resistance. Curr Drug Targets. 20:891–902. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Ceccaldi R, Rondinelli B and D'Andrea AD: Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26:52–64. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Scully R, Panday A, Elango R and Willis NA: DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 20:698–714. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Burma S, Chen BP and Chen DJ: Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair (Amst). 5:1042–1048. 2006. View Article : Google Scholar : PubMed/NCBI

69 

Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A, Kakarougkas A, Meek K, Taucher-Scholz G, Löbrich M and Jeggo PA: Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J. 30:1079–1092. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Stinson BM and Loparo JJ: Repair of DNA double-strand breaks by the nonhomologous end joining pathway. Annu Rev Biochem. 90:137–164. 2021. View Article : Google Scholar : PubMed/NCBI

71 

Ghosh D and Raghavan SC: Nonhomologous end joining: New accessory factors fine tune the machinery. Trends Genet. 37:582–599. 2021. View Article : Google Scholar : PubMed/NCBI

72 

Wang D, Zhou Z, Wu E, Ouyang C, Wei G, Wang Y, He D, Cui Y, Zhang D, Chen X, et al: LRIK interacts with the Ku70-Ku80 heterodimer enhancing the efficiency of NHEJ repair. Cell Death Differ. 27:3337–3353. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Thapar R, Wang JL, Hammel M, Ye R, Liang K, Sun C, Hnizda A, Liang S, Maw SS, Lee L, et al: Mechanism of efficient double-strand break repair by a long non-coding RNA. Nucleic Acids Res. 48:10953–10972. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Guo Z, Wang YH, Xu H, Yuan CS, Zhou HH, Huang WH, Wang H and Zhang W: LncRNA linc00312 suppresses radiotherapy resistance by targeting DNA-PKcs and impairing DNA damage repair in nasopharyngeal carcinoma. Cell Death Dis. 12:692021. View Article : Google Scholar : PubMed/NCBI

75 

Decottignies A: Alternative end-joining mechanisms: A historical perspective. Front Genet. 4:482013. View Article : Google Scholar : PubMed/NCBI

76 

Chiruvella KK, Liang Z and Wilson TE: Repair of double-strand breaks by end joining. Cold Spring Harb Perspect Biol. 5:a0127572013. View Article : Google Scholar : PubMed/NCBI

77 

Hu Y, Lin J, Fang H, Fang J, Li C, Chen W, Liu S, Ondrejka S, Gong Z, Reu F, et al: Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma. Leukemia. 32:2250–2262. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Deng B, Xu W, Wang Z, Liu C, Lin P, Li B, Huang Q, Yang J, Zhou H and Qu L: An LTR retrotransposon-derived lncRNA interacts with RNF169 to promote homologous recombination. EMBO Rep. 20:e476502019. View Article : Google Scholar : PubMed/NCBI

79 

Han T, Jing X, Bao J, Zhao L, Zhang A, Miao R, Guo H, Zhou B, Zhang S, Sun J and Shi J: H. pylori infection alters repair of DNA double-strand breaks via SNHG17. J Clin Invest. 130:3901–3918. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Ranjha L, Howard SM and Cejka P: Main steps in DNA double-strand break repair: An introduction to homologous recombination and related processes. Chromosoma. 127:187–214. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Yamamoto H and Hirasawa A: Homologous recombination deficiencies and hereditary tumors. Int J Mol Sci. 23:3482021. View Article : Google Scholar : PubMed/NCBI

82 

Wu C, Chen W, Yu F, Yuan Y, Chen Y, Hurst DR, Li Y, Li L and Liu Z: Long noncoding RNA HITTERS protects oral squamous cell carcinoma cells from endoplasmic reticulum stress-induced apoptosis via promoting MRE11-RAD50-NBS1 complex formation. Adv Sci (Weinh). 7:20027472020. View Article : Google Scholar : PubMed/NCBI

83 

Paull TT: Mechanisms of ATM activation. Annu Rev Biochem. 84:711–738. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Hu WL, Jin L, Xu A, Wang YF, Thorne RF, Zhang XD and Wu M: GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability. Nat Cell Biol. 20:492–502. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Hu Z, Mi S, Zhao T, Peng Y, Chen L, Zhu W, Yao Y, Song Q, Li X, Li X, et al: BGL3 lncRNA mediates retention of the BRCA1/BARD1 complex at DNA damage sites. EMBO J. 39:e1041332020. View Article : Google Scholar : PubMed/NCBI

86 

Sharma V, Khurana S, Kubben N, Abdelmohsen K, Oberdoerffer P, Gorospe M and Misteli T: A BRCA1-interacting lncRNA regulates homologous recombination. EMBO Rep. 16:1520–1534. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Coleman KA and Greenberg RA: The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection. J Biol Chem. 286:13669–13680. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Dawson MA and Kouzarides T: Cancer epigenetics: From mechanism to therapy. Cell. 150:12–27. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Costa-Pinheiro P, Montezuma D, Henrique R and Jerónimo C: Diagnostic and prognostic epigenetic biomarkers in cancer. Epigenomics. 7:1003–1015. 2015. View Article : Google Scholar : PubMed/NCBI

90 

Wang H, Huo X, Yang XR, He J, Cheng L, Wang N, Deng X, Jin H, Wang N, Wang C, et al: STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4. Mol Cancer. 16:1362017. View Article : Google Scholar : PubMed/NCBI

91 

Kim JJ, Lee SY and Miller KM: Preserving genome integrity and function: The DNA damage response and histone modifications. Crit Rev Biochem Mol Biol. 54:208–241. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Iacobuzio-Donahue CA: Epigenetic changes in cancer. Annu Rev Pathol. 4:229–249. 2009. View Article : Google Scholar : PubMed/NCBI

93 

Luo RX and Dean DC: Chromatin remodeling and transcriptional regulation. J Natl Cancer Inst. 91:1288–1294. 1999. View Article : Google Scholar : PubMed/NCBI

94 

Wang Z, Liu S and Tao Y: Regulation of chromatin remodeling through RNA polymerase II stalling in the immune system. Mol Immunol. 108:75–80. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Koreman E, Sun X and Lu QR: Chromatin remodeling and epigenetic regulation of oligodendrocyte myelination and myelin repair. Mol Cell Neurosci. 87:18–26. 2018. View Article : Google Scholar : PubMed/NCBI

96 

Strahl BD and Allis CD: The language of covalent histone modifications. Nature. 403:41–45. 2000. View Article : Google Scholar : PubMed/NCBI

97 

Kouzarides T: Chromatin modifications and their function. Cell. 128:693–705. 2007. View Article : Google Scholar : PubMed/NCBI

98 

Fang K, Huang W, Sun YM, Chen TQ, Zeng ZC, Yang QQ, Pan Q, Han C, Sun LY, Luo XQ, et al: Cis-acting lnc-eRNA SEELA directly binds histone H4 to promote histone recognition and leukemia progression. Genome Biol. 21:2692020. View Article : Google Scholar : PubMed/NCBI

99 

Wang YQ, Jiang DM, Hu SS, Zhao L, Wang L, Yang MH, Ai ML, Jiang HJ, Han Y, Ding YQ and Wang S: SATB2-AS1 suppresses colorectal carcinoma aggressiveness by inhibiting SATB2-dependent snail transcription and epithelial-mesenchymal transition. Cancer Res. 79:3542–3556. 2019. View Article : Google Scholar : PubMed/NCBI

100 

Chu C, Qu K, Zhong FL, Artandi SE and Chang HY: Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell. 44:667–678. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Li Q, Su Z, Xu X, Liu G, Song X, Wang R, Sui X, Liu T, Chang X and Huang D: AS1DHRS4, a head-to-head natural antisense transcript, silences the DHRS4 gene cluster in cis and trans. Proc Natl Acad Sci USA. 109:14110–14115. 2012. View Article : Google Scholar : PubMed/NCBI

102 

Hui B, Ji H, Xu Y, Wang J, Ma Z, Zhang C, Wang K and Zhou Y: RREB1-induced upregulation of the lncRNA AGAP2-AS1 regulates the proliferation and migration of pancreatic cancer partly through suppressing ANKRD1 and ANGPTL4. Cell Death Dis. 10:2072019. View Article : Google Scholar : PubMed/NCBI

103 

Luo W, Li X, Song Z, Zhu X and Zhao S: Long non-coding RNA AGAP2-AS1 exerts oncogenic properties in glioblastoma by epigenetically silencing TFPI2 through EZH2 and LSD1. Aging (Albany NY). 11:3811–3823. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Li W, Sun M, Zang C, Ma P, He J, Zhang M, Huang Z, Ding Y and Shu Y: Upregulated long non-coding RNA AGAP2-AS1 represses LATS2 and KLF2 expression through interacting with EZH2 and LSD1 in non-small-cell lung cancer cells. Cell Death Dis. 7:e22252016. View Article : Google Scholar : PubMed/NCBI

105 

Qi F, Liu X, Wu H, Yu X, Wei C, Huang X, Ji G, Nie F and Wang K: Long noncoding AGAP2-AS1 is activated by SP1 and promotes cell proliferation and invasion in gastric cancer. J Hematol Oncol. 10:482017. View Article : Google Scholar : PubMed/NCBI

106 

Liu S, Zheng Y, Zhang Y, Zhang J, Xie F, Guo S, Gu J, Yang J, Zheng P, Lai J, et al: Methylation-mediated LINC00261 suppresses pancreatic cancer progression by epigenetically inhibiting c-Myc transcription. Theranostics. 10:10634–10651. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Salerno D, Chiodo L, Alfano V, Floriot O, Cottone G, Paturel A, Pallocca M, Plissonnier ML, Jeddari S, Belloni L, et al: Hepatitis B protein HBx binds the DLEU2 lncRNA to sustain cccDNA and host cancer-related gene transcription. Gut. 69:2016–2024. 2020. View Article : Google Scholar : PubMed/NCBI

108 

Hota SK and Bruneau BG: ATP-dependent chromatin remodeling during mammalian development. Development. 143:2882–2897. 2016. View Article : Google Scholar : PubMed/NCBI

109 

Wang Y, Zhu P, Luo J, Wang J, Liu Z, Wu W, Du Y, Ye B, Wang D, He L, et al: LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling. EMBO J. 38:e1011102019. View Article : Google Scholar : PubMed/NCBI

110 

Tang Y, Wang J, Lian Y, Fan C, Zhang P, Wu Y, Li X, Xiong F, Li X, Li G, et al: Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer. Mol Cancer. 16:422017. View Article : Google Scholar : PubMed/NCBI

111 

Ma X and Kang S: Functional implications of DNA methylation in adipose biology. Diabetes. 68:871–878. 2019. View Article : Google Scholar : PubMed/NCBI

112 

Nishiyama A and Nakanishi M: Navigating the DNA methylation landscape of cancer. Trends Genet. 37:1012–1027. 2021. View Article : Google Scholar : PubMed/NCBI

113 

Schübeler D: ESCI award lecture: Regulation, function and biomarker potential of DNA methylation. Eur J Clin Invest. 45:288–293. 2015. View Article : Google Scholar : PubMed/NCBI

114 

Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN and Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 393:386–389. 1998. View Article : Google Scholar : PubMed/NCBI

115 

Zhang Y, Yan H, Jiang Y, Chen T, Ma Z, Li F, Lin M, Xu Y, Zhang X, Zhang J and He H: Long non-coding RNA IGF2-AS represses breast cancer tumorigenesis by epigenetically regulating IGF2. Exp Biol Med (Maywood). 246:371–379. 2021. View Article : Google Scholar : PubMed/NCBI

116 

Ma F, Lei YY, Ding MG, Luo LH, Xie YC and Liu XL: LncRNA NEAT1 interacted with DNMT1 to regulate malignant phenotype of cancer cell and cytotoxic T cell infiltration via epigenetic inhibition of p53, cGAS, and STING in lung cancer. Front Genet. 11:2502020. View Article : Google Scholar : PubMed/NCBI

117 

Tang J, Xie Y, Xu X, Yin Y, Jiang R, Deng L, Tan Z, Gangarapu V, Tang J and Sun B: Bidirectional transcription of Linc00441 and RB1 via H3K27 modification-dependent way promotes hepatocellular carcinoma. Cell Death Dis. 8:e26752017. View Article : Google Scholar : PubMed/NCBI

118 

Feng H and Liu X: Interaction between ACOT7 and LncRNA NMRAL2P via methylation regulates gastric cancer progression. Yonsei Med J. 61:471–481. 2020. View Article : Google Scholar : PubMed/NCBI

119 

Li N, Zhao Z, Miao F, Cai S, Liu P, Yu Y and Wang B: Silencing of long non-coding RNA LINC01270 inhibits esophageal cancer progression and enhances chemosensitivity to 5-fluorouracil by mediating GSTP1methylation. Cancer Gene Ther. 28:471–485. 2021. View Article : Google Scholar : PubMed/NCBI

120 

Zhang C, Wang L, Jin C, Zhou J, Peng C, Wang Y, Xu Z, Zhang D, Huang Y, Zhang Y, et al: Long non-coding RNA Lnc-LALC facilitates colorectal cancer liver metastasis via epigenetically silencing LZTS1. Cell Death Dis. 12:2242021. View Article : Google Scholar : PubMed/NCBI

121 

O'Leary VB, Ovsepian SV, Smida J and Atkinson MJ: PARTICLE-the RNA podium for genomic silencers. J Cell Physiol. 234:19464–19470. 2019. View Article : Google Scholar : PubMed/NCBI

122 

O'Leary VB, Hain S, Maugg D, Smida J, Azimzadeh O, Tapio S, Ovsepian SV and Atkinson MJ: Long non-coding RNA PARTICLE bridges histone and DNA methylation. Sci Rep. 7:17902017. View Article : Google Scholar : PubMed/NCBI

123 

Arab K, Park YJ, Lindroth AM, Schäfer A, Oakes C, Weichenhan D, Lukanova A, Lundin E, Risch A, Meister M, et al: Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell. 55:604–614. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang K, Liang X and Wen K: Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review). Oncol Rep 48: 175, 2022.
APA
Yang, K., Liang, X., & Wen, K. (2022). Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review). Oncology Reports, 48, 175. https://doi.org/10.3892/or.2022.8390
MLA
Yang, K., Liang, X., Wen, K."Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review)". Oncology Reports 48.4 (2022): 175.
Chicago
Yang, K., Liang, X., Wen, K."Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review)". Oncology Reports 48, no. 4 (2022): 175. https://doi.org/10.3892/or.2022.8390
Copy and paste a formatted citation
x
Spandidos Publications style
Yang K, Liang X and Wen K: Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review). Oncol Rep 48: 175, 2022.
APA
Yang, K., Liang, X., & Wen, K. (2022). Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review). Oncology Reports, 48, 175. https://doi.org/10.3892/or.2022.8390
MLA
Yang, K., Liang, X., Wen, K."Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review)". Oncology Reports 48.4 (2022): 175.
Chicago
Yang, K., Liang, X., Wen, K."Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review)". Oncology Reports 48, no. 4 (2022): 175. https://doi.org/10.3892/or.2022.8390
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team