|
1
|
Lee JK, Choi YL, Kwon M and Park PJ:
Mechanisms and consequences of cancer genome instability: Lessons
from genome sequencing studies. Annu Rev Pathol. 11:283–312. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Aguilera A and Gómez-González B: Genome
instability: A mechanistic view of its causes and consequences. Nat
Rev Genet. 9:204–217. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Salmaninejad A, Ilkhani K, Marzban H,
Navashenaq JG, Rahimirad S, Radnia F, Yousefi M, Bahmanpour Z,
Azhdari S and Sahebkar A: Genomic instability in cancer: Molecular
mechanisms and therapeutic potentials. Curr Pharm Des.
27:3161–3169. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mehrotra S and Mittra I: Origin of genome
instability and determinants of mutational landscape in cancer
cells. Genes (Basel). 11:11012020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Andor N, Maley CC and Ji HP: Genomic
instability in cancer: Teetering on the limit of tolerance. Cancer
Res. 77:2179–2185. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Abbas T, Keaton MA and Dutta A: Genomic
instability in cancer. Cold Spring Harb Perspect Biol.
5:a0129142013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
O'Connor MJ: Targeting the DNA damage
response in cancer. Mol Cell. 60:547–560. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sansregret L, Vanhaesebroeck B and Swanton
C: Determinants and clinical implications of chromosomal
instability in cancer. Nat Rev Clin Oncol. 15:139–150. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Maciejowski J and de Lange T: Telomeres in
cancer: Tumour suppression and genome instability. Nat Rev Mol Cell
Biol. 18:175–186. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lord CJ and Ashworth A: The DNA damage
response and cancer therapy. Nature. 481:287–294. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Choi JD and Lee JS: Interplay between
epigenetics and genetics in cancer. Genomics Inform. 11:164–173.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhang W, Guan X and Tang J: The long
non-coding RNA landscape in triple-negative breast cancer. Cell
Prolif. 54:e129662021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Huang L, Xie Y, Jiang S, Han W, Zeng F and
Li D: The lncRNA signatures of genome instability to predict
survival in patients with renal cancer. J Healthc Eng.
2021:10906982021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yin T, Zhao D and Yao S: Identification of
a genome instability-associated LncRNA signature for prognosis
prediction in colon cancer. Front Genet. 12:6791502021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kopp F and Mendell JT: Functional
classification and experimental dissection of long noncoding RNAs.
Cell. 172:393–407. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Mercer TR and Mattick JS: Structure and
function of long noncoding RNAs in epigenetic regulation. Nat
Struct Mol Biol. 20:300–307. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Matsumoto A, Pasut A, Matsumoto M,
Yamashita R, Fung J, Monteleone E, Saghatelian A, Nakayama KI,
Clohessy JG and Pandolfi PP: mTORC1 and muscle regeneration are
regulated by the LINC00961-encoded SPAR polypeptide. Nature.
541:228–232. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Guttman M and Rinn JL: Modular regulatory
principles of large non-coding RNAs. Nature. 482:339–346. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hentze MW, Castello A, Schwarzl T and
Preiss T: A brave new world of RNA-binding proteins. Nat Rev Mol
Cell Biol. 19:327–341. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chen B, Dragomir MP, Fabris L, Bayraktar
R, Knutsen E, Liu X, Tang C, Li Y, Shimura T, Ivkovic TC, et al:
The long noncoding RNA CCAT2 induces chromosomal instability
through BOP1-AURKB signaling. Gastroenterology. 159:2146–2162.e33.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Guo Z, Dai Y, Hu W, Zhang Y, Cao Z, Pei W,
Liu N, Nie J, Wu A, Mao W, et al: The long noncoding RNA CRYBG3
induces aneuploidy by interfering with spindle assembly checkpoint
via direct binding with Bub3. Oncogene. 40:1821–1835. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhang Y, He Q, Hu Z, Feng Y, Fan L, Tang
Z, Yuan J, Shan W, Li C, Hu X, et al: Long noncoding RNA LINP1
regulates repair of DNA double-strand breaks in triple-negative
breast cancer. Nat Struct Mol Biol. 23:522–530. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhao K, Wang X, Xue X, Li L and Hu Y: A
long noncoding RNA sensitizes genotoxic treatment by attenuating
ATM activation and homologous recombination repair in cancers. PLoS
Biol. 18:e30006662020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhang XD, Huang GW, Xie YH, He JZ, Guo JC,
Xu XE, Liao LD, Xie YM, Song YM, Li EM and Xu LY: The interaction
of lncRNA EZR-AS1 with SMYD3 maintains overexpression of EZR in
ESCC cells. Nucleic Acids Res. 46:1793–1809. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Dong Z, Li S, Wu X, Niu Y, Liang X, Yang
L, Guo Y, Shen S, Liang J and Guo W: Aberrant
hypermethylation-mediated downregulation of antisense lncRNA
ZNF667-AS1 and its sense gene ZNF667 correlate with progression and
prognosis of esophageal squamous cell carcinoma. Cell Death Dis.
10:9302019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Carter SL, Cibulskis K, Helman E, McKenna
A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, et
al: Absolute quantification of somatic DNA alterations in human
cancer. Nat Biotechnol. 30:413–421. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Negrini S, Gorgoulis VG and Halazonetis
TD: Genomic instability-an evolving hallmark of cancer. Nat Rev Mol
Cell Biol. 11:220–228. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Jo M, Kusano Y and Hirota T: Unraveling
pathologies underlying chromosomal instability in cancers. Cancer
Sci. 112:2975–2983. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Piemonte KM, Anstine LJ and Keri RA:
Centrosome aberrations as drivers of chromosomal instability in
breast cancer. Endocrinology. 162:bqab2082021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hara M and Fukagawa T: Dynamics of
kinetochore structure and its regulations during mitotic
progression. Cell Mol Life Sci. 77:2981–2995. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Monda JK and Cheeseman IM: The
kinetochore-microtubule interface at a glance. J Cell Sci.
131:jcs2145772018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Welburn JP, Vleugel M, Liu D, Yates JR
III, Lampson MA, Fukagawa T and Cheeseman IM: Aurora B
phosphorylates spatially distinct targets to differentially
regulate the kinetochore-microtubule interface. Mol Cell.
38:383–392. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sacristan C and Kops GJ: Joined at the
hip: Kinetochores, microtubules, and spindle assembly checkpoint
signaling. Trends Cell Biol. 25:21–28. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Xie X, Lin J, Fan X, Zhong Y, Chen Y, Liu
K, Ren Y, Chen X, Lai D, Li X, et al: LncRNA CDKN2B-AS1 stabilized
by IGF2BP3 drives the malignancy of renal clear cell carcinoma
through epigenetically activating NUF2 transcription. Cell Death
Dis. 12:2012021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
DeLuca JG, Dong Y, Hergert P, Strauss J,
Hickey JM, Salmon ED and McEwen BF: Hec1 and nuf2 are core
components of the kinetochore outer plate essential for organizing
microtubule attachment sites. Mol Biol Cell. 16:519–531. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Stojic L, Lun ATL, Mascalchi P, Ernst C,
Redmond AM, Mangei J, Barr AR, Bousgouni V, Bakal C, Marioni JC, et
al: A high-content RNAi screen reveals multiple roles for long
noncoding RNAs in cell division. Nat Commun. 11:18512020.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lee S, Kopp F, Chang TC, Sataluri A, Chen
B, Sivakumar S, Yu H, Xie Y and Mendell JT: Noncoding RNA NORAD
regulates genomic stability by sequestering PUMILIO proteins. Cell.
164:69–80. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Schmidt JC and Cech TR: Human telomerase:
Biogenesis, trafficking, recruitment, and activation. Genes Dev.
29:1095–1105. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Frias C, Pampalona J, Genesca A and Tusell
L: Telomere dysfunction and genome instability. Front Biosci
(Landmark Ed). 17:2181–2196. 2012. View
Article : Google Scholar : PubMed/NCBI
|
|
40
|
Schoeftner S and Blasco MA:
Developmentally regulated transcription of mammalian telomeres by
DNA-dependent RNA polymerase II. Nat Cell Biol. 10:228–236. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Deng Z, Norseen J, Wiedmer A, Riethman H
and Lieberman PM: TERRA RNA binding to TRF2 facilitates
heterochromatin formation and ORC recruitment at telomeres. Mol
Cell. 35:403–413. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Mei Y, Deng Z, Vladimirova O, Gulve N,
Johnson FB, Drosopoulos WC, Schildkraut CL and Lieberman PM: TERRA
G-quadruplex RNA interaction with TRF2 GAR domain is required for
telomere integrity. Sci Rep. 11:35092021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang Y, Zeng D, Cao J, Wang M, Shu B,
Kuang G, Ou TM, Tan JH, Gu LQ, Huang ZS and Li D: Interaction of
Quindoline derivative with telomeric repeat-containing RNA induces
telomeric DNA-damage response in cancer cells through inhibition of
telomeric repeat factor 2. Biochim Biophys Acta Gen Subj.
1861:3246–3256. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Takahama K, Takada A, Tada S, Shimizu M,
Sayama K, Kurokawa R and Oyoshi T: Regulation of telomere length by
G-quadruplex telomere DNA- and TERRA-binding protein TLS/FUS. Chem
Biol. 20:341–350. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Blasco MA: Telomeres and human disease:
Ageing, cancer and beyond. Nat Rev Genet. 6:611–622. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Benetti R, García-Cao M and Blasco MA:
Telomere length regulates the epigenetic status of mammalian
telomeres and subtelomeres. Nat Genet. 39:243–250. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhang QS, Manche L, Xu RM and Krainer AR:
hnRNP A1 associates with telomere ends and stimulates telomerase
activity. RNA. 12:1116–1128. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Redon S, Zemp I and Lingner J: A
three-state model for the regulation of telomerase by TERRA and
hnRNPA1. Nucleic Acids Res. 41:9117–9128. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Vohhodina J, Goehring LJ, Liu B, Kong Q,
Botchkarev VV Jr, Huynh M, Liu Z, Abderazzaq FO, Clark AP, Ficarro
SB, et al: BRCA1 binds TERRA RNA and suppresses R-Loop-based
telomeric DNA damage. Nat Commun. 12:35422021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Feretzaki M, Pospisilova M, Valador
Fernandes R, Lunardi T, Krejci L and Lingner J: RAD51-dependent
recruitment of TERRA lncRNA to telomeres through R-loops. Nature.
587:303–308. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Gala K and Khattar E: Long non-coding RNAs
at work on telomeres: Functions and implications in cancer therapy.
Cancer Lett. 502:120–132. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Podlevsky JD and Chen JJ: Evolutionary
perspectives of telomerase RNA structure and function. RNA Biol.
13:720–732. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Redon S, Reichenbach P and Lingner J: The
non-coding RNA TERRA is a natural ligand and direct inhibitor of
human telomerase. Nucleic Acids Res. 38:5797–5806. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Banik SS and Counter CM: Characterization
of interactions between PinX1 and human telomerase subunits hTERT
and hTR. J Biol Chem. 279:51745–51748. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Raghunandan M and Decottignies A: The
multifaceted hTR telomerase RNA from a structural perspective:
Distinct domains of hTR differentially interact with protein
partners to orchestrate its telomerase-independent functions.
Bioessays. 43:e21000992021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sui JD, Tang Z, Chen BPC, Huang P, Yang
MQ, Wang NH, Yang HN, Tu HL, Jiang QM, Zhang J, et al: Protein
phosphatase 2A-dependent mitotic hnRNPA1 dephosphorylation and
TERRA formation facilitate telomere capping. Mol Cancer Res.
20:583–595. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Pu H, Zheng Q, Li H, Wu M, An J, Gui X, Li
T and Lu D: CUDR promotes liver cancer stem cell growth through
upregulating TERT and C-Myc. Oncotarget. 6:40775–40798. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wu M, An J, Zheng Q, Xin X, Lin Z, Li X,
Li H and Lu D: Double mutant P53 (N340Q/L344R) promotes
hepatocarcinogenesis through upregulation of Pim1 mediated by PKM2
and LncRNA CUDR. Oncotarget. 7:66525–66539. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wu M, Lin Z, Li X, Xin X, An J, Zheng Q,
Yang Y and Lu D: HULC cooperates with MALAT1 to aggravate liver
cancer stem cells growth through telomere repeat-binding factor 2.
Sci Rep. 6:360452016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Jiang X, Wang L, Xie S, Chen Y, Song S, Lu
Y and Lu D: Long noncoding RNA MEG3 blocks telomerase activity in
human liver cancer stem cells epigenetically. Stem Cell Res Ther.
11:5182020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hoeijmakers JH: DNA damage, aging, and
cancer. N Engl J Med. 361:1475–1485. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhao H, Fuemmeler BF and Shen J: DNA
repair in cancer development and aging. Aging (Albany NY).
13:23435–23436. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Tian H, Gao Z, Li H, Zhang B, Wang G,
Zhang Q, Pei D and Zheng J: DNA damage response-a double-edged
sword in cancer prevention and cancer therapy. Cancer Lett.
358:8–16. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bever KM and Le DT: DNA repair defects and
implications for immunotherapy. J Clin Invest. 128:4236–4242. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhao Y and Chen S: Targeting DNA
double-strand break (DSB) repair to counteract tumor
radio-resistance. Curr Drug Targets. 20:891–902. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ceccaldi R, Rondinelli B and D'Andrea AD:
Repair pathway choices and consequences at the double-strand break.
Trends Cell Biol. 26:52–64. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Scully R, Panday A, Elango R and Willis
NA: DNA double-strand break repair-pathway choice in somatic
mammalian cells. Nat Rev Mol Cell Biol. 20:698–714. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Burma S, Chen BP and Chen DJ: Role of
non-homologous end joining (NHEJ) in maintaining genomic integrity.
DNA Repair (Amst). 5:1042–1048. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Shibata A, Conrad S, Birraux J, Geuting V,
Barton O, Ismail A, Kakarougkas A, Meek K, Taucher-Scholz G,
Löbrich M and Jeggo PA: Factors determining DNA double-strand break
repair pathway choice in G2 phase. EMBO J. 30:1079–1092. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Stinson BM and Loparo JJ: Repair of DNA
double-strand breaks by the nonhomologous end joining pathway. Annu
Rev Biochem. 90:137–164. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ghosh D and Raghavan SC: Nonhomologous end
joining: New accessory factors fine tune the machinery. Trends
Genet. 37:582–599. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang D, Zhou Z, Wu E, Ouyang C, Wei G,
Wang Y, He D, Cui Y, Zhang D, Chen X, et al: LRIK interacts with
the Ku70-Ku80 heterodimer enhancing the efficiency of NHEJ repair.
Cell Death Differ. 27:3337–3353. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Thapar R, Wang JL, Hammel M, Ye R, Liang
K, Sun C, Hnizda A, Liang S, Maw SS, Lee L, et al: Mechanism of
efficient double-strand break repair by a long non-coding RNA.
Nucleic Acids Res. 48:10953–10972. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Guo Z, Wang YH, Xu H, Yuan CS, Zhou HH,
Huang WH, Wang H and Zhang W: LncRNA linc00312 suppresses
radiotherapy resistance by targeting DNA-PKcs and impairing DNA
damage repair in nasopharyngeal carcinoma. Cell Death Dis.
12:692021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Decottignies A: Alternative end-joining
mechanisms: A historical perspective. Front Genet. 4:482013.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Chiruvella KK, Liang Z and Wilson TE:
Repair of double-strand breaks by end joining. Cold Spring Harb
Perspect Biol. 5:a0127572013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Hu Y, Lin J, Fang H, Fang J, Li C, Chen W,
Liu S, Ondrejka S, Gong Z, Reu F, et al: Targeting the
MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in
multiple myeloma. Leukemia. 32:2250–2262. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Deng B, Xu W, Wang Z, Liu C, Lin P, Li B,
Huang Q, Yang J, Zhou H and Qu L: An LTR retrotransposon-derived
lncRNA interacts with RNF169 to promote homologous recombination.
EMBO Rep. 20:e476502019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Han T, Jing X, Bao J, Zhao L, Zhang A,
Miao R, Guo H, Zhou B, Zhang S, Sun J and Shi J: H. pylori
infection alters repair of DNA double-strand breaks via SNHG17. J
Clin Invest. 130:3901–3918. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ranjha L, Howard SM and Cejka P: Main
steps in DNA double-strand break repair: An introduction to
homologous recombination and related processes. Chromosoma.
127:187–214. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yamamoto H and Hirasawa A: Homologous
recombination deficiencies and hereditary tumors. Int J Mol Sci.
23:3482021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wu C, Chen W, Yu F, Yuan Y, Chen Y, Hurst
DR, Li Y, Li L and Liu Z: Long noncoding RNA HITTERS protects oral
squamous cell carcinoma cells from endoplasmic reticulum
stress-induced apoptosis via promoting MRE11-RAD50-NBS1 complex
formation. Adv Sci (Weinh). 7:20027472020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Paull TT: Mechanisms of ATM activation.
Annu Rev Biochem. 84:711–738. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hu WL, Jin L, Xu A, Wang YF, Thorne RF,
Zhang XD and Wu M: GUARDIN is a p53-responsive long non-coding RNA
that is essential for genomic stability. Nat Cell Biol. 20:492–502.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Hu Z, Mi S, Zhao T, Peng Y, Chen L, Zhu W,
Yao Y, Song Q, Li X, Li X, et al: BGL3 lncRNA mediates retention of
the BRCA1/BARD1 complex at DNA damage sites. EMBO J.
39:e1041332020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Sharma V, Khurana S, Kubben N, Abdelmohsen
K, Oberdoerffer P, Gorospe M and Misteli T: A BRCA1-interacting
lncRNA regulates homologous recombination. EMBO Rep. 16:1520–1534.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Coleman KA and Greenberg RA: The
BRCA1-RAP80 complex regulates DNA repair mechanism utilization by
restricting end resection. J Biol Chem. 286:13669–13680. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Dawson MA and Kouzarides T: Cancer
epigenetics: From mechanism to therapy. Cell. 150:12–27. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Costa-Pinheiro P, Montezuma D, Henrique R
and Jerónimo C: Diagnostic and prognostic epigenetic biomarkers in
cancer. Epigenomics. 7:1003–1015. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang H, Huo X, Yang XR, He J, Cheng L,
Wang N, Deng X, Jin H, Wang N, Wang C, et al: STAT3-mediated
upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer
metastasis by regulating SOX4. Mol Cancer. 16:1362017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kim JJ, Lee SY and Miller KM: Preserving
genome integrity and function: The DNA damage response and histone
modifications. Crit Rev Biochem Mol Biol. 54:208–241. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Iacobuzio-Donahue CA: Epigenetic changes
in cancer. Annu Rev Pathol. 4:229–249. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Luo RX and Dean DC: Chromatin remodeling
and transcriptional regulation. J Natl Cancer Inst. 91:1288–1294.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wang Z, Liu S and Tao Y: Regulation of
chromatin remodeling through RNA polymerase II stalling in the
immune system. Mol Immunol. 108:75–80. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Koreman E, Sun X and Lu QR: Chromatin
remodeling and epigenetic regulation of oligodendrocyte myelination
and myelin repair. Mol Cell Neurosci. 87:18–26. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Strahl BD and Allis CD: The language of
covalent histone modifications. Nature. 403:41–45. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Kouzarides T: Chromatin modifications and
their function. Cell. 128:693–705. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Fang K, Huang W, Sun YM, Chen TQ, Zeng ZC,
Yang QQ, Pan Q, Han C, Sun LY, Luo XQ, et al: Cis-acting lnc-eRNA
SEELA directly binds histone H4 to promote histone recognition and
leukemia progression. Genome Biol. 21:2692020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wang YQ, Jiang DM, Hu SS, Zhao L, Wang L,
Yang MH, Ai ML, Jiang HJ, Han Y, Ding YQ and Wang S: SATB2-AS1
suppresses colorectal carcinoma aggressiveness by inhibiting
SATB2-dependent snail transcription and epithelial-mesenchymal
transition. Cancer Res. 79:3542–3556. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Chu C, Qu K, Zhong FL, Artandi SE and
Chang HY: Genomic maps of long noncoding RNA occupancy reveal
principles of RNA-chromatin interactions. Mol Cell. 44:667–678.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Li Q, Su Z, Xu X, Liu G, Song X, Wang R,
Sui X, Liu T, Chang X and Huang D: AS1DHRS4, a head-to-head natural
antisense transcript, silences the DHRS4 gene cluster in cis and
trans. Proc Natl Acad Sci USA. 109:14110–14115. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Hui B, Ji H, Xu Y, Wang J, Ma Z, Zhang C,
Wang K and Zhou Y: RREB1-induced upregulation of the lncRNA
AGAP2-AS1 regulates the proliferation and migration of pancreatic
cancer partly through suppressing ANKRD1 and ANGPTL4. Cell Death
Dis. 10:2072019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Luo W, Li X, Song Z, Zhu X and Zhao S:
Long non-coding RNA AGAP2-AS1 exerts oncogenic properties in
glioblastoma by epigenetically silencing TFPI2 through EZH2 and
LSD1. Aging (Albany NY). 11:3811–3823. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Li W, Sun M, Zang C, Ma P, He J, Zhang M,
Huang Z, Ding Y and Shu Y: Upregulated long non-coding RNA
AGAP2-AS1 represses LATS2 and KLF2 expression through interacting
with EZH2 and LSD1 in non-small-cell lung cancer cells. Cell Death
Dis. 7:e22252016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Qi F, Liu X, Wu H, Yu X, Wei C, Huang X,
Ji G, Nie F and Wang K: Long noncoding AGAP2-AS1 is activated by
SP1 and promotes cell proliferation and invasion in gastric cancer.
J Hematol Oncol. 10:482017. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Liu S, Zheng Y, Zhang Y, Zhang J, Xie F,
Guo S, Gu J, Yang J, Zheng P, Lai J, et al: Methylation-mediated
LINC00261 suppresses pancreatic cancer progression by
epigenetically inhibiting c-Myc transcription. Theranostics.
10:10634–10651. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Salerno D, Chiodo L, Alfano V, Floriot O,
Cottone G, Paturel A, Pallocca M, Plissonnier ML, Jeddari S,
Belloni L, et al: Hepatitis B protein HBx binds the DLEU2 lncRNA to
sustain cccDNA and host cancer-related gene transcription. Gut.
69:2016–2024. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Hota SK and Bruneau BG: ATP-dependent
chromatin remodeling during mammalian development. Development.
143:2882–2897. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wang Y, Zhu P, Luo J, Wang J, Liu Z, Wu W,
Du Y, Ye B, Wang D, He L, et al: LncRNA HAND2-AS1 promotes liver
cancer stem cell self-renewal via BMP signaling. EMBO J.
38:e1011102019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Tang Y, Wang J, Lian Y, Fan C, Zhang P, Wu
Y, Li X, Xiong F, Li X, Li G, et al: Linking long non-coding RNAs
and SWI/SNF complexes to chromatin remodeling in cancer. Mol
Cancer. 16:422017. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Ma X and Kang S: Functional implications
of DNA methylation in adipose biology. Diabetes. 68:871–878. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Nishiyama A and Nakanishi M: Navigating
the DNA methylation landscape of cancer. Trends Genet.
37:1012–1027. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Schübeler D: ESCI award lecture:
Regulation, function and biomarker potential of DNA methylation.
Eur J Clin Invest. 45:288–293. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Nan X, Ng HH, Johnson CA, Laherty CD,
Turner BM, Eisenman RN and Bird A: Transcriptional repression by
the methyl-CpG-binding protein MeCP2 involves a histone deacetylase
complex. Nature. 393:386–389. 1998. View
Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhang Y, Yan H, Jiang Y, Chen T, Ma Z, Li
F, Lin M, Xu Y, Zhang X, Zhang J and He H: Long non-coding RNA
IGF2-AS represses breast cancer tumorigenesis by epigenetically
regulating IGF2. Exp Biol Med (Maywood). 246:371–379. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ma F, Lei YY, Ding MG, Luo LH, Xie YC and
Liu XL: LncRNA NEAT1 interacted with DNMT1 to regulate malignant
phenotype of cancer cell and cytotoxic T cell infiltration via
epigenetic inhibition of p53, cGAS, and STING in lung cancer. Front
Genet. 11:2502020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Tang J, Xie Y, Xu X, Yin Y, Jiang R, Deng
L, Tan Z, Gangarapu V, Tang J and Sun B: Bidirectional
transcription of Linc00441 and RB1 via H3K27 modification-dependent
way promotes hepatocellular carcinoma. Cell Death Dis. 8:e26752017.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Feng H and Liu X: Interaction between
ACOT7 and LncRNA NMRAL2P via methylation regulates gastric cancer
progression. Yonsei Med J. 61:471–481. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Li N, Zhao Z, Miao F, Cai S, Liu P, Yu Y
and Wang B: Silencing of long non-coding RNA LINC01270 inhibits
esophageal cancer progression and enhances chemosensitivity to
5-fluorouracil by mediating GSTP1methylation. Cancer Gene Ther.
28:471–485. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhang C, Wang L, Jin C, Zhou J, Peng C,
Wang Y, Xu Z, Zhang D, Huang Y, Zhang Y, et al: Long non-coding RNA
Lnc-LALC facilitates colorectal cancer liver metastasis via
epigenetically silencing LZTS1. Cell Death Dis. 12:2242021.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
O'Leary VB, Ovsepian SV, Smida J and
Atkinson MJ: PARTICLE-the RNA podium for genomic silencers. J Cell
Physiol. 234:19464–19470. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
O'Leary VB, Hain S, Maugg D, Smida J,
Azimzadeh O, Tapio S, Ovsepian SV and Atkinson MJ: Long non-coding
RNA PARTICLE bridges histone and DNA methylation. Sci Rep.
7:17902017. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Arab K, Park YJ, Lindroth AM, Schäfer A,
Oakes C, Weichenhan D, Lukanova A, Lundin E, Risch A, Meister M, et
al: Long noncoding RNA TARID directs demethylation and activation
of the tumor suppressor TCF21 via GADD45A. Mol Cell. 55:604–614.
2014. View Article : Google Scholar : PubMed/NCBI
|