|
1
|
Taylor OG, Brzozowski JS and Skelding KA:
Glioblastoma multiforme: An overview of emerging therapeutic
targets. Front Oncol. 9:9632019. View Article : Google Scholar
|
|
2
|
Ostrom QT, Cioffi G, Waite K, Kruchko C
and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain
and other central nervous system tumors diagnosed in the United
States in 2014–2018. Neuro Oncol. 23 (Suppl 2):iii1–iii105. 2021.
View Article : Google Scholar
|
|
3
|
Staquicini FI, Smith TL, Tang FHF,
Gelovani JG, Giordano RJ, Libutti SK, Sidman RL, Cavenee WK, Arap W
and Pasqualini R: Targeted AAVP-based therapy in a mouse model of
human glioblastoma: A comparison of cytotoxic versus suicide gene
delivery strategies. Cancer Gene Ther. 27:301–310. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Vigneswaran K, Neill S and Hadjipanayis
CG: Beyond the World Health Organization grading of infiltrating
gliomas: Advances in the molecular genetics of glioma
classification. Ann Transl Med. 3:952015.PubMed/NCBI
|
|
5
|
Roentgen WC: On a new kind of ray (first
report). Munch Med Wochenschr. 101:1237–1239. 1959.(In German).
PubMed/NCBI
|
|
6
|
Schirrmacher V: From chemotherapy to
biological therapy: A review of novel concepts to reduce the side
effects of systemic cancer treatment (Review). Int J Oncol.
54:407–419. 2019.
|
|
7
|
Newhauser WD and Durante M: Assessing the
risk of second malignancies after modern radiotherapy. Nat Rev
Cancer. 11:438–448. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Thariat J, Hannoun-Levi JM, Sun Myint A,
Vuong T and Gérard JP: Past, present, and future of radiotherapy
for the benefit of patients. Nat Rev Clin Oncol. 10:52–60. 2013.
View Article : Google Scholar
|
|
9
|
Mohan R: Field shaping for
three-dimensional conformal radiation therapy and multileaf
collimation. Semin Radiat Oncol. 5:86–99. 1995. View Article : Google Scholar
|
|
10
|
Milano MT, Katz AW, Zhang H and Okunieff
P: Oligometastases treated with stereotactic body radiotherapy:
Long-term follow-up of prospective study. Int J Radiat Oncol Biol
Phys. 83:878–886. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bucci MK, Bevan A and Roach M III:
Advances in radiation therapy: Conventional to 3D, to IMRT, to 4D,
and beyond. CA Cancer J Clin. 55:117–134. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ling CC, Yorke E and Fuks Z: From IMRT to
IGRT: Frontierland or Neverland? Radiother Oncol. 78:119–122. 2006.
View Article : Google Scholar
|
|
13
|
De Ruysscher D, Mark Lodge M, Jones B,
Brada M, Munro A, Jefferson T and Pijls-Johannesma M: Charged
particles in radiotherapy: A 5-year update of a systematic review.
Radiother Oncol. 103:5–7. 2012. View Article : Google Scholar
|
|
14
|
Lee WS, Seo SJ, Chung HK, Park JW, Kim JK
and Kim EH: Tumor-treating fields as a proton beam-sensitizer for
glioblastoma therapy. Am J Cancer Res. 11:4582–4594.
2021.PubMed/NCBI
|
|
15
|
Thwaites DI and Malicki J: Physics and
technology in ESTRO and in Radiotherapy and Oncology: Past, present
and into the 4th dimension. Radiother Oncol. 100:327–332. 2011.
View Article : Google Scholar
|
|
16
|
Borella L, Finkel S, Crapeau N, Peuvrel P,
Sauvage M, Perrier L, Lepage E, Villeminot J and Garrigues B:
Volume and costs of the hospital management of cancer in France in
1999. Bull Cancer. 89:809–821. 2002.(In French). PubMed/NCBI
|
|
17
|
Halperin EC, Wazer DE, Perez CA and Brady
LW: Perez and Brady's: Principles and practice of radiation
oncology. 6e2018.
|
|
18
|
Barani IJ and Larson DA: Radiation therapy
of glioblastoma. Current Understanding and Treatment of Gliomas.
Raizer J and Parsa A: Springer International Publishing; Cham: pp.
49–73. 2015
|
|
19
|
Walker MD, Strike TA and Sheline GE: An
analysis of dose-effect relationship in the radiotherapy of
malignant gliomas. Int J Radiat Oncol Biol Phys. 5:1725–1731. 1979.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chang CH, Horton J, Schoenfeld D, Salazer
O, Perez-Tamayo R, Kramer S, Weinstein A, Nelson JS and Tsukada Y:
Comparison of postoperative radiotherapy and combined postoperative
radiotherapy and chemotherapy in the multidisciplinary management
of malignant gliomas. A joint radiation therapy oncology group and
eastern cooperative oncology group study. Cancer. 52:997–1007.
1983. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Grossman SA and Batara JF: Current
management of glioblastoma multiforme. Semin Oncol. 31:635–644.
2004. View Article : Google Scholar
|
|
22
|
Dhermain F: Radiotherapy of high-grade
gliomas: Current standards and new concepts, innovations in imaging
and radiotherapy, and new therapeutic approaches. Chin J Cancer.
33:16–24. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Travis LB, Demark Wahnefried W, Allan JM,
Wood ME and Ng AK: Aetiology, genetics and prevention of secondary
neoplasms in adult cancer survivors. Nat Rev Clin Oncol.
10:289–301. 2013. View Article : Google Scholar
|
|
24
|
Imaoka T, Ishii N, Kawaguchi I,
Homma-Takeda S, Doi K, Daino K, Nakanishi I, Tagami K, Kokubo T,
Morioka T, et al: Biological measures to minimize the risk of
radiotherapy-associated second cancer: A research perspective. Int
J Radiat Biol. 92:289–301. 2016. View Article : Google Scholar
|
|
25
|
Anjum K, Shagufta BI, Abbas SQ, Patel S,
Khan I, Shah SAA, Akhter N and Hassan SSU: Current status and
future therapeutic perspectives of glioblastoma multiforme (GBM)
therapy: A review. Biomed Pharmacother. 92:681–689. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Gzell C, Back M, Wheeler H, Bailey D and
Foote M: Radiotherapy in glioblastoma: The past, the present and
the future. Clin Oncol (R Coll Radiol). 29:15–25. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Galmarini D, Galmarini CM and Galmarini
FC: Cancer chemotherapy: A critical analysis of its 60 years of
history. Crit Rev Oncol Hematol. 84:181–199. 2012. View Article : Google Scholar
|
|
28
|
DeVita VT and Chu E: A history of cancer
chemotherapy. Cancer Res. 68:8643–8653. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Schütte J and Seeber S:
Tumordefinitionen/remissionskriterien. Therapiekonzepte Onkologie.
Seeber S and Schütte J: Springer; Berlin: pp. 3–12. 1993,
View Article : Google Scholar
|
|
30
|
Dax SL: Antibacterial Chemotherapeutic
Agents. Springer Science & Business Media. 31–416. 1996.
|
|
31
|
Lee SY: Temozolomide resistance in
glioblastoma multiforme. Genes Dis. 3:198–210. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tomar MS, Kumar A, Srivastava C and
Shrivastava A: Elucidating the mechanisms of Temozolomide
resistance in gliomas and the strategies to overcome the
resistance. Biochim Biophys Acta Rev Cancer. 1876:1886162021.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Malmström A, Grønberg BH, Marosi C, Stupp
R, Frappaz D, Schultz H, Abacioglu U, Tavelin B, Lhermitte B, Hegi
ME, et al: Temozolomide versus standard 6-week radiotherapy versus
hypofractionated radiotherapy in patients older than 60 years with
glioblastoma: The Nordic randomised, phase 3 trial. Lancet Oncol.
13:916–926. 2012. View Article : Google Scholar
|
|
34
|
Wen J, Chen W, Zhu Y and Zhang P: Clinical
features associated with the efficacy of chemotherapy in patients
with glioblastoma (GBM): A surveillance, epidemiology, and end
results (SEER) analysis. BMC Cancer. 21:812021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Reithmeier T, Graf E, Piroth T, Trippel M,
Pinsker MO and Nikkhah G: BCNU for recurrent glioblastoma
multiforme: Efficacy, toxicity and prognostic factors. BMC Cancer.
10:302010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Xiao ZZ, Wang ZF, Lan T, Huang WH, Zhao
YH, Ma C and Li ZQ: Carmustine as a supplementary therapeutic
option for glioblastoma: A systematic review and meta-analysis.
Front Neurol. 11:10362020. View Article : Google Scholar
|
|
37
|
Mooney J, Bernstock JD, Ilyas A, Ibrahim
A, Yamashita D, Markert JM and Nakano I: Current approaches and
challenges in the molecular therapeutic targeting of glioblastoma.
World Neurosurg. 129:90–100. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Stupp R, Taillibert S, Kanner AA, Kesari
S, Steinberg DM, Toms SA, Taylor LP, Lieberman F, Silvani A, Fink
KL, et al: Maintenance therapy with tumor-treating fields plus
temozolomide vs temozolomide alone for glioblastoma: A randomized
clinical trial. JAMA. 314:2535–2543. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Jaffe N, Paed D, Traggis D, Salian S and
Cassady JR: Improved outlook for Ewing's sarcoma with combination
chemotherapy (vincristine, actinomycin D and cyclophosphamide) and
radiation therapy. Cancer. 38:1925–1930. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Nishimura Y: Rationale for
chemoradiotherapy. Int J Clin Oncol. 9:414–420. 2004. View Article : Google Scholar
|
|
41
|
Bernier J and Bentzen SM: Altered
fractionation and combined radio-chemotherapy approaches:
Pioneering new opportunities in head and neck oncology. Eur J
Cancer. 39:560–571. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Le Chevalier T, Arriagada R, Quoix E,
Ruffie P, Martin M, Tarayre M, Lacombe-Terrier MJ, Douillard JY and
Laplanche A: Radiotherapy alone versus combined chemotherapy and
radiotherapy in nonresectable non-small-cell lung cancer: First
analysis of a randomized trial in 353 patients. J Natl Cancer Inst.
83:417–423. 1991. View Article : Google Scholar
|
|
43
|
Mukherjee S, Hurt CN, Bridgewater J, Falk
S, Cummins S, Wasan H, Crosby T, Jephcott C, Roy R, Radhakrishna G,
et al: Gemcitabine-based or capecitabine-based chemoradiotherapy
for locally advanced pancreatic cancer (SCALOP): A multicentre,
randomised, phase 2 trial. Lancet Oncol. 14:317–326. 2013.
View Article : Google Scholar
|
|
44
|
Lefebvre JL, Chevalier D, Luboinski B,
Kirkpatrick A, Collette L and Sahmoud T: Larynx preservation in
pyriform sinus cancer: Preliminary results of a European
organization for research and treatment of cancer phase III trial.
EORTC head and neck cancer cooperative group. J Natl Cancer Inst.
88:890–899. 1996. View Article : Google Scholar
|
|
45
|
Redden MH and Fuhrman GM: Neoadjuvant
chemotherapy in the treatment of breast cancer. Surg Clin North Am.
93:493–499. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Malmström A, Poulsen HS, Grønberg BH,
Stragliotto G, Hansen S, Asklund T, Holmlund B, Łysiak M, Dowsett
J, Kristensen BW, et al: Postoperative neoadjuvant temozolomide
before radiotherapy versus standard radiotherapy in patients 60
years or younger with anaplastic astrocytoma or glioblastoma: A
randomized trial. Acta Oncol. 56:1776–1785. 2017. View Article : Google Scholar
|
|
47
|
Brunner TB: The rationale of combined
radiotherapy and chemotherapy-joint action of castor and pollux.
Best Pract Res Clin Gastroenterol. 30:515–528. 2016. View Article : Google Scholar
|
|
48
|
Stupp R, Mason WP, van den Bent MJ, Weller
M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn
U, et al: Radiotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Brandes AA, Franceschi E, Tosoni A,
Benevento F, Scopece L, Mazzocchi V, Bacci A, Agati R, Calbucci F
and Ermani M: Temozolomide concomitant and adjuvant to radiotherapy
in elderly patients with glioblastoma: Correlation with MGMT
promoter methylation status. Cancer. 115:3512–3518. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Perry JR, Laperriere N, O'Callaghan CJ,
Brandes AA, Menten J, Phillips C, Fay M, Nishikawa R, Cairncross
JG, Roa W, et al: Short-course radiation plus temozolomide in
elderly patients with glioblastoma. N Engl J Med. 376:1027–1037.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mizumoto M, Yamamoto T, Ishikawa E,
Matsuda M, Takano S, Ishikawa H, Okumura T, Sakurai H, Matsumura A
and Tsuboi K: Proton beam therapy with concurrent chemotherapy for
glioblastoma multiforme: Comparison of nimustine hydrochloride and
temozolomide. J Neurooncol. 130:165–170. 2016. View Article : Google Scholar
|
|
52
|
Al-Dimassi S, Salloum G, Saykali B, Khoury
O, Liu S, Leppla SH, Abi-Habib R and El-Sibai M: Targeting the MAP
kinase pathway in astrocytoma cells using a recombinant anthrax
lethal toxin as a way to inhibit cell motility and invasion. Int J
Oncol. 48:1913–1920. 2016. View Article : Google Scholar
|
|
53
|
Bao X, Zeng J, Huang H, Ma C, Wang L, Wang
F, Liao X and Song X: Cancer-targeted PEDF-DNA therapy for
metastatic colorectal cancer. Int J Pharm. 576:1189992020.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Branford S, Hughes T, Milner A, Koelmeyer
R, Schwarer A, Arthur C, Filshie R, Moreton S, Lynch K and Taylor
K: Efficacy and safety of imatinib in patients with chronic myeloid
leukemia and complete or near-complete cytogenetic response to
interferon-alpha. Cancer. 110:801–808. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Xie YH, Chen YX and Fang JY: Comprehensive
review of targeted therapy for colorectal cancer. Signal Transduct
Target Ther. 5:222020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Robles Irizarry L, Hambardzumyan D, Nakano
I, Gladson CL and Ahluwalia MS: Therapeutic targeting of VEGF in
the treatment of glioblastoma. Expert Opin Ther Targets.
16:973–984. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Guarnaccia L, Navone SE, Trombetta E,
Cordiglieri C, Cherubini A, Crisà FM, Rampini P, Miozzo M, Fontana
L, Caroli M, et al: Angiogenesis in human brain tumors: Screening
of drug response through a patient-specific cell platform for
personalized therapy. Sci Rep. 8:87482018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Reardon DA, Wen PY, Desjardins A,
Batchelor TT and Vredenburgh JJ: Glioblastoma multiforme: An
emerging paradigm of anti-VEGF therapy. Expert Opin Biol Ther.
8:541–553. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan
T, Yang W, Tian C, Miao Z, Wang T and Yang S: Small molecules in
targeted cancer therapy: Advances, challenges, and future
perspectives. Signal Transduct Target Ther. 6:2012021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Batchelor TT, Duda DG, di Tomaso E,
Ancukiewicz M, Plotkin SR, Gerstner E, Eichler AF, Drappatz J,
Hochberg FH, Benner T, et al: Phase II study of cediranib, an oral
pan-vascular endothelial growth factor receptor tyrosine kinase
inhibitor, in patients with recurrent glioblastoma. J Clin Oncol.
28:2817–2823. 2010. View Article : Google Scholar
|
|
61
|
Kim MM, Umemura Y and Leung D: Bevacizumab
and glioblastoma: Past, present, and future directions. Cancer J.
24:180–186. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Diaz RJ, Ali S, Qadir MG, De La Fuente MI,
Ivan ME and Komotar RJ: The role of bevacizumab in the treatment of
glioblastoma. J Neurooncol. 133:455–467. 2017. View Article : Google Scholar
|
|
63
|
Wong ET, Gautam S, Malchow C, Lun M, Pan E
and Brem S: Bevacizumab for recurrent glioblastoma multiforme: A
meta-analysis. J Natl Compr Canc Netw. 9:403–407. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ciombor KK and Berlin J: Aflibercept-a
decoy VEGF receptor. Curr Oncol Rep. 16:3682014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
de Groot JF, Lamborn KR, Chang SM, Gilbert
MR, Cloughesy TF, Aldape K, Yao J, Jackson EF, Lieberman F, Robins
HI, et al: Phase II study of aflibercept in recurrent malignant
glioma: A North American brain tumor consortium study. J Clin
Oncol. 29:2689–2695. 2011. View Article : Google Scholar
|
|
66
|
Carruthers R and Chalmers AJ: Improving
the therapeutic ratio of radiotherapy by targeting the DNA damage
response. Increasing the Therapeutic Ratio of Radiotherapy. Tofilon
PJ and Camphausen K: Springer International Publishing; Cham: pp.
1–34. 2017, View Article : Google Scholar
|
|
67
|
Chalmers AJ: Overcoming resistance of
glioblastoma to conventional cytotoxic therapies by the addition of
PARP inhibitors. Anticancer Agents Med Chem. 10:520–533. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hanna C, Kurian KM, Williams K, Watts C,
Jackson A, Carruthers R, Strathdee K, Cruickshank G, Dunn L,
Erridge S, et al: Pharmacokinetics, safety, and tolerability of
olaparib and temozolomide for recurrent glioblastoma: Results of
the phase I OPARATIC trial. Neuro Oncol. 22:1840–1850. 2020.
View Article : Google Scholar
|
|
69
|
Wirth T, Parker N and Ylä-Herttuala S:
History of gene therapy. Gene. 525:162–169. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Friedmann T: A brief history of gene
therapy. Nat Genet. 2:93–98. 1992. View Article : Google Scholar
|
|
71
|
Das SK, Menezes ME, Bhatia S, Wang XY,
Emdad L, Sarkar D and Fisher PB: Gene therapies for cancer:
Strategies, challenges and successes. J Cell Physiol. 230:259–271.
2015. View Article : Google Scholar
|
|
72
|
Roth JA, Nguyen D, Lawrence DD, Kemp BL,
Carrasco CH, Ferson DZ, Hong WK, Komaki R, Lee JJ, Nesbitt JC, et
al: Retrovirus-mediated wild-type p53 gene transfer to tumors of
patients with lung cancer. Nat Med. 2:985–991. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Griffith TS, Stokes B, Kucaba TA, Earel JK
Jr, VanOosten RL, Brincks EL and Norian LA: TRAIL gene therapy:
From preclinical development to clinical application. Curr Gene
Ther. 9:9–19. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fisher PB: Is mda-7/IL-24 a ‘magic bullet’
for cancer? Cancer Res. 65:10128–10138. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Dai W, Wu J, Wang D and Wang J: Cancer
gene therapy by NF-κB-activated cancer cell-specific expression of
CRISPR/Cas9 targeting telomeres. Gene Ther. 27:266–280. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Putney SD, Brown J, Cucco C, Lee R,
Skorski T, Leonetti C, Geiser T, Calabretta B, Zupi G and Zon G:
Enhanced anti-tumor effects with microencapsulated c-myc antisense
oligonucleotide. Antisense Nucleic Acid Drug Dev. 9:451–458. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Fleming JB, Shen GL, Holloway SE, Davis M
and Brekken RA: Molecular consequences of silencing mutant K-ras in
pancreatic cancer cells: Justification for K-ras-directed therapy.
Mol Cancer Res. 3:413–423. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Singh P, Singh A, Shah S, Vataliya J,
Mittal A and Chitkara D: RNA interference nanotherapeutics for
treatment of glioblastoma multiforme. Mol Pharm. 17:4040–4066.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Danhier F, Messaoudi K, Lemaire L, Benoit
JP and Lagarce F: Combined anti-Galectin-1 and anti-EGFR
siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide
resistance in glioblastoma: In vivo evaluation. Int J Pharm.
481:154–161. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Azambuja JH, Schuh RS, Michels LR,
Gelsleichter NE, Beckenkamp LR, Iser IC, Lenz GS, de Oliveira FH,
Venturin G, Greggio S, et al: Nasal administration of cationic
nanoemulsions as CD73-siRNA delivery system for glioblastoma
treatment: A new therapeutical approach. Mol Neurobiol. 57:635–649.
2020. View Article : Google Scholar
|
|
81
|
Kumthekar P, Ko CH, Paunesku T, Dixit K,
Sonabend AM, Bloch O, Tate M, Schwartz M, Zuckerman L, Lezon R, et
al: A first-in-human phase 0 clinical study of RNA
interference-based spherical nucleic acids in patients with
recurrent glioblastoma. Sci Transl Med. 13:eabb39452021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Mercatelli N, Galardi S and Ciafrè SA:
MicroRNAs as multifaceted players in glioblastoma multiforme. Int
Rev Cell Mol Biol. 333:269–323. 2017. View Article : Google Scholar
|
|
83
|
Choppavarapu L and Kandi SM: Circulating
MicroRNAs as potential biomarkers in glioma: A mini-review. Endocr
Metab Immune Disord Drug Targets. 21:195–202. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Møller HG, Rasmussen AP, Andersen HH,
Johnsen KB, Henriksen M and Duroux M: A systematic review of
microRNA in glioblastoma multiforme: Micro-modulators in the
mesenchymal mode of migration and invasion. Mol Neurobiol.
47:131–144. 2013. View Article : Google Scholar
|
|
85
|
Sugio K, Sakurai F, Katayama K, Tashiro K,
Matsui H, Kawabata K, Kawase A, Iwaki M, Hayakawa T, Fujiwara T and
Mizuguchi H: Enhanced safety profiles of the telomerase-specific
replication-competent adenovirus by incorporation of normal
cell-specific microRNA-targeted sequences. Clin Cancer Res.
17:2807–2818. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Guessous F, Zhang Y, Kofman A, Catania A,
Li Y, Schiff D, Purow B and Abounader R: microRNA-34a is tumor
suppressive in brain tumors and glioma stem cells. Cell Cycle.
9:1031–1036. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ananta JS, Paulmurugan R and Massoud TF:
Tailored nanoparticle codelivery of antimiR-21 and antimiR-10b
augments glioblastoma cell kill by temozolomide: Toward a
‘personalized’ anti-microRNA therapy. Mol Pharm. 13:3164–3175.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Viel T, Monfared P, Schelhaas S, Fricke
IB, Kuhlmann MT, Fraefel C and Jacobs AH: Optimizing glioblastoma
temozolomide chemotherapy employing lentiviral-based anti-MGMT
shRNA technology. Mol Ther. 21:570–579. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhang D, Dai D, Zhou M, Li Z, Wang C, Lu
Y, Li Y and Wang J: Inhibition of cyclin D1 expression in human
glioblastoma cells is associated with increased temozolomide
chemosensitivity. Cell Physiol Biochem. 51:2496–2508. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Song WS, Yang YP, Huang CS, Lu KH, Liu WH,
Wu WW, Lee YY, Lo WL, Lee SD, Chen YW, et al: Sox2, a stemness
gene, regulates tumor-initiating and drug-resistant properties in
CD133-positive glioblastoma stem cells. J Chin Med Assoc.
79:538–545. 2016. View Article : Google Scholar
|
|
91
|
Zhang Z, Yin J, Lu C, Wei Y, Zeng A and
You Y: Exosomal transfer of long non-coding RNA SBF2-AS1 enhances
chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer
Res. 38:1662019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Hsu JF, Chu SM, Liao CC, Wang CJ, Wang YS,
Lai MY, Wang HC, Huang HR and Tsai MH: Nanotechnology and
nanocarrier-based drug delivery as the potential therapeutic
strategy for glioblastoma multiforme: An update. Cancers (Basel).
13:1952021. View Article : Google Scholar
|
|
93
|
Lathia JD, Heddleston JM, Venere M and
Rich JN: Deadly teamwork: Neural cancer stem cells and the tumor
microenvironment. Cell Stem Cell. 8:482–485. 2011. View Article : Google Scholar
|
|
94
|
Wang X, Prager BC, Wu Q, Kim LJY, Gimple
RC, Shi Y, Yang K, Morton AR, Zhou W, Zhu Z, et al: Reciprocal
signaling between glioblastoma stem cells and differentiated tumor
cells promotes malignant progression. Cell Stem Cell.
22:514–528.e5. 2018. View Article : Google Scholar
|
|
95
|
Ni J, Xie S, Ramkissoon SH, Luu V, Sun Y,
Bandopadhayay P, Beroukhim R, Roberts TM, Stiles CD, Segal RA, et
al: Tyrosine receptor kinase B is a drug target in astrocytomas.
Neuro Oncol. 19:22–30. 2017. View Article : Google Scholar
|
|
96
|
Yuan X, Curtin J, Xiong Y, Liu G,
Waschsmann-Hogiu S, Farkas DL, Black KL and Yu JS: Isolation of
cancer stem cells from adult glioblastoma multiforme. Oncogene.
23:9392–9400. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Brescia P, Ortensi B, Fornasari L, Levi D,
Broggi G and Pelicci G: CD133 is essential for glioblastoma stem
cell maintenance. Stem Cells. 31:857–869. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Carlsson SK, Brothers SP and Wahlestedt C:
Emerging treatment strategies for glioblastoma multiforme. EMBO Mol
Med. 6:1359–1370. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Porporato PE, Filigheddu N, Pedro JMB,
Kroemer G and Galluzzi L: Mitochondrial metabolism and cancer. Cell
Res. 28:265–280. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Sighel D, Notarangelo M, Aibara S, Re A,
Ricci G, Guida M, Soldano A, Adami V, Ambrosini C, Broso F, et al:
Inhibition of mitochondrial translation suppresses glioblastoma
stem cell growth. Cell Rep. 35:1090242021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Sharifzad F, Ghavami S, Verdi J, Mardpour
S, Mollapour Sisakht M, Azizi Z, Taghikhani A, Łos MJ, Fakharian E,
Ebrahimi M and Hamidieh AA: Glioblastoma cancer stem cell biology:
Potential theranostic targets. Drug Resist Updat. 42:35–45. 2019.
View Article : Google Scholar
|
|
102
|
Bai RY, Staedtke V and Riggins GJ:
Molecular targeting of glioblastoma: Drug discovery and therapies.
Trends Mol Med. 17:301–312. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Oiseth SJ and Aziz MS: Cancer
immunotherapy: A brief review of the history, possibilities, and
challenges ahead. J Cancer Metastasis Treat. 3:250–261. 2017.
View Article : Google Scholar
|
|
104
|
Zhang Y and Zhang Z: The history and
advances in cancer immunotherapy: Understanding the characteristics
of tumor-infiltrating immune cells and their therapeutic
implications. Cell Mol Immunol. 17:807–821. 2020. View Article : Google Scholar
|
|
105
|
Yu MW and Quail DF: Immunotherapy for
glioblastoma: Current progress and challenges. Front Immunol.
12:6763012021. View Article : Google Scholar
|
|
106
|
Liu J, Fu M, Wang M, Wan D, Wei Y and Wei
X: Cancer vaccines as promising immuno-therapeutics: Platforms and
current progress. J Hematol Oncol. 15:282022. View Article : Google Scholar
|
|
107
|
Hollingsworth RE and Jansen K: Turning the
corner on therapeutic cancer vaccines. NPJ Vaccines. 4:72019.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Buonaguro L and Tagliamonte M: Selecting
target antigens for cancer vaccine development. Vaccines (Basel).
8:6152020. View Article : Google Scholar
|
|
109
|
Kim CG, Sang YB, Lee JH and Chon HJ:
Combining cancer vaccines with immunotherapy: Establishing a new
immunological approach. Int J Mol Sci. 22:80352021. View Article : Google Scholar
|
|
110
|
Schietinger A, Philip M and Schreiber H:
Specificity in cancer immunotherapy. Semin Immunol. 20:276–285.
2008. View Article : Google Scholar
|
|
111
|
Rüttinger D, Winter H, van den Engel NK,
Hatz R, Jauch KW, Fox BA and Weber JS: Immunotherapy of cancer: Key
findings and commentary on the third Tegernsee conference.
Oncologist. 15:112–118. 2010. View Article : Google Scholar
|
|
112
|
Oh T, Sayegh ET, Fakurnejad S, Oyon D,
Lamano JB, DiDomenico JD, Bloch O and Parsa AT: Vaccine therapies
in malignant glioma. Curr Neurol Neurosci Rep. 15:5082015.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Baratta MG: Glioblastoma is ‘hot’ for
personalized vaccines. Nat Rev Cancer. 19:1292019. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Polyzoidis S and Ashkan K:
DCVax®-L-developed by northwest biotherapeutics. Hum
Vaccines Immunother. 10:3139–3145. 2014. View Article : Google Scholar
|
|
115
|
Wen PY, Reardon DA, Armstrong TS,
Phuphanich S, Aiken RD, Landolfi JC, Curry WT, Zhu JJ, Glantz M,
Peereboom DM, et al: A randomized double-blind placebo-controlled
phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed
patients with glioblastoma. Clin Cancer Res. 25:5799–5807. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Phuphanich S, Wheeler CJ, Rudnick JD,
Mazer M, Wang H, Nuño MA, Richardson JE, Fan X, Ji J, Chu RM, et
al: Phase I trial of a multi-epitope-pulsed dendritic cell vaccine
for patients with newly diagnosed glioblastoma. Cancer Immunol
Immunother. 62:125–135. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Keskin DB, Anandappa AJ, Sun J, Tirosh I,
Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E,
et al: Neoantigen vaccine generates intratumoral T cell responses
in phase Ib glioblastoma trial. Nature. 565:234–239. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur
V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V,
van der Burg SH, et al: Actively personalized vaccination trial for
newly diagnosed glioblastoma. Nature. 565:240–245. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
AIVITA Biomedical, Inc., . AIVITA
biomedical's phase 2 glioblastoma trial shows improved progression
free survival. 2021.
|
|
120
|
Conlon KC, Miljkovic MD and Waldmann TA:
Cytokines in the treatment of cancer. J Interferon Cytokine Res.
39:6–21. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Rallis KS, Corrigan AE, Dadah H, George
AM, Keshwara SM, Sideris M and Szabados B: Cytokine-based cancer
immunotherapy: Challenges and opportunities for IL-10. Anticancer
Res. 41:3247–3252. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Berraondo P, Sanmamed MF, Ochoa MC,
Etxeberria I, Aznar MA, Pérez-Gracia JL, Rodríguez-Ruiz ME,
Ponz-Sarvise M, Castañón E and Melero I: Cytokines in clinical
cancer immunotherapy. Br J Cancer. 120:6–15. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Xue D, Hsu E, Fu YX and Peng H:
Next-generation cytokines for cancer immunotherapy. Antib Ther.
4:123–133. 2021.PubMed/NCBI
|
|
124
|
Zhu VF, Yang J, Lebrun DG and Li M:
Understanding the role of cytokines in glioblastoma multiforme
pathogenesis. Cancer Lett. 316:139–150. 2012. View Article : Google Scholar
|
|
125
|
Chulpanova DS, Kitaeva KV, Green AR,
Rizvanov AA and Solovyeva VV: Molecular aspects and future
perspectives of cytokine-based anti-cancer immunotherapy. Front
Cell Dev Biol. 8:4022020. View Article : Google Scholar
|
|
126
|
Chiocca EA, Yu JS, Lukas RV, Solomon IH,
Ligon KL, Nakashima H, Triggs DA, Reardon DA, Wen P, Stopa BM, et
al: Regulatable interleukin-12 gene therapy in patients with
recurrent high-grade glioma: Results of a phase 1 trial. Sci Transl
Med. 11:eaaw56802019. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Garcia D: Encouraging clinical data for
controlled IL-12 for the treatment of glioblastoma and DIPG.
Onco'Zine. 2020.
|
|
128
|
Kane A and Yang I: Interferon-gamma in
brain tumor immunotherapy. Neurosurg Clin N Am. 21:77–86. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Wakabayashi T, Kayama T, Nishikawa R,
Takahashi H, Hashimoto N, Takahashi J, Aoki T, Sugiyama K, Ogura M,
Natsume A and Yoshida J: A multicenter phase I trial of combination
therapy with interferon-β and temozolomide for high-grade gliomas
(INTEGRA study): The final report. J Neurooncol. 104:573–577. 2011.
View Article : Google Scholar
|
|
130
|
Iwami K, Natsume A and Wakabayashi T:
Cytokine therapy of gliomas. Intracranial Gliomas Part III–Innov
Treat Modalities. 32:79–89. 2018. View Article : Google Scholar
|
|
131
|
Rosenberg SA, Restifo NP, Yang JC, Morgan
RA and Dudley ME: Adoptive cell transfer: A clinical path to
effective cancer immunotherapy. Nat Rev Cancer. 8:299–308. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Redeker A and Arens R: Improving adoptive
T cell therapy: The particular role of T cell costimulation,
cytokines, and post-transfer vaccination. Front Immunol. 7:3452016.
View Article : Google Scholar
|
|
133
|
Rohaan MW, Wilgenhof S and Haanen JBAG:
Adoptive cellular therapies: The current landscape. Virchows Arch.
474:449–461. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Lin B, Du L, Li H, Zhu X, Cui L and Li X:
Tumor-infiltrating lymphocytes: Warriors fight against tumors
powerfully. Biomed Pharmacother. 132:1108732020. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Chruściel E, Urban-Wójciuk Z, Arcimowicz
Ł, Kurkowiak M, Kowalski J, Gliwiński M, Marjański T, Rzyman W,
Biernat W, Dziadziuszko R, et al: Adoptive cell therapy-harnessing
antigen-specific T cells to target solid tumours. Cancers (Basel).
12:6832020. View Article : Google Scholar
|
|
136
|
Benmebarek MR, Karches CH, Cadilha BL,
Lesch S, Endres S and Kobold S: Killing mechanisms of chimeric
antigen receptor (CAR) T cells. Int J Mol Sci. 20:12832019.
View Article : Google Scholar
|
|
137
|
Xu S, Tang L, Li X, Fan F and Liu Z:
Immunotherapy for glioma: Current management and future
application. Cancer Lett. 476:1–12. 2020. View Article : Google Scholar
|
|
138
|
Ahmed N, Brawley V, Hegde M, Bielamowicz
K, Kalra M, Landi D, Robertson C, Gray TL, Diouf O, Wakefield A, et
al: HER2-specific chimeric antigen receptor-modified virus-specific
T cells for progressive glioblastoma: A phase 1 dose-escalation
trial. JAMA Oncol. 3:1094–1101. 2017. View Article : Google Scholar
|
|
139
|
Brown CE, Badie B, Barish ME, Weng L,
Ostberg JR, Chang WC, Naranjo A, Starr R, Wagner J, Wright C, et
al: Bioactivity and safety of IL13Rα2-redirected chimeric antigen
receptor CD8+ T cells in patients with recurrent glioblastoma. Clin
Cancer Res. 21:4062–4072. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
de Mello RA, Veloso AF, Esrom Catarina P,
Nadine S and Antoniou G: Potential role of immunotherapy in
advanced non-small-cell lung cancer. OncoTargets Ther. 10:21–30.
2016. View Article : Google Scholar
|
|
141
|
Dine J, Gordon R, Shames Y, Kasler MK and
Barton-Burke M: Immune checkpoint inhibitors: An innovation in
immunotherapy for the treatment and management of patients with
cancer. Asia Pac J Oncol Nurs. 4:127–135. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Wilky BA: Immune checkpoint inhibitors:
The linchpins of modern immunotherapy. Immunol Rev. 290:6–23. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Mpakali A and Stratikos E: The role of
antigen processing and presentation in cancer and the efficacy of
immune checkpoint inhibitor immunotherapy. Cancers (Basel).
13:1342021. View Article : Google Scholar
|
|
144
|
Cloughesy TF, Mochizuki AY, Orpilla JR,
Hugo W, Lee AH, Davidson TB, Wang AC, Ellingson BM, Rytlewski JA,
Sanders CM, et al: Neoadjuvant anti-PD-1 immunotherapy promotes a
survival benefit with intratumoral and systemic immune responses in
recurrent glioblastoma. Nat Med. 25:477–486. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Omuro A, Vlahovic G, Lim M, Sahebjam S,
Baehring J, Cloughesy T, Voloschin A, Ramkissoon SH, Ligon KL,
Latek R, et al: Nivolumab with or without ipilimumab in patients
with recurrent glioblastoma: Results from exploratory phase I
cohorts of CheckMate 143. Neuro Oncol. 20:674–686. 2018. View Article : Google Scholar
|
|
146
|
Reardon DA, Brandes AA, Omuro A,
Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr
O, et al: Effect of nivolumab vs bevacizumab in patients with
recurrent glioblastoma: The CheckMate 143 phase 3 randomized
clinical trial. JAMA Oncol. 6:1003–1010. 2020. View Article : Google Scholar
|
|
147
|
Sloan AE, Gilbert MR, Zhang P, Aldape KD,
Wu J, Rogers LR, Wen PY, Barani IJ, Iwamoto FM, Raval RR, et al:
NRG BN002: Phase I study of checkpoint inhibitors anti-CTLA-4,
anti-PD-1, the combination in patients with newly diagnosed
glioblastoma. J Clin Oncol. 36 (15 Suppl):S20532018. View Article : Google Scholar
|
|
148
|
Schwarze JK, Duerinck J, Dufait I, Awada
G, Klein S, Fischbuch L, Seynaeve L, Vaeyens E, Rogiers A, Everaert
H, et al: A phase I clinical trial on intratumoral and
intracavitary administration of ipilimumab and nivolumab in
patients with recurrent glioblastoma. J Clin Oncol. 38 (15
Suppl):S25342020. View Article : Google Scholar
|
|
149
|
Batich KA and Sampson JH: Standard of care
and future pharmacological treatment options for malignant glioma:
An urgent need for screening and identification of novel
tumor-specific antigens. Expert Opin Pharmacother. 15:2047–2061.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Jessen NA, Munk AS, Lundgaard I and
Nedergaard M: The glymphatic system: A beginner's guide. Neurochem
Res. 40:2583–2599. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Zaimy MA, Saffarzadeh N, Mohammadi A,
Pourghadamyari H, Izadi P, Sarli A, Moghaddam LK, Paschepari SR,
Azizi H, Torkamandi S and Tavakkoly-Bazzaz J: New methods in the
diagnosis of cancer and gene therapy of cancer based on
nanoparticles. Cancer Gene Ther. 24:233–243. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Zhao CY, Cheng R, Yang Z and Tian ZM:
Nanotechnology for cancer therapy based on chemotherapy. Molecules.
23:8262018. View Article : Google Scholar
|
|
153
|
Husain SR, Han J, Au P, Shannon K and Puri
RK: Gene therapy for cancer: Regulatory considerations for
approval. Cancer Gene Ther. 22:554–563. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Research C for BE and ABECMA (idecabtagene
vicleucel). FDA; 2021
|
|
155
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Springfeld C, Jäger D, Büchler MW, Strobel
O, Hackert T, Palmer DH and Neoptolemos JP: Chemotherapy for
pancreatic cancer. Presse Med. 48:e159–e174. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Wilson GD, Bentzen SM and Harari PM:
Biologic basis for combining drugs with radiation. Semin Radiat
Oncol. 16:2–9. 2006. View Article : Google Scholar
|
|
158
|
Karachi A, Dastmalchi F, Mitchell DA and
Rahman M: Temozolomide for immunomodulation in the treatment of
glioblastoma. Neuro Oncol. 20:1566–1572. 2018. View Article : Google Scholar
|
|
159
|
Liu EK, Sulman EP, Wen PY and Kurz SC:
Novel therapies for glioblastoma. Curr Neurol Neurosci Rep.
20:192020. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Kijima N and Kanemura Y: Mouse models of
glioblastoma. In: Glioblastoma. De Vleeschouwer S: Codon
Publications; Brisbane, AU: 2017
|
|
161
|
Charles NA and Holland EC: The
perivascular niche microenvironment in brain tumor progression.
Cell Cycle. 9:3084–3093. 2010. View Article : Google Scholar
|
|
162
|
LeBlanc AK and Mazcko CN: Improving human
cancer therapy through the evaluation of pet dogs. Nat Rev Cancer.
20:727–742. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
163
|
Hicks WH, Bird CE, Pernik MN, Haider AS,
Dobariya A, Abdullah KG, Aoun SG, Bentley RT, Cohen-Gadol AA,
Bachoo RM, et al: Large animal models of glioma: Current status and
future prospects. Anticancer Res. 41:5343–5353. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
164
|
Tora MS, Texakalidis P, Neill S, Wetzel J,
Rindler RS, Hardcastle N, Nagarajan PP, Krasnopeyev A, Roach C,
James R, et al: Lentiviral vector induced modeling of high-grade
spinal cord glioma in minipigs. Sci Rep. 10:52912020. View Article : Google Scholar : PubMed/NCBI
|
|
165
|
Selek L, Seigneuret E, Nugue G, Wion D,
Nissou MF, Salon C, Seurin MJ, Carozzo C, Ponce F, Roger T and
Berger F: Imaging and histological characterization of a human
brain xenograft in pig: The first induced glioma model in a large
animal. J Neurosci Methods. 221:159–165. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
166
|
Khoshnevis M, Carozzo C, Bonnefont-Rebeix
C, Belluco S, Leveneur O, Chuzel T, Pillet-Michelland E, Dreyfus M,
Roger T, Berger F and Ponce F: Development of induced glioblastoma
by implantation of a human xenograft in Yucatan minipig as a large
animal model. J Neurosci Methods. 282:61–68. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
167
|
Khoshnevis M, Carozzo C, Brown R, Bardiès
M, Bonnefont-Rebeix C, Belluco S, Nennig C, Marcon L, Tillement O,
Gehan H, et al: Feasibility of intratumoral 165Holmium siloxane
delivery to induced U87 glioblastoma in a large animal model, the
Yucatan minipig. PLoS One. 15:e02347722020. View Article : Google Scholar : PubMed/NCBI
|
|
168
|
Rama AR, Alvarez PJ, Madeddu R and Aranega
A: ABC transporters as differentiation markers in glioblastoma
cells. Mol Biol Rep. 41:4847–4851. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
169
|
Ishihara H, Kubota H, Lindberg RL, Leppert
D, Gloor SM, Errede M, Virgintino D, Fontana A, Yonekawa Y and Frei
K: Endothelial cell barrier impairment induced by glioblastomas and
transforming growth factor beta2 involves matrix metalloproteinases
and tight junction proteins. J Neuropathol Exp Neurol. 67:435–448.
2008. View Article : Google Scholar
|
|
170
|
Liebner S, Fischmann A, Rascher G, Duffner
F, Grote EH, Kalbacher H and Wolburg H: Claudin-1 and claudin-5
expression and tight junction morphology are altered in blood
vessels of human glioblastoma multiforme. Acta Neuropathol.
100:323–331. 2000. View Article : Google Scholar
|
|
171
|
Wolburg H, Wolburg-Buchholz K, Kraus J,
Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W
and Engelhardt B: Localization of claudin-3 in tight junctions of
the blood-brain barrier is selectively lost during experimental
autoimmune encephalomyelitis and human glioblastoma multiforme.
Acta Neuropathol. 105:586–592. 2003. View Article : Google Scholar
|
|
172
|
Neftel C, Laffy J, Filbin MG, Hara T,
Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM,
et al: An integrative model of cellular states, plasticity, and
genetics for glioblastoma. Cell. 178:835–849.e21. 2019. View Article : Google Scholar
|
|
173
|
Bhaduri A, Di Lullo E, Jung D, Müller S,
Crouch EE, Espinosa CS, Ozawa T, Alvarado B, Spatazza J, Cadwell
CR, et al: Outer radial glia-like cancer stem cells contribute to
heterogeneity of glioblastoma. Cell Stem Cell. 26:48–63.e6. 2020.
View Article : Google Scholar
|