|
1
|
Abbotts R and Wilson DR: Coordination of
DNA single strand break repair. Free Radic Biol Med. 107:228–244.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Anand SK, Sharma A, Singh N and Kakkar P:
Entrenching role of cell cycle checkpoints and autophagy for
maintenance of genomic integrity. DNA Repair (Amst). 86:1027482020.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Oh JM and Myung K: Crosstalk between
different DNA repair pathways for DNA double strand break repairs.
Mutat Res Genet Toxicol Environ Mutagen. 873:5034382022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lavrik OI: PARPs' impact on base excision
DNA repair. DNA Repair (Amst). 93:1029112020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ray CA and Nussenzweig A: The multifaceted
roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol
Cell Biol. 18:610–621. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Koczor CA, Saville KM, Andrews JF, Clark
J, Fang Q, Li J, Al-Rahahleh RQ, Ibrahim M, McClellan S, Makarov
MV, et al: Temporal dynamics of base Excision/Single-Strand break
repair protein complex assembly/disassembly are modulated by the
PARP/NAD+/SIRT6 axis. Cell Rep. 37:1099172021.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Richard IA, Burgess JT, O'Byrne KJ and
Bolderson E: Beyond PARP1: The potential of other members of the
poly (ADP-Ribose) polymerase family in DNA repair and cancer
therapeutics. Front Cell Dev Biol. 9:8012002021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Covarrubias AJ, Perrone R, Grozio A and
Verdin E: NAD+ metabolism and its roles in cellular
processes during ageing. Nat Rev Mol Cell Biol. 22:119–141. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Gupte R, Liu Z and Kraus WL: PARPs and
ADP-ribosylation: Recent advances linking molecular functions to
biological outcomes. Genes Dev. 31:101–126. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Gao Y, Li C, Wei L, Teng Y, Nakajima S,
Chen X, Xu J, Leger B, Ma H, Spagnol ST, et al: SSRP1 cooperates
with PARP and XRCC1 to facilitate single-strand DNA break repair by
chromatin priming. Cancer Res. 77:2674–2685. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Prokhorova E, Zobel F, Smith R, Zentout S,
Gibbs-Seymour I, Schutzenhofer K, Peters A, Groslambert J, Zorzini
V, Agnew T, et al: Serine-linked PARP1 auto-modification controls
PARP inhibitor response. Nat Commun. 12:40552021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Demeny MA and Virag L: The PARP enzyme
family and the hallmarks of cancer part 1. Cell intrinsic
hallmarks. Cancers (Basel). 13:20422021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Shaw G: The silent disease. Nature. 537
(Suppl):S98–S99. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Linehan WM and Ricketts CJ: The Cancer
Genome Atlas of renal cell carcinoma: Findings and clinical
implications. Nat Rev Urol. 16:539–552. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
Cancers in 185 Countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Mao W, Wang K, Wu Z, Xu B and Chen M:
Current status of research on exosomes in general, and for the
diagnosis and treatment of kidney cancer in particular. J Exp Clin
Cancer Res. 40:3052021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lai Y, Zeng T, Liang X and Wu W, Zhong F
and Wu W: Cell death-related molecules and biomarkers for renal
cell carcinoma targeted therapy. Cancer Cell Int. 19:2212019.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Xiong W, Zhang B, Yu H, Zhu L, Yi L and
Jin X: RRM2 Regulates sensitivity to sunitinib and PD-1 blockade in
renal cancer by stabilizing ANXA1 and activating the AKT pathway.
Adv Sci (Weinh). 8:e21008812021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Popovic M, Matovina-Brko G, Jovic M and
Popovic LS: Immunotherapy: A new standard in the treatment of
metastatic clear cell renal cell carcinoma. World J Clin Oncol.
13:28–38. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Criscuolo D, Morra F, Giannella R,
Visconti R, Cerrato A and Celetti A: New combinatorial strategies
to improve the PARP inhibitors efficacy in the urothelial bladder
Cancer treatment. J Exp Clin Cancer Res. 38:912019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yuasa T, Urasaki T and Oki R: Recent
advances in medical therapy for urological cancers. Front Oncol.
12:7469222022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yin M, Grivas P, Wang QE, Mortazavi A,
Emamekhoo H, Holder SL, Drabick JJ, Woo MS, Pal S, Vasekar M, et
al: Prognostic value of DNA damage response genomic alterations in
Relapsed/Advanced urothelial cancer. Oncologist. 25:680–688. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang W, van Gent DC, Incrocci L, van
Weerden WM and Nonnekens J: Role of the DNA damage response in
prostate cancer formation, progression and treatment. Prostate
Cancer Prostatic Dis. 23:24–37. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chakraborty G, Armenia J, Mazzu YZ,
Nandakumar S, Stopsack KH, Atiq MO, Komura K, Jehane L, Hirani R,
Chadalavada K, et al: Significance of BRCA2 and RB1 Co-loss in
aggressive prostate cancer progression. Clin Cancer Res.
26:2047–2064. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Rimar KJ, Tran PT, Matulewicz RS, Hussain
M and Meeks JJ: The emerging role of homologous recombination
repair and PARP inhibitors in genitourinary malignancies. Cancer-Am
Cancer Soc. 123:1912–1924. 2017.PubMed/NCBI
|
|
26
|
Lord CJ and Ashworth A: PARP inhibitors:
Synthetic lethality in the clinic. Science. 355:1152–1158. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Guo E, Wu C, Ming J, Zhang W, Zhang L and
Hu G: The clinical significance of DNA damage repair signatures in
clear cell renal cell carcinoma. Front Genet. 11:5930392020.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hartman TR, Demidova EV, Lesh RW, Hoang L,
Richardson M, Forman A, Kessler L, Speare V, Golemis EA, Hall MJ,
et al: Prevalence of pathogenic variants in DNA damage response and
repair genes in patients undergoing cancer risk assessment and
reporting a personal history of early-onset renal cancer. Sci Rep.
10:135182020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Karczewski KJ, Francioli LC, Tiao G,
Cummings BB, Alfoldi J, Wang Q, Collins RL, Laricchia KM, Ganna A,
Birnbaum DP, et al: The mutational constraint spectrum quantified
from variation in 141,456 humans. Nature. 581:434–443. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Peng L, Liang J, Wang Q and Chen G: A DNA
Damage repair gene signature associated with immunotherapy response
and clinical prognosis in clear cell renal cell carcinoma. Front
Genet. 13:7988462022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Meng H, Jiang X, Cui J, Yin G, Shi B, Liu
Q, Xuan H and Wang Y: Genomic analysis reveals novel specific
metastatic mutations in Chinese clear cell renal cell carcinoma.
Biomed Res Int. 2020:24951572020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ged Y, Chaim JL, DiNatale RG, Knezevic A,
Kotecha RR, Carlo MI, Lee CH, Foster A, Feldman DR, Teo MY, et al:
DNA damage repair pathway alterations in metastatic clear cell
renal cell carcinoma and implications on systemic therapy. J
Immunother Cancer. 8:e0002302020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Tapia-Laliena MA, Korzeniewski N,
Pena-Llopis S, Scholl C, Frohling S, Hohenfellner M, Duensing A and
Duensing S: Cullin 5 is a novel candidate tumor suppressor in renal
cell carcinoma involved in the maintenance of genome stability.
Oncogenesis. 8:42019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bhattacharjee S and Nandi S: Choices have
consequences: The nexus between DNA repair pathways and genomic
instability in cancer. Clin Transl Med. 5:452016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Huang R and Zhou PK: DNA damage repair:
Historical perspectives, mechanistic pathways and clinical
translation for targeted cancer therapy. Signal Transduct Target
Ther. 6:2542021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Schrempf A, Slyskova J and Loizou JI:
Targeting the DNA repair enzyme polymerase theta in cancer therapy.
Trends Cancer. 7:98–111. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Horton JK, Stefanick DF, Prasad R, Gassman
NR, Kedar PS and Wilson SH: Base excision repair defects invoke
hypersensitivity to PARP inhibition. Mol Cancer Res. 12:1128–1139.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Murai J, Huang SY, Das BB, Renaud A, Zhang
Y, Doroshow JH, Ji J, Takeda S and Pommier Y: Trapping of PARP1 and
PARP2 by clinical PARP inhibitors. Cancer Res. 72:5588–5599. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Shao Z, Lee BJ, Rouleau-Turcotte E,
Langelier MF, Lin X, Estes VM, Pascal JM and Zha S: Clinical PARP
inhibitors do not abrogate PARP1 exchange at DNA damage sites in
vivo. Nucleic Acids Res. 48:9694–9709. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Rao PD, Sankrityayan H, Srivastava A,
Kulkarni YA, Mulay SR and Gaikwad AB: ‘PARP'ing fibrosis:
Repurposing poly (ADP ribose) polymerase (PARP) inhibitors. Drug
Discov Today. 25:1253–1261. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Houl JH, Ye Z, Brosey CA,
Balapiti-Modarage L, Namjoshi S, Bacolla A, Laverty D, Walker BL,
Pourfarjam Y, Warden LS, et al: Selective small molecule PARG
inhibitor causes replication fork stalling and cancer cell death.
Nat Commun. 10:56542019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Slade D: PARP and PARG inhibitors in
cancer treatment. Genes Dev. 34:360–394. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Suskiewicz MJ, Zobel F, Ogden T, Fontana
P, Ariza A, Yang JC, Zhu K, Bracken L, Hawthorne WJ, Ahel D, et al:
HPF1 completes the PARP active site for DNA damage-induced
ADP-ribosylation. Nature. 579:598–602. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hsieh MH, Chen YT, Chen YT, Lee YH, Lu J,
Chien CL, Chen HF, Ho HN, Yu CJ, Wang ZQ and Teng SC: PARP1
controls KLF4-mediated telomerase expression in stem cells and
cancer cells. Nucleic Acids Res. 45:10492–10503. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Miwa M and Masutani M:
PolyADP-ribosylation and cancer. Cancer Sci. 98:1528–1535. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Pillay N, Tighe A, Nelson L, Littler S,
Coulson-Gilmer C, Bah N, Golder A, Bakker B, Spierings D, James DI,
et al: DNA replication vulnerabilities render ovarian cancer cells
sensitive to poly(ADP-Ribose) glycohydrolase inhibitors. Cancer
Cell. 35:519–533. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Pilie PG, Gay CM, Byers LA, O'Connor MJ
and Yap TA: PARP inhibitors: Extending benefit beyond BRCA-mutant
cancers. Clin Cancer Res. 25:3759–3771. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chang WS, Ke HL, Tsai CW, Lien CS, Liao
WL, Lin HH, Lee MH, Wu HC, Chang CH, Chen CC, et al: The role of
XRCC6 T-991C functional polymorphism in renal cell carcinoma.
Anticancer Res. 32:3855–3860. 2012.PubMed/NCBI
|
|
49
|
Wu C, Xu C, Wang G, Zhang D and Zhao X:
Noninvasive circulating tumor cell and urine cellular XPC
(rs2228001, A2815C) and XRCC1 (rs25487, G1196A) polymorphism
detection as an effective screening panel for genitourinary system
cancers. Transl Cancer Res. 8:2803–2812. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hsueh YM, Lin YC, Chen WJ, Huang CY, Shiue
HS, Pu YS, Chen CH and Su CT: The polymorphism XRCC1 Arg194Trp and
8-hydroxydeoxyguanosine increased susceptibility to arsenic-related
renal cell carcinoma. Toxicol Appl Pharmacol. 332:1–7. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Malka MM, Eberle J, Niedermayer K, Zlotos
DP and Wiesmuller L: Dual PARP and RAD51 inhibitory drug conjugates
show synergistic and selective effects on breast cancer cells.
Biomolecules. 11:9812021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xu YY, Ren ZL, Liu XL, Zhang GM, Huang SS,
Shi WH, Ye LX, Luo X, Liu SW, Li YL and Yu L: BAP1 loss augments
sensitivity to BET inhibitors in cancer cells. Acta Pharmacol Sin.
43:1803–1815. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li X, Zhang Z, Fan B, Li Y, Song D and Li
GY: PARP-1 Is a potential marker of retinal photooxidation and a
key signal regulator in retinal light injury. Oxid Med Cell Longev.
2022:68813222022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Li X and Darzynkiewicz Z: Cleavage of
Poly(ADP-ribose) polymerase measured in situ in individual cells:
Relationship to DNA fragmentation and cell cycle position during
apoptosis. Exp Cell Res. 255:125–132. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Desroches A and Denault JB: Caspase-7 uses
RNA to enhance proteolysis of poly(ADP-ribose) polymerase 1 and
other RNA-binding proteins. Proc Natl Acad Sci USA.
116:21521–21528. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Koh DW, Dawson TM and Dawson VL: Mediation
of cell death by poly(ADP-ribose) polymerase-1. Pharmacol Res.
52:5–14. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
D'Amours D, Sallmann FR, Dixit VM and
Poirier GG: Gain-of-function of poly(ADP-ribose) polymerase-1 upon
cleavage by apoptotic proteases: Implications for apoptosis. J Cell
Sci. 114:3771–3778. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Huang Q and Shen HM: To die or to live:
The dual role of poly(ADP-ribose) polymerase-1 in autophagy and
necrosis under oxidative stress and DNA damage. Autophagy.
5:273–276. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rodriguez-Vargas JM, Ruiz-Magana MJ,
Ruiz-Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodriguez MI,
Munoz-Gamez JA, de Almodovar MR, Siles E, Rivas AL, et al:
ROS-induced DNA damage and PARP-1 are required for optimal
induction of starvation-induced autophagy. Cell Res. 22:1181–1198.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Jouan-Lanhouet S, Arshad MI,
Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, Van
Herreweghe F, Takahashi N, Sergent O, Lagadic-Gossmann D,
Vandenabeele P, et al: TRAIL induces necroptosis involving
RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ.
19:2003–2014. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhou Y, Liu L, Tao S, Yao Y, Wang Y, Wei
Q, Shao A and Deng Y: Parthanatos and its associated components:
Promising therapeutic targets for cancer. Pharmacol Res.
163:1052992021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang Y, Kim NS, Haince JF, Kang HC, David
KK, Andrabi SA, Poirier GG, Dawson VL and Dawson TM:
Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is
critical for PAR polymerase-1-dependent cell death (parthanatos).
Sci Signal. 4:a202011. View Article : Google Scholar
|
|
63
|
Hong T, Lei G, Chen X, Li H, Zhang X, Wu
N, Zhao Y, Zhang Y and Wang J: PARP inhibition promotes ferroptosis
via repressing SLC7A11 and synergizes with ferroptosis inducers in
BRCA-proficient ovarian cancer. Redox Biol. 42:1019282021.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wolf C, Smith S and van Wijk SJL:
Zafirlukast Induces VHL- and HIF-2α-dependent oxidative cell death
in 786-O clear cell renal carcinoma cells. Int J Mol Sci.
23:35672022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Manco G, Lacerra G, Porzio E and Catara G:
ADP-Ribosylation Post-translational modification: An overview with
a focus on RNA biology and new pharmacological perspectives.
Biomolecules. 12:4432022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Deeks ED: Olaparib: First global approval.
Drugs. 75:231–240. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kummar S, Chen A, Parchment RE, Kinders
RJ, Ji J, Tomaszewski JE and Doroshow JH: Advances in using PARP
inhibitors to treat cancer. BMC Med. 10:252012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bian C, Zhang C, Luo T, Vyas A, Chen SH,
Liu C, Kassab MA, Yang Y, Kong M and Yu X: NADP+ is an
endogenous PARP inhibitor in DNA damage response and tumor
suppression. Nat Commun. 10:6932019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Murata S, Zhang C, Finch N, Zhang K, Campo
L and Breuer EK: Predictors and modulators of synthetic lethality:
An update on PARP inhibitors and personalized medicine. Biomed Res
Int. 2016:23465852016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zatreanu D, Robinson H, Alkhatib O,
Boursier M, Finch H, Geo L, Grande D, Grinkevich V, Heald RA,
Langdon S, et al: Polθ inhibitors elicit BRCA-gene synthetic
lethality and target PARP inhibitor resistance. Nat Commun.
12:36362021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Boussios S, Rassy E, Moschetta M, Ghose A,
Adeleke S, Sanchez E, Sheriff M, Chargari C and Pavlidis N: BRCA
mutations in ovarian and prostate cancer: Bench to bedside. Cancers
(Basel). 14:36362021.
|
|
72
|
Min A and Im SA: PARP inhibitors as
therapeutics: Beyond modulation of PARylation. Cancers (Basel).
12:3942020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kinoshita T, Nakanishi I, Warizaya M,
Iwashita A, Kido Y, Hattori K and Fujii T: Inhibitor-induced
structural change of the active site of human poly(ADP-ribose)
polymerase. Febs Lett. 556:43–46. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Makhov P, Uzzo RG, Tulin AV and Kolenko
VM: Histone-dependent PARP-1 inhibitors: A novel therapeutic
modality for the treatment of prostate and renal cancers. Urol
Oncol. 39:312–315. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Karpova Y, Guo D, Makhov P, Haines AM,
Markov DA, Kolenko V and Tulin AV: Poly(ADP)-Ribosylation
Inhibition: A promising approach for clear cell renal cell
carcinoma therapy. Cancers (Basel). 13:49732021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Shuch B, Amin A, Armstrong AJ, Eble JN,
Ficarra V, Lopez-Beltran A, Martignoni G, Rini BI and Kutikov A:
Understanding pathologic variants of renal cell carcinoma:
Distilling therapeutic opportunities from biologic complexity. Eur
Urol. 67:85–97. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wang X, Lopez R, Luchtel RA, Hafizi S,
Gartrell B and Shenoy N: Immune evasion in renal cell carcinoma:
Biology, clinical translation, future directions. Kidney Int.
99:75–85. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Nguyen-Tran HH, Nguyen TN, Chen CY and Hsu
T: Endothelial reprogramming stimulated by oncostatin m promotes
inflammation and tumorigenesis in VHL-deficient kidney tissue.
Cancer Res. 81:5060–5073. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Sharma R, Kadife E, Myers M, Kannourakis
G, Prithviraj P and Ahmed N: Determinants of resistance to VEGF-TKI
and immune checkpoint inhibitors in metastatic renal cell
carcinoma. J Exp Clin Cancer Res. 40:1862021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hsieh JJ, Chen D, Wang PI, Marker M,
Redzematovic A, Chen YB, Selcuklu SD, Weinhold N, Bouvier N,
Huberman KH, et al: Genomic biomarkers of a randomized trial
comparing first-line everolimus and sunitinib in patients with
metastatic renal cell carcinoma. Eur Urol. 71:405–414. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Miao D, Margolis CA, Gao W, Voss MH, Li W,
Martini DJ, Norton C, Bosse D, Wankowicz SM, Cullen D, et al:
Genomic correlates of response to immune checkpoint therapies in
clear cell renal cell carcinoma. Science. 359:801–806. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Pal SK, Sonpavde G, Agarwal N, Vogelzang
NJ, Srinivas S, Haas NB, Signoretti S, McGregor BA, Jones J, Lanman
RB, et al: Evolution of circulating tumor DNA profile from
first-line to subsequent therapy in metastatic renal cell
carcinoma. Eur Urol. 72:557–564. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Martinez CN, Xie W, Asim BM, Dzimitrowicz
H, Burkart J, Geynisman DM, Balakrishnan A, Bowman IA, Jain R,
Stadler W, et al: Cabozantinib in advanced non-clear-cell renal
cell carcinoma: A multicentre, retrospective, cohort study. Lancet
Oncol. 20:581–590. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Maroto P, Anguera G, Roldan-Romero JM,
Apellaniz-Ruiz M, Algaba F, Boonman J, Nellist M, Montero-Conde C,
Cascon A, Robledo M and Rodríguez-Antona C: Biallelic TSC2
mutations in a patient with chromophobe renal cell carcinoma
showing extraordinary response to temsirolimus. J Natl Compr Canc
Netw. 16:352–358. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
McGregor BA, McKay RR, Braun DA, Werner L,
Gray K, Flaifel A, Signoretti S, Hirsch MS, Steinharter JA, Bakouny
Z, et al: Results of a multicenter Phase II study of atezolizumab
and bevacizumab for patients with metastatic renal cell carcinoma
with variant histology and/or sarcomatoid features. J Clin Oncol.
38:63–70. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Fallah J, Brave MH, Weinstock C, Mehta GU,
Bradford D, Gittleman H, Bloomquist EW, Charlab R, Hamed SS, Miller
CP, et al: FDA approval summary: Belzutifan for von Hippel-Lindau
disease associated tumors. Clin Cancer Res. Jun 21–2022.(Epub ahead
of print). View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Stransky LA, Vigeant SM, Huang B, West D,
Denize T, Walton E, Signoretti S and Kaelin WJ: Sensitivity of VHL
mutant kidney cancers to HIF2 inhibitors does not require an intact
p53 pathway. Proc Natl Acad Sci USA. 119:e21204031192022.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
He X, Gan F, Zhou Y, Zhang Y, Zhao P, Zhao
B, Tang Q, Ye L, Bu J, Mei J, et al: Nonplanar Helicene
Benzo[4]Helicenium for the precise treatment of renal cell
carcinoma. Small Methods. 5:e21007702021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yan S, Liu L, Ren F, Gao Q, Xu S, Hou B,
Wang Y, Jiang X and Che Y: Sunitinib induces genomic instability of
renal carcinoma cells through affecting the interaction of LC3-II
and PARP-1. Cell Death Dis. 8:e29882017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yang XD, Kong FE, Qi L, Lin JX, Yan Q,
Loong J, Xi SY, Zhao Y, Zhang Y, Yuan YF, et al: PARP inhibitor
Olaparib overcomes Sorafenib resistance through reshaping the
pluripotent transcriptome in hepatocellular carcinoma. Mol Cancer.
20:202021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Pletcher JP, Bhattacharjee S, Doan JP,
Wynn R, Sindhwani P, Nadiminty N and Petros FG: The Emerging role
of poly (ADP-Ribose) polymerase inhibitors as effective therapeutic
agents in renal cell carcinoma. Front Oncol. 11:6814412021.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Scanlon SE, Hegan DC, Sulkowski PL and
Glazer PM: Suppression of homology-dependent DNA double-strand
break repair induces PARP inhibitor sensitivity in VHL-deficient
human renal cell carcinoma. Oncotarget. 9:4647–4660. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhang Q, Xu Y, Zhang Z, Li J, Xia Q and
Chen Y: Folliculin deficient renal cancer cells exhibit BRCA1 a
complex expression impairment and sensitivity to PARP1 inhibitor
olaparib. Gene. 769:1452432021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Szanto M and Bai P: The role of ADP-ribose
metabolism in metabolic regulation, adipose tissue differentiation,
and metabolism. Genes Dev. 34:321–340. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Szanto M, Gupte R, Kraus WL, Pacher P and
Bai P: PARPs in lipid metabolism and related diseases. Prog Lipid
Res. 84:1011172021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zou Y, Palte MJ, Deik AA, Li H, Eaton JK,
Wang W, Tseng YY, Deasy R, Kost-Alimova M, Dancik V, et al: A
GPX4-dependent cancer cell state underlies the clear-cell
morphology and confers sensitivity to ferroptosis. Nat Commun.
10:16172019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Okazaki A, Gameiro PA, Christodoulou D,
Laviollette L, Schneider M, Chaves F, Stemmer-Rachamimov A,
Yazinski SA, Lee R, Stephanopoulos G, et al: Glutaminase and
poly(ADP-ribose) polymerase inhibitors suppress pyrimidine
synthesis and VHL-deficient renal cancers. J Clin Invest.
127:1631–1645. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Shen YA, Hong J, Asaka R, Asaka S, Hsu FC,
Suryo RY, Jung JG, Chen YW, Yen TT, Tomaszewski A, et al:
Inhibition of the MYC-Regulated glutaminase metabolic axis is an
effective synthetic lethal approach for treating chemoresistant
ovarian cancers. Cancer Res. 80:4514–4526. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhao S, Li P, Wu W, Wang Q, Qian B, Li X
and Shen M: Roles of ferroptosis in urologic malignancies. Cancer
Cell Int. 21:6762021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Courtney KD, Bezwada D, Mashimo T,
Pichumani K, Vemireddy V, Funk AM, Wimberly J, McNeil SS, Kapur P,
Lotan Y, et al: Isotope tracing of human clear cell renal cell
carcinomas demonstrates suppressed glucose oxidation in vivo. Cell
Metab. 28:793–800. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhang Y, Huang J, Huang Y, Zhang S and Wu
W, Long H, Duan X, Lai Y and Wu W: Tanshinone I and simvastatin
inhibit melanoma tumour cell growth by regulating poly (ADP ribose)
polymerase 1 expression. Mol Med Rep. 23:402021.PubMed/NCBI
|
|
102
|
Yun EJ, Lin CJ, Dang A, Hernandez E, Guo
J, Chen WM, Allison J, Kim N, Kapur P, Brugarolas J, et al:
Downregulation of human DAB2IP gene expression in renal cell
carcinoma results in resistance to ionizing radiation. Clin Cancer
Res. 25:4542–4551. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhou C, Fabbrizi MR, Hughes JR, Grundy GJ
and Parsons JL: Effectiveness of PARP inhibition in enhancing the
radiosensitivity of 3D spheroids of head and neck squamous cell
carcinoma. Front Oncol. 12:9403772022. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Meng Y, Efimova EV, Hamzeh KW, Darga TE,
Mauceri HJ, Fu YX, Kron SJ and Weichselbaum RR: Radiation-inducible
immunotherapy for cancer: Senescent tumor cells as a cancer
vaccine. Mol Ther. 20:1046–1055. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Liu Q, Xiao Q, Sun Z, Wang B, Wang L, Wang
N, Wang K, Song C and Yang Q: Exosome component 1 cleaves
single-stranded DNA and sensitizes human kidney renal clear cell
carcinoma cells to poly(ADP-ribose) polymerase inhibitor. Elife.
10:e694542021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Cella D, Motzer RJ, Suarez C, Blum SI,
Ejzykowicz F, Hamilton M, Wallace JF, Simsek B, Zhang J, Ivanescu
C, et al: Patient-reported outcomes with first-line nivolumab plus
cabozantinib versus sunitinib in patients with advanced renal cell
carcinoma treated in CheckMate 9ER: An open-label, randomised,
phase 3 trial. Lancet Oncol. 23:292–303. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Hagiwara M, Fushimi A, Matsumoto K and Oya
M: The Significance of PARP1 as a biomarker for predicting the
response to PD-L1 blockade in patients with PBRM1-mutated clear
cell renal cell carcinoma. Eur Urol. 81:145–148. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Chabanon RM, Morel D, Eychenne T,
Colmet-Daage L, Bajrami I, Dorvault N, Garrido M, Meisenberg C,
Lamb A, Ngo C, et al: PBRM1 deficiency confers synthetic lethality
to DNA repair inhibitors in cancer. Cancer Res. 81:2888–2902. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Park JS, Lee ME, Jang WS, Rha KH, Lee SH,
Lee J and Ham WS: The DEAD/DEAH box helicase, DDX11, is essential
for the survival of advanced clear cell renal cell carcinoma and is
a determinant of PARP inhibitor sensitivity. Cancers (Basel).
13:25742021. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Pan XW, Zhang H, Xu D, Chen JX, Chen WJ,
Gan SS, Qu FJ, Chu CM, Cao JW, Fan YH, et al: Identification of a
novel cancer stem cell subpopulation that promotes progression of
human fatal renal cell carcinoma by single-cell RNA-seq analysis.
Int J Biol Sci. 16:3149–3162. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Olson D, Bhalla S, Yang X, Martone B and
Kuzel TM: Novel use of targeted therapy via PARP-Inhibition in a
rare form of papillary renal cell carcinoma: A case report and
literature review. Clin Genitourin Cancer. 14:e445–e448. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Lian BJ, Zhang K, Fang XD, Li F, Dai Z,
Chen WY and Qi XP: Clinical benefit of Niraparib to
TKI/mTORi-resistance metastatic ccRCC with BAP1-frame shift
mutation: Case report and literature review. Front Oncol.
12:9272502022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Saatchi F and Kirchmaier AL: Tolerance of
DNA replication stress is promoted by fumarate through modulation
of histone demethylation and enhancement of replicative
intermediate processing in saccharomyces cerevisiae. Genetics.
212:631–654. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Johnson TI, Costa A, Ferguson AN and
Frezza C: Fumarate hydratase loss promotes mitotic entry in the
presence of DNA damage after ionising radiation. Cell Death Dis.
9:9132018. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Sulkowski PL, Sundaram RK, Oeck S, Corso
CD, Liu Y, Noorbakhsh S, Niger M, Boeke M, Ueno D, Kalathil AN, et
al: Krebs-cycle-deficient hereditary cancer syndromes are defined
by defects in homologous-recombination DNA repair. Nat Genet.
50:1086–1092. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Sulkowski PL, Oeck S, Dow J, Economos NG,
Mirfakhraie L, Liu Y, Noronha K, Bao X, Li J, Shuch BM, et al:
Oncometabolites suppress DNA repair by disrupting local chromatin
signalling. Nature. 582:586–591. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Ueno D, Vasquez JC, Sule A, Liang J, van
Doorn J, Sundaram R, Friedman S, Caliliw R, Ohtake S, Bao X, et al:
Targeting Krebs-cycle-deficient renal cell carcinoma with Poly
ADP-ribose polymerase inhibitors and low-dose alkylating
chemotherapy. Oncotarget. 13:1054–1067. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Li X, Hu D, Li Y, Luo Y, Liang B, Yu K,
Xiong W and Zuo D: Overexpression of TP53INP2 promotes apoptosis in
clear cell renal cell cancer via caspase-8/TRAF6 signaling pathway.
J Immunol Res. 2022:12604232022.PubMed/NCBI
|
|
119
|
Lee HK, Cha HS, Nam MJ, Park K, Yang YH,
Lee J and Park SH: Broussochalcone A induces apoptosis in human
renal cancer cells via ROS level elevation and activation of FOXO3
signaling pathway. Oxid Med Cell Longev. 2021:28007062021.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Xu X, Chua CC, Zhang M, Geng D, Liu CF,
Hamdy RC and Chua BH: The role of PARP activation in
glutamate-induced necroptosis in HT-22 cells. Brain Res.
1343:206–212. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Zheng W, Zhou CY, Zhu XQ, Wang XJ, Li ZY,
Chen XC, Chen F, Che XY and Xie X: Oridonin enhances the
cytotoxicity of 5-FU in renal carcinoma cells by inducting
necroptotic death. Biomed Pharmacother. 106:175–182. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Tsai MF, Chen SM, Ong AZ, Chung YH, Chen
PN, Hsieh YH, Kang YT and Hsu LS: Shikonin induced program cell
death through generation of reactive oxygen species in renal cancer
cells. Antioxidants (Basel). 10:18312021. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Clou E and Luque Y: Angiogenesis
inhibitors: Mechanism of action and nephrotoxicity. Nephrol Ther.
18:1–6. 2022.(In French). View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Al-Harbi NO, Imam F, Alharbi MM, Khan MR,
Qamar W, Afzal M, Algahtani M, Alobaid S, Alfardan AS, Alshammari
A, et al: Role of rivaroxaban in sunitinib-induced renal injuries
via inhibition of oxidative stress-induced apoptosis and
inflammation through the tissue nacrosis factor-α induced nuclear
factor-κappa B signaling pathway in rats. J Thromb Thrombolysis.
50:361–370. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Studentova H, Volakova J, Spisarova M,
Zemankova A, Aiglova K, Szotkowski T and Melichar B: Severe
tyrosine-kinase inhibitor induced liver injury in metastatic renal
cell carcinoma patients: Two case reports assessed for causality
using the updated RUCAM and review of the literature. BMC
Gastroenterol. 22:492022. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Wang Y, An R, Umanah GK, Park H, Nambiar
K, Eacker SM, Kim B, Bao L, Harraz MM, Chang C, et al: A nuclease
that mediates cell death induced by DNA damage and poly(ADP-ribose)
polymerase-1. Science. 354:aad68722016. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Santos SS, Brunialti M, Soriano FG, Szabo
C and Salomao R: Repurposing of clinically approved
Poly-(ADP-Ribose) polymerase inhibitors for the therapy of sepsis.
Shock. 56:901–909. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Mukhopadhyay P, Horvath B, Kechrid M,
Tanchian G, Rajesh M, Naura AS, Boulares AH and Pacher P:
Poly(ADP-ribose) polymerase-1 is a key mediator of
cisplatin-induced kidney inflammation and injury. Free Radic Biol
Med. 51:1774–1788. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Jang HR, Lee K, Jeon J, Kim JR, Lee JE,
Kwon GY, Kim YG, Kim DJ, Ko JW and Huh W: Poly (ADP-Ribose)
polymerase inhibitor treatment as a novel therapy attenuating renal
ischemia-reperfusion injury. Front Immunol. 11:5642882020.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Ahmad A, Olah G, Herndon DN and Szabo C:
The clinically used PARP inhibitor olaparib improves organ
function, suppresses inflammatory responses and accelerates wound
healing in a murine model of third-degree burn injury. Br J
Pharmacol. 175:232–245. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Onji H and Murai J: Reconsidering the
mechanisms of action of PARP inhibitors based on clinical outcomes.
Cancer Sci. 113:2943–2951. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Simonaggio A, Epaillard N, Elaidi R, Sun
CM, Moreira M, Oudard S and Vano YA: Impact of molecular signatures
on the choice of systemic treatment for metastatic kidney cancer.
Bull Cancer. 107 (Suppl):S24–S34. 2020.(In French). View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Konstantinopoulos PA, Barry WT, Birrer M,
Westin SN, Cadoo KA, Shapiro GI, Mayer EL, O'Cearbhaill RE, Coleman
RL, Kochupurakkal B, et al: Olaparib and α-specific PI3K inhibitor
alpelisib for patients with epithelial ovarian cancer: A
dose-escalation and dose-expansion phase 1b trial. Lancet Oncol.
20:570–580. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Abbotts R, Dellomo AJ and Rassool FV:
Pharmacologic induction of BRCAness in BRCA-proficient cancers:
Expanding PARP inhibitor use. Cancers (Basel). 14:26402022.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Nelson LJ, Castro KE, Xu B, Li J, Dinh NB,
Thompson JM, Woytash J, Kipp KR and Razorenova OV: Synthetic
lethality of cyclin-dependent kinase inhibitor Dinaciclib with
VHL-deficiency allows for selective targeting of clear cell renal
cell carcinoma. Cell Cycle. 21:1103–1119. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Zhao Y, Zhou K, Xia X, Guo Y and Tao L:
Chk1 inhibition-induced BRCAness synergizes with olaparib in
p53-deficient cancer cells. Cell Cycle. 1–13. 2022.doi:
10.1080/15384101.2022.2111769 (Epub ahead of print). View Article : Google Scholar
|
|
137
|
Zhou J, Gelot C, Pantelidou C, Li A, Yucel
H, Davis RE, Farkkila A, Kochupurakkal B, Syed A, Shapiro GI, et
al: A first-in-class polymerase theta inhibitor selectively targets
homologous-recombination-deficient tumors. Nat Cancer. 2:598–610.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Ding L, Chen X, Xu X, Qian Y, Liang G, Yao
F, Yao Z, Wu H, Zhang J, He Q and Yang B: PARP1 suppresses the
transcription of PD-L1 by Poly(ADP-Ribosyl)ating STAT3. Cancer
Immunol Res. 7:136–149. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Jiao S, Xia W, Yamaguchi H, Wei Y, Chen
MK, Hsu JM, Hsu JL, Yu WH, Du Y, Lee HH, et al: PARP inhibitor
upregulates PD-L1 expression and enhances cancer-associated
immunosuppression. Clin Cancer Res. 23:3711–3720. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Higuchi T, Flies DB, Marjon NA,
Mantia-Smaldone G, Ronner L, Gimotty PA and Adams SF: CTLA-4
blockade synergizes therapeutically with PARP inhibition in
BRCA1-deficient ovarian cancer. Cancer Immunol Res. 3:1257–1268.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Gallo D, Young JTF, Fourtounis J, Martino
G, Alvarez-Quilon A, Bernier C, Duffy NM, Papp R, Roulston A,
Stocco R, et al: CCNE1 amplification is synthetic lethal with
PKMYT1 kinase inhibition. Nature. 604:749–756. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Bajrami I, Marlow R, van de Ven M, Brough
R, Pemberton HN, Frankum J, Song F, Rafiq R, Konde A, Krastev DB,
et al: E-Cadherin/ROS1 inhibitor synthetic lethality in breast
cancer. Cancer Discov. 8:498–515. 2018. View Article : Google Scholar : PubMed/NCBI
|