Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
December-2022 Volume 48 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2022 Volume 48 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Roles of DNA damage repair and precise targeted therapy in renal cancer (Review)

  • Authors:
    • Yongchang Lai
    • Zhibiao Li
    • Zechao Lu
    • Hanxiong Zheng
    • Chiheng Chen
    • Can Liu
    • Yafei Yang
    • Fucai Tang
    • Zhaohui He
  • View Affiliations / Copyright

    Affiliations: Department of Urology, The Eighth Affiliated Hospital of Sun Yat‑sen University, Shenzhen, Guangdong 518033, P.R. China
    Copyright: © Lai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 213
    |
    Published online on: October 19, 2022
       https://doi.org/10.3892/or.2022.8428
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The primary subtypes of renal cell carcinoma (RCC) include clear cell, papillary and chromophobe RCC. RCC occurs often due to loss of von Hippel‑Lindau (VHL) and accumulation of lipids and glycogen, and RCC cells may exhibit sensitivity to the disruption of normal metabolism or homologous recombination gene defect. Although the application of molecular‑targeted drugs (tyrosine kinase inhibitors) and immune checkpoint inhibitors has been recommended for the treatment of advanced RCC, more targets of DNA damage repair (DDR) signaling pathway involved in the synthetic lethal effect have been investigated. However, although achievements has been made in the exploration of the roles of DDR genes on RCC progression, their association has not been systematically summarized. Poly (ADP‑ribose) polymerase (PARP) 1 inhibitors are used in tumors with BRCA1/2 DNA repair‑associated mutations. PARP family enzymes perform post‑translational modification functions and participate in DDR and cell death. Inhibitors of PARP, ataxia telangiectasia mutant gene and polymerase θ serve key roles in the treatment of specific RCC subtypes. PARP1 may serve as an important biological marker to predict the therapeutic effect of immune checkpoint inhibitors and evaluate the prognosis of patients with ccRCC with polybromo 1 mutation. Therefore, the roles of DDR pathway on RCC progression or treatment may hold promises for the treatment of certain specific types of RCC.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Abbotts R and Wilson DR: Coordination of DNA single strand break repair. Free Radic Biol Med. 107:228–244. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Anand SK, Sharma A, Singh N and Kakkar P: Entrenching role of cell cycle checkpoints and autophagy for maintenance of genomic integrity. DNA Repair (Amst). 86:1027482020. View Article : Google Scholar : PubMed/NCBI

3 

Oh JM and Myung K: Crosstalk between different DNA repair pathways for DNA double strand break repairs. Mutat Res Genet Toxicol Environ Mutagen. 873:5034382022. View Article : Google Scholar : PubMed/NCBI

4 

Lavrik OI: PARPs' impact on base excision DNA repair. DNA Repair (Amst). 93:1029112020. View Article : Google Scholar : PubMed/NCBI

5 

Ray CA and Nussenzweig A: The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 18:610–621. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Koczor CA, Saville KM, Andrews JF, Clark J, Fang Q, Li J, Al-Rahahleh RQ, Ibrahim M, McClellan S, Makarov MV, et al: Temporal dynamics of base Excision/Single-Strand break repair protein complex assembly/disassembly are modulated by the PARP/NAD+/SIRT6 axis. Cell Rep. 37:1099172021. View Article : Google Scholar : PubMed/NCBI

7 

Richard IA, Burgess JT, O'Byrne KJ and Bolderson E: Beyond PARP1: The potential of other members of the poly (ADP-Ribose) polymerase family in DNA repair and cancer therapeutics. Front Cell Dev Biol. 9:8012002021. View Article : Google Scholar : PubMed/NCBI

8 

Covarrubias AJ, Perrone R, Grozio A and Verdin E: NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 22:119–141. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Gupte R, Liu Z and Kraus WL: PARPs and ADP-ribosylation: Recent advances linking molecular functions to biological outcomes. Genes Dev. 31:101–126. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Gao Y, Li C, Wei L, Teng Y, Nakajima S, Chen X, Xu J, Leger B, Ma H, Spagnol ST, et al: SSRP1 cooperates with PARP and XRCC1 to facilitate single-strand DNA break repair by chromatin priming. Cancer Res. 77:2674–2685. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Prokhorova E, Zobel F, Smith R, Zentout S, Gibbs-Seymour I, Schutzenhofer K, Peters A, Groslambert J, Zorzini V, Agnew T, et al: Serine-linked PARP1 auto-modification controls PARP inhibitor response. Nat Commun. 12:40552021. View Article : Google Scholar : PubMed/NCBI

12 

Demeny MA and Virag L: The PARP enzyme family and the hallmarks of cancer part 1. Cell intrinsic hallmarks. Cancers (Basel). 13:20422021. View Article : Google Scholar : PubMed/NCBI

13 

Shaw G: The silent disease. Nature. 537 (Suppl):S98–S99. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Linehan WM and Ricketts CJ: The Cancer Genome Atlas of renal cell carcinoma: Findings and clinical implications. Nat Rev Urol. 16:539–552. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

16 

Mao W, Wang K, Wu Z, Xu B and Chen M: Current status of research on exosomes in general, and for the diagnosis and treatment of kidney cancer in particular. J Exp Clin Cancer Res. 40:3052021. View Article : Google Scholar : PubMed/NCBI

17 

Lai Y, Zeng T, Liang X and Wu W, Zhong F and Wu W: Cell death-related molecules and biomarkers for renal cell carcinoma targeted therapy. Cancer Cell Int. 19:2212019. View Article : Google Scholar : PubMed/NCBI

18 

Xiong W, Zhang B, Yu H, Zhu L, Yi L and Jin X: RRM2 Regulates sensitivity to sunitinib and PD-1 blockade in renal cancer by stabilizing ANXA1 and activating the AKT pathway. Adv Sci (Weinh). 8:e21008812021. View Article : Google Scholar : PubMed/NCBI

19 

Popovic M, Matovina-Brko G, Jovic M and Popovic LS: Immunotherapy: A new standard in the treatment of metastatic clear cell renal cell carcinoma. World J Clin Oncol. 13:28–38. 2022. View Article : Google Scholar : PubMed/NCBI

20 

Criscuolo D, Morra F, Giannella R, Visconti R, Cerrato A and Celetti A: New combinatorial strategies to improve the PARP inhibitors efficacy in the urothelial bladder Cancer treatment. J Exp Clin Cancer Res. 38:912019. View Article : Google Scholar : PubMed/NCBI

21 

Yuasa T, Urasaki T and Oki R: Recent advances in medical therapy for urological cancers. Front Oncol. 12:7469222022. View Article : Google Scholar : PubMed/NCBI

22 

Yin M, Grivas P, Wang QE, Mortazavi A, Emamekhoo H, Holder SL, Drabick JJ, Woo MS, Pal S, Vasekar M, et al: Prognostic value of DNA damage response genomic alterations in Relapsed/Advanced urothelial cancer. Oncologist. 25:680–688. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Zhang W, van Gent DC, Incrocci L, van Weerden WM and Nonnekens J: Role of the DNA damage response in prostate cancer formation, progression and treatment. Prostate Cancer Prostatic Dis. 23:24–37. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Chakraborty G, Armenia J, Mazzu YZ, Nandakumar S, Stopsack KH, Atiq MO, Komura K, Jehane L, Hirani R, Chadalavada K, et al: Significance of BRCA2 and RB1 Co-loss in aggressive prostate cancer progression. Clin Cancer Res. 26:2047–2064. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Rimar KJ, Tran PT, Matulewicz RS, Hussain M and Meeks JJ: The emerging role of homologous recombination repair and PARP inhibitors in genitourinary malignancies. Cancer-Am Cancer Soc. 123:1912–1924. 2017.PubMed/NCBI

26 

Lord CJ and Ashworth A: PARP inhibitors: Synthetic lethality in the clinic. Science. 355:1152–1158. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Guo E, Wu C, Ming J, Zhang W, Zhang L and Hu G: The clinical significance of DNA damage repair signatures in clear cell renal cell carcinoma. Front Genet. 11:5930392020. View Article : Google Scholar : PubMed/NCBI

28 

Hartman TR, Demidova EV, Lesh RW, Hoang L, Richardson M, Forman A, Kessler L, Speare V, Golemis EA, Hall MJ, et al: Prevalence of pathogenic variants in DNA damage response and repair genes in patients undergoing cancer risk assessment and reporting a personal history of early-onset renal cancer. Sci Rep. 10:135182020. View Article : Google Scholar : PubMed/NCBI

29 

Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, et al: The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 581:434–443. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Peng L, Liang J, Wang Q and Chen G: A DNA Damage repair gene signature associated with immunotherapy response and clinical prognosis in clear cell renal cell carcinoma. Front Genet. 13:7988462022. View Article : Google Scholar : PubMed/NCBI

31 

Meng H, Jiang X, Cui J, Yin G, Shi B, Liu Q, Xuan H and Wang Y: Genomic analysis reveals novel specific metastatic mutations in Chinese clear cell renal cell carcinoma. Biomed Res Int. 2020:24951572020. View Article : Google Scholar : PubMed/NCBI

32 

Ged Y, Chaim JL, DiNatale RG, Knezevic A, Kotecha RR, Carlo MI, Lee CH, Foster A, Feldman DR, Teo MY, et al: DNA damage repair pathway alterations in metastatic clear cell renal cell carcinoma and implications on systemic therapy. J Immunother Cancer. 8:e0002302020. View Article : Google Scholar : PubMed/NCBI

33 

Tapia-Laliena MA, Korzeniewski N, Pena-Llopis S, Scholl C, Frohling S, Hohenfellner M, Duensing A and Duensing S: Cullin 5 is a novel candidate tumor suppressor in renal cell carcinoma involved in the maintenance of genome stability. Oncogenesis. 8:42019. View Article : Google Scholar : PubMed/NCBI

34 

Bhattacharjee S and Nandi S: Choices have consequences: The nexus between DNA repair pathways and genomic instability in cancer. Clin Transl Med. 5:452016. View Article : Google Scholar : PubMed/NCBI

35 

Huang R and Zhou PK: DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 6:2542021. View Article : Google Scholar : PubMed/NCBI

36 

Schrempf A, Slyskova J and Loizou JI: Targeting the DNA repair enzyme polymerase theta in cancer therapy. Trends Cancer. 7:98–111. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Horton JK, Stefanick DF, Prasad R, Gassman NR, Kedar PS and Wilson SH: Base excision repair defects invoke hypersensitivity to PARP inhibition. Mol Cancer Res. 12:1128–1139. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S and Pommier Y: Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72:5588–5599. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Shao Z, Lee BJ, Rouleau-Turcotte E, Langelier MF, Lin X, Estes VM, Pascal JM and Zha S: Clinical PARP inhibitors do not abrogate PARP1 exchange at DNA damage sites in vivo. Nucleic Acids Res. 48:9694–9709. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Rao PD, Sankrityayan H, Srivastava A, Kulkarni YA, Mulay SR and Gaikwad AB: ‘PARP'ing fibrosis: Repurposing poly (ADP ribose) polymerase (PARP) inhibitors. Drug Discov Today. 25:1253–1261. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Houl JH, Ye Z, Brosey CA, Balapiti-Modarage L, Namjoshi S, Bacolla A, Laverty D, Walker BL, Pourfarjam Y, Warden LS, et al: Selective small molecule PARG inhibitor causes replication fork stalling and cancer cell death. Nat Commun. 10:56542019. View Article : Google Scholar : PubMed/NCBI

42 

Slade D: PARP and PARG inhibitors in cancer treatment. Genes Dev. 34:360–394. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Suskiewicz MJ, Zobel F, Ogden T, Fontana P, Ariza A, Yang JC, Zhu K, Bracken L, Hawthorne WJ, Ahel D, et al: HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature. 579:598–602. 2020. View Article : Google Scholar : PubMed/NCBI

44 

Hsieh MH, Chen YT, Chen YT, Lee YH, Lu J, Chien CL, Chen HF, Ho HN, Yu CJ, Wang ZQ and Teng SC: PARP1 controls KLF4-mediated telomerase expression in stem cells and cancer cells. Nucleic Acids Res. 45:10492–10503. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Miwa M and Masutani M: PolyADP-ribosylation and cancer. Cancer Sci. 98:1528–1535. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Pillay N, Tighe A, Nelson L, Littler S, Coulson-Gilmer C, Bah N, Golder A, Bakker B, Spierings D, James DI, et al: DNA replication vulnerabilities render ovarian cancer cells sensitive to poly(ADP-Ribose) glycohydrolase inhibitors. Cancer Cell. 35:519–533. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Pilie PG, Gay CM, Byers LA, O'Connor MJ and Yap TA: PARP inhibitors: Extending benefit beyond BRCA-mutant cancers. Clin Cancer Res. 25:3759–3771. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Chang WS, Ke HL, Tsai CW, Lien CS, Liao WL, Lin HH, Lee MH, Wu HC, Chang CH, Chen CC, et al: The role of XRCC6 T-991C functional polymorphism in renal cell carcinoma. Anticancer Res. 32:3855–3860. 2012.PubMed/NCBI

49 

Wu C, Xu C, Wang G, Zhang D and Zhao X: Noninvasive circulating tumor cell and urine cellular XPC (rs2228001, A2815C) and XRCC1 (rs25487, G1196A) polymorphism detection as an effective screening panel for genitourinary system cancers. Transl Cancer Res. 8:2803–2812. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Hsueh YM, Lin YC, Chen WJ, Huang CY, Shiue HS, Pu YS, Chen CH and Su CT: The polymorphism XRCC1 Arg194Trp and 8-hydroxydeoxyguanosine increased susceptibility to arsenic-related renal cell carcinoma. Toxicol Appl Pharmacol. 332:1–7. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Malka MM, Eberle J, Niedermayer K, Zlotos DP and Wiesmuller L: Dual PARP and RAD51 inhibitory drug conjugates show synergistic and selective effects on breast cancer cells. Biomolecules. 11:9812021. View Article : Google Scholar : PubMed/NCBI

52 

Xu YY, Ren ZL, Liu XL, Zhang GM, Huang SS, Shi WH, Ye LX, Luo X, Liu SW, Li YL and Yu L: BAP1 loss augments sensitivity to BET inhibitors in cancer cells. Acta Pharmacol Sin. 43:1803–1815. 2022. View Article : Google Scholar : PubMed/NCBI

53 

Li X, Zhang Z, Fan B, Li Y, Song D and Li GY: PARP-1 Is a potential marker of retinal photooxidation and a key signal regulator in retinal light injury. Oxid Med Cell Longev. 2022:68813222022. View Article : Google Scholar : PubMed/NCBI

54 

Li X and Darzynkiewicz Z: Cleavage of Poly(ADP-ribose) polymerase measured in situ in individual cells: Relationship to DNA fragmentation and cell cycle position during apoptosis. Exp Cell Res. 255:125–132. 2000. View Article : Google Scholar : PubMed/NCBI

55 

Desroches A and Denault JB: Caspase-7 uses RNA to enhance proteolysis of poly(ADP-ribose) polymerase 1 and other RNA-binding proteins. Proc Natl Acad Sci USA. 116:21521–21528. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Koh DW, Dawson TM and Dawson VL: Mediation of cell death by poly(ADP-ribose) polymerase-1. Pharmacol Res. 52:5–14. 2005. View Article : Google Scholar : PubMed/NCBI

57 

D'Amours D, Sallmann FR, Dixit VM and Poirier GG: Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: Implications for apoptosis. J Cell Sci. 114:3771–3778. 2001. View Article : Google Scholar : PubMed/NCBI

58 

Huang Q and Shen HM: To die or to live: The dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. Autophagy. 5:273–276. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Rodriguez-Vargas JM, Ruiz-Magana MJ, Ruiz-Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodriguez MI, Munoz-Gamez JA, de Almodovar MR, Siles E, Rivas AL, et al: ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res. 22:1181–1198. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, Van Herreweghe F, Takahashi N, Sergent O, Lagadic-Gossmann D, Vandenabeele P, et al: TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ. 19:2003–2014. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Zhou Y, Liu L, Tao S, Yao Y, Wang Y, Wei Q, Shao A and Deng Y: Parthanatos and its associated components: Promising therapeutic targets for cancer. Pharmacol Res. 163:1052992021. View Article : Google Scholar : PubMed/NCBI

62 

Wang Y, Kim NS, Haince JF, Kang HC, David KK, Andrabi SA, Poirier GG, Dawson VL and Dawson TM: Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal. 4:a202011. View Article : Google Scholar

63 

Hong T, Lei G, Chen X, Li H, Zhang X, Wu N, Zhao Y, Zhang Y and Wang J: PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol. 42:1019282021. View Article : Google Scholar : PubMed/NCBI

64 

Wolf C, Smith S and van Wijk SJL: Zafirlukast Induces VHL- and HIF-2α-dependent oxidative cell death in 786-O clear cell renal carcinoma cells. Int J Mol Sci. 23:35672022. View Article : Google Scholar : PubMed/NCBI

65 

Manco G, Lacerra G, Porzio E and Catara G: ADP-Ribosylation Post-translational modification: An overview with a focus on RNA biology and new pharmacological perspectives. Biomolecules. 12:4432022. View Article : Google Scholar : PubMed/NCBI

66 

Deeks ED: Olaparib: First global approval. Drugs. 75:231–240. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Kummar S, Chen A, Parchment RE, Kinders RJ, Ji J, Tomaszewski JE and Doroshow JH: Advances in using PARP inhibitors to treat cancer. BMC Med. 10:252012. View Article : Google Scholar : PubMed/NCBI

68 

Bian C, Zhang C, Luo T, Vyas A, Chen SH, Liu C, Kassab MA, Yang Y, Kong M and Yu X: NADP+ is an endogenous PARP inhibitor in DNA damage response and tumor suppression. Nat Commun. 10:6932019. View Article : Google Scholar : PubMed/NCBI

69 

Murata S, Zhang C, Finch N, Zhang K, Campo L and Breuer EK: Predictors and modulators of synthetic lethality: An update on PARP inhibitors and personalized medicine. Biomed Res Int. 2016:23465852016. View Article : Google Scholar : PubMed/NCBI

70 

Zatreanu D, Robinson H, Alkhatib O, Boursier M, Finch H, Geo L, Grande D, Grinkevich V, Heald RA, Langdon S, et al: Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat Commun. 12:36362021. View Article : Google Scholar : PubMed/NCBI

71 

Boussios S, Rassy E, Moschetta M, Ghose A, Adeleke S, Sanchez E, Sheriff M, Chargari C and Pavlidis N: BRCA mutations in ovarian and prostate cancer: Bench to bedside. Cancers (Basel). 14:36362021.

72 

Min A and Im SA: PARP inhibitors as therapeutics: Beyond modulation of PARylation. Cancers (Basel). 12:3942020. View Article : Google Scholar : PubMed/NCBI

73 

Kinoshita T, Nakanishi I, Warizaya M, Iwashita A, Kido Y, Hattori K and Fujii T: Inhibitor-induced structural change of the active site of human poly(ADP-ribose) polymerase. Febs Lett. 556:43–46. 2004. View Article : Google Scholar : PubMed/NCBI

74 

Makhov P, Uzzo RG, Tulin AV and Kolenko VM: Histone-dependent PARP-1 inhibitors: A novel therapeutic modality for the treatment of prostate and renal cancers. Urol Oncol. 39:312–315. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Karpova Y, Guo D, Makhov P, Haines AM, Markov DA, Kolenko V and Tulin AV: Poly(ADP)-Ribosylation Inhibition: A promising approach for clear cell renal cell carcinoma therapy. Cancers (Basel). 13:49732021. View Article : Google Scholar : PubMed/NCBI

76 

Shuch B, Amin A, Armstrong AJ, Eble JN, Ficarra V, Lopez-Beltran A, Martignoni G, Rini BI and Kutikov A: Understanding pathologic variants of renal cell carcinoma: Distilling therapeutic opportunities from biologic complexity. Eur Urol. 67:85–97. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Wang X, Lopez R, Luchtel RA, Hafizi S, Gartrell B and Shenoy N: Immune evasion in renal cell carcinoma: Biology, clinical translation, future directions. Kidney Int. 99:75–85. 2021. View Article : Google Scholar : PubMed/NCBI

78 

Nguyen-Tran HH, Nguyen TN, Chen CY and Hsu T: Endothelial reprogramming stimulated by oncostatin m promotes inflammation and tumorigenesis in VHL-deficient kidney tissue. Cancer Res. 81:5060–5073. 2021. View Article : Google Scholar : PubMed/NCBI

79 

Sharma R, Kadife E, Myers M, Kannourakis G, Prithviraj P and Ahmed N: Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma. J Exp Clin Cancer Res. 40:1862021. View Article : Google Scholar : PubMed/NCBI

80 

Hsieh JJ, Chen D, Wang PI, Marker M, Redzematovic A, Chen YB, Selcuklu SD, Weinhold N, Bouvier N, Huberman KH, et al: Genomic biomarkers of a randomized trial comparing first-line everolimus and sunitinib in patients with metastatic renal cell carcinoma. Eur Urol. 71:405–414. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ, Norton C, Bosse D, Wankowicz SM, Cullen D, et al: Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science. 359:801–806. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Pal SK, Sonpavde G, Agarwal N, Vogelzang NJ, Srinivas S, Haas NB, Signoretti S, McGregor BA, Jones J, Lanman RB, et al: Evolution of circulating tumor DNA profile from first-line to subsequent therapy in metastatic renal cell carcinoma. Eur Urol. 72:557–564. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Martinez CN, Xie W, Asim BM, Dzimitrowicz H, Burkart J, Geynisman DM, Balakrishnan A, Bowman IA, Jain R, Stadler W, et al: Cabozantinib in advanced non-clear-cell renal cell carcinoma: A multicentre, retrospective, cohort study. Lancet Oncol. 20:581–590. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Maroto P, Anguera G, Roldan-Romero JM, Apellaniz-Ruiz M, Algaba F, Boonman J, Nellist M, Montero-Conde C, Cascon A, Robledo M and Rodríguez-Antona C: Biallelic TSC2 mutations in a patient with chromophobe renal cell carcinoma showing extraordinary response to temsirolimus. J Natl Compr Canc Netw. 16:352–358. 2018. View Article : Google Scholar : PubMed/NCBI

85 

McGregor BA, McKay RR, Braun DA, Werner L, Gray K, Flaifel A, Signoretti S, Hirsch MS, Steinharter JA, Bakouny Z, et al: Results of a multicenter Phase II study of atezolizumab and bevacizumab for patients with metastatic renal cell carcinoma with variant histology and/or sarcomatoid features. J Clin Oncol. 38:63–70. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Fallah J, Brave MH, Weinstock C, Mehta GU, Bradford D, Gittleman H, Bloomquist EW, Charlab R, Hamed SS, Miller CP, et al: FDA approval summary: Belzutifan for von Hippel-Lindau disease associated tumors. Clin Cancer Res. Jun 21–2022.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

87 

Stransky LA, Vigeant SM, Huang B, West D, Denize T, Walton E, Signoretti S and Kaelin WJ: Sensitivity of VHL mutant kidney cancers to HIF2 inhibitors does not require an intact p53 pathway. Proc Natl Acad Sci USA. 119:e21204031192022. View Article : Google Scholar : PubMed/NCBI

88 

He X, Gan F, Zhou Y, Zhang Y, Zhao P, Zhao B, Tang Q, Ye L, Bu J, Mei J, et al: Nonplanar Helicene Benzo[4]Helicenium for the precise treatment of renal cell carcinoma. Small Methods. 5:e21007702021. View Article : Google Scholar : PubMed/NCBI

89 

Yan S, Liu L, Ren F, Gao Q, Xu S, Hou B, Wang Y, Jiang X and Che Y: Sunitinib induces genomic instability of renal carcinoma cells through affecting the interaction of LC3-II and PARP-1. Cell Death Dis. 8:e29882017. View Article : Google Scholar : PubMed/NCBI

90 

Yang XD, Kong FE, Qi L, Lin JX, Yan Q, Loong J, Xi SY, Zhao Y, Zhang Y, Yuan YF, et al: PARP inhibitor Olaparib overcomes Sorafenib resistance through reshaping the pluripotent transcriptome in hepatocellular carcinoma. Mol Cancer. 20:202021. View Article : Google Scholar : PubMed/NCBI

91 

Pletcher JP, Bhattacharjee S, Doan JP, Wynn R, Sindhwani P, Nadiminty N and Petros FG: The Emerging role of poly (ADP-Ribose) polymerase inhibitors as effective therapeutic agents in renal cell carcinoma. Front Oncol. 11:6814412021. View Article : Google Scholar : PubMed/NCBI

92 

Scanlon SE, Hegan DC, Sulkowski PL and Glazer PM: Suppression of homology-dependent DNA double-strand break repair induces PARP inhibitor sensitivity in VHL-deficient human renal cell carcinoma. Oncotarget. 9:4647–4660. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Zhang Q, Xu Y, Zhang Z, Li J, Xia Q and Chen Y: Folliculin deficient renal cancer cells exhibit BRCA1 a complex expression impairment and sensitivity to PARP1 inhibitor olaparib. Gene. 769:1452432021. View Article : Google Scholar : PubMed/NCBI

94 

Szanto M and Bai P: The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism. Genes Dev. 34:321–340. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Szanto M, Gupte R, Kraus WL, Pacher P and Bai P: PARPs in lipid metabolism and related diseases. Prog Lipid Res. 84:1011172021. View Article : Google Scholar : PubMed/NCBI

96 

Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, Tseng YY, Deasy R, Kost-Alimova M, Dancik V, et al: A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun. 10:16172019. View Article : Google Scholar : PubMed/NCBI

97 

Okazaki A, Gameiro PA, Christodoulou D, Laviollette L, Schneider M, Chaves F, Stemmer-Rachamimov A, Yazinski SA, Lee R, Stephanopoulos G, et al: Glutaminase and poly(ADP-ribose) polymerase inhibitors suppress pyrimidine synthesis and VHL-deficient renal cancers. J Clin Invest. 127:1631–1645. 2017. View Article : Google Scholar : PubMed/NCBI

98 

Shen YA, Hong J, Asaka R, Asaka S, Hsu FC, Suryo RY, Jung JG, Chen YW, Yen TT, Tomaszewski A, et al: Inhibition of the MYC-Regulated glutaminase metabolic axis is an effective synthetic lethal approach for treating chemoresistant ovarian cancers. Cancer Res. 80:4514–4526. 2020. View Article : Google Scholar : PubMed/NCBI

99 

Zhao S, Li P, Wu W, Wang Q, Qian B, Li X and Shen M: Roles of ferroptosis in urologic malignancies. Cancer Cell Int. 21:6762021. View Article : Google Scholar : PubMed/NCBI

100 

Courtney KD, Bezwada D, Mashimo T, Pichumani K, Vemireddy V, Funk AM, Wimberly J, McNeil SS, Kapur P, Lotan Y, et al: Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo. Cell Metab. 28:793–800. 2018. View Article : Google Scholar : PubMed/NCBI

101 

Zhang Y, Huang J, Huang Y, Zhang S and Wu W, Long H, Duan X, Lai Y and Wu W: Tanshinone I and simvastatin inhibit melanoma tumour cell growth by regulating poly (ADP ribose) polymerase 1 expression. Mol Med Rep. 23:402021.PubMed/NCBI

102 

Yun EJ, Lin CJ, Dang A, Hernandez E, Guo J, Chen WM, Allison J, Kim N, Kapur P, Brugarolas J, et al: Downregulation of human DAB2IP gene expression in renal cell carcinoma results in resistance to ionizing radiation. Clin Cancer Res. 25:4542–4551. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Zhou C, Fabbrizi MR, Hughes JR, Grundy GJ and Parsons JL: Effectiveness of PARP inhibition in enhancing the radiosensitivity of 3D spheroids of head and neck squamous cell carcinoma. Front Oncol. 12:9403772022. View Article : Google Scholar : PubMed/NCBI

104 

Meng Y, Efimova EV, Hamzeh KW, Darga TE, Mauceri HJ, Fu YX, Kron SJ and Weichselbaum RR: Radiation-inducible immunotherapy for cancer: Senescent tumor cells as a cancer vaccine. Mol Ther. 20:1046–1055. 2012. View Article : Google Scholar : PubMed/NCBI

105 

Liu Q, Xiao Q, Sun Z, Wang B, Wang L, Wang N, Wang K, Song C and Yang Q: Exosome component 1 cleaves single-stranded DNA and sensitizes human kidney renal clear cell carcinoma cells to poly(ADP-ribose) polymerase inhibitor. Elife. 10:e694542021. View Article : Google Scholar : PubMed/NCBI

106 

Cella D, Motzer RJ, Suarez C, Blum SI, Ejzykowicz F, Hamilton M, Wallace JF, Simsek B, Zhang J, Ivanescu C, et al: Patient-reported outcomes with first-line nivolumab plus cabozantinib versus sunitinib in patients with advanced renal cell carcinoma treated in CheckMate 9ER: An open-label, randomised, phase 3 trial. Lancet Oncol. 23:292–303. 2022. View Article : Google Scholar : PubMed/NCBI

107 

Hagiwara M, Fushimi A, Matsumoto K and Oya M: The Significance of PARP1 as a biomarker for predicting the response to PD-L1 blockade in patients with PBRM1-mutated clear cell renal cell carcinoma. Eur Urol. 81:145–148. 2022. View Article : Google Scholar : PubMed/NCBI

108 

Chabanon RM, Morel D, Eychenne T, Colmet-Daage L, Bajrami I, Dorvault N, Garrido M, Meisenberg C, Lamb A, Ngo C, et al: PBRM1 deficiency confers synthetic lethality to DNA repair inhibitors in cancer. Cancer Res. 81:2888–2902. 2021. View Article : Google Scholar : PubMed/NCBI

109 

Park JS, Lee ME, Jang WS, Rha KH, Lee SH, Lee J and Ham WS: The DEAD/DEAH box helicase, DDX11, is essential for the survival of advanced clear cell renal cell carcinoma and is a determinant of PARP inhibitor sensitivity. Cancers (Basel). 13:25742021. View Article : Google Scholar : PubMed/NCBI

110 

Pan XW, Zhang H, Xu D, Chen JX, Chen WJ, Gan SS, Qu FJ, Chu CM, Cao JW, Fan YH, et al: Identification of a novel cancer stem cell subpopulation that promotes progression of human fatal renal cell carcinoma by single-cell RNA-seq analysis. Int J Biol Sci. 16:3149–3162. 2020. View Article : Google Scholar : PubMed/NCBI

111 

Olson D, Bhalla S, Yang X, Martone B and Kuzel TM: Novel use of targeted therapy via PARP-Inhibition in a rare form of papillary renal cell carcinoma: A case report and literature review. Clin Genitourin Cancer. 14:e445–e448. 2016. View Article : Google Scholar : PubMed/NCBI

112 

Lian BJ, Zhang K, Fang XD, Li F, Dai Z, Chen WY and Qi XP: Clinical benefit of Niraparib to TKI/mTORi-resistance metastatic ccRCC with BAP1-frame shift mutation: Case report and literature review. Front Oncol. 12:9272502022. View Article : Google Scholar : PubMed/NCBI

113 

Saatchi F and Kirchmaier AL: Tolerance of DNA replication stress is promoted by fumarate through modulation of histone demethylation and enhancement of replicative intermediate processing in saccharomyces cerevisiae. Genetics. 212:631–654. 2019. View Article : Google Scholar : PubMed/NCBI

114 

Johnson TI, Costa A, Ferguson AN and Frezza C: Fumarate hydratase loss promotes mitotic entry in the presence of DNA damage after ionising radiation. Cell Death Dis. 9:9132018. View Article : Google Scholar : PubMed/NCBI

115 

Sulkowski PL, Sundaram RK, Oeck S, Corso CD, Liu Y, Noorbakhsh S, Niger M, Boeke M, Ueno D, Kalathil AN, et al: Krebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat Genet. 50:1086–1092. 2018. View Article : Google Scholar : PubMed/NCBI

116 

Sulkowski PL, Oeck S, Dow J, Economos NG, Mirfakhraie L, Liu Y, Noronha K, Bao X, Li J, Shuch BM, et al: Oncometabolites suppress DNA repair by disrupting local chromatin signalling. Nature. 582:586–591. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Ueno D, Vasquez JC, Sule A, Liang J, van Doorn J, Sundaram R, Friedman S, Caliliw R, Ohtake S, Bao X, et al: Targeting Krebs-cycle-deficient renal cell carcinoma with Poly ADP-ribose polymerase inhibitors and low-dose alkylating chemotherapy. Oncotarget. 13:1054–1067. 2022. View Article : Google Scholar : PubMed/NCBI

118 

Li X, Hu D, Li Y, Luo Y, Liang B, Yu K, Xiong W and Zuo D: Overexpression of TP53INP2 promotes apoptosis in clear cell renal cell cancer via caspase-8/TRAF6 signaling pathway. J Immunol Res. 2022:12604232022.PubMed/NCBI

119 

Lee HK, Cha HS, Nam MJ, Park K, Yang YH, Lee J and Park SH: Broussochalcone A induces apoptosis in human renal cancer cells via ROS level elevation and activation of FOXO3 signaling pathway. Oxid Med Cell Longev. 2021:28007062021. View Article : Google Scholar : PubMed/NCBI

120 

Xu X, Chua CC, Zhang M, Geng D, Liu CF, Hamdy RC and Chua BH: The role of PARP activation in glutamate-induced necroptosis in HT-22 cells. Brain Res. 1343:206–212. 2010. View Article : Google Scholar : PubMed/NCBI

121 

Zheng W, Zhou CY, Zhu XQ, Wang XJ, Li ZY, Chen XC, Chen F, Che XY and Xie X: Oridonin enhances the cytotoxicity of 5-FU in renal carcinoma cells by inducting necroptotic death. Biomed Pharmacother. 106:175–182. 2018. View Article : Google Scholar : PubMed/NCBI

122 

Tsai MF, Chen SM, Ong AZ, Chung YH, Chen PN, Hsieh YH, Kang YT and Hsu LS: Shikonin induced program cell death through generation of reactive oxygen species in renal cancer cells. Antioxidants (Basel). 10:18312021. View Article : Google Scholar : PubMed/NCBI

123 

Clou E and Luque Y: Angiogenesis inhibitors: Mechanism of action and nephrotoxicity. Nephrol Ther. 18:1–6. 2022.(In French). View Article : Google Scholar : PubMed/NCBI

124 

Al-Harbi NO, Imam F, Alharbi MM, Khan MR, Qamar W, Afzal M, Algahtani M, Alobaid S, Alfardan AS, Alshammari A, et al: Role of rivaroxaban in sunitinib-induced renal injuries via inhibition of oxidative stress-induced apoptosis and inflammation through the tissue nacrosis factor-α induced nuclear factor-κappa B signaling pathway in rats. J Thromb Thrombolysis. 50:361–370. 2020. View Article : Google Scholar : PubMed/NCBI

125 

Studentova H, Volakova J, Spisarova M, Zemankova A, Aiglova K, Szotkowski T and Melichar B: Severe tyrosine-kinase inhibitor induced liver injury in metastatic renal cell carcinoma patients: Two case reports assessed for causality using the updated RUCAM and review of the literature. BMC Gastroenterol. 22:492022. View Article : Google Scholar : PubMed/NCBI

126 

Wang Y, An R, Umanah GK, Park H, Nambiar K, Eacker SM, Kim B, Bao L, Harraz MM, Chang C, et al: A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science. 354:aad68722016. View Article : Google Scholar : PubMed/NCBI

127 

Santos SS, Brunialti M, Soriano FG, Szabo C and Salomao R: Repurposing of clinically approved Poly-(ADP-Ribose) polymerase inhibitors for the therapy of sepsis. Shock. 56:901–909. 2021. View Article : Google Scholar : PubMed/NCBI

128 

Mukhopadhyay P, Horvath B, Kechrid M, Tanchian G, Rajesh M, Naura AS, Boulares AH and Pacher P: Poly(ADP-ribose) polymerase-1 is a key mediator of cisplatin-induced kidney inflammation and injury. Free Radic Biol Med. 51:1774–1788. 2011. View Article : Google Scholar : PubMed/NCBI

129 

Jang HR, Lee K, Jeon J, Kim JR, Lee JE, Kwon GY, Kim YG, Kim DJ, Ko JW and Huh W: Poly (ADP-Ribose) polymerase inhibitor treatment as a novel therapy attenuating renal ischemia-reperfusion injury. Front Immunol. 11:5642882020. View Article : Google Scholar : PubMed/NCBI

130 

Ahmad A, Olah G, Herndon DN and Szabo C: The clinically used PARP inhibitor olaparib improves organ function, suppresses inflammatory responses and accelerates wound healing in a murine model of third-degree burn injury. Br J Pharmacol. 175:232–245. 2018. View Article : Google Scholar : PubMed/NCBI

131 

Onji H and Murai J: Reconsidering the mechanisms of action of PARP inhibitors based on clinical outcomes. Cancer Sci. 113:2943–2951. 2022. View Article : Google Scholar : PubMed/NCBI

132 

Simonaggio A, Epaillard N, Elaidi R, Sun CM, Moreira M, Oudard S and Vano YA: Impact of molecular signatures on the choice of systemic treatment for metastatic kidney cancer. Bull Cancer. 107 (Suppl):S24–S34. 2020.(In French). View Article : Google Scholar : PubMed/NCBI

133 

Konstantinopoulos PA, Barry WT, Birrer M, Westin SN, Cadoo KA, Shapiro GI, Mayer EL, O'Cearbhaill RE, Coleman RL, Kochupurakkal B, et al: Olaparib and α-specific PI3K inhibitor alpelisib for patients with epithelial ovarian cancer: A dose-escalation and dose-expansion phase 1b trial. Lancet Oncol. 20:570–580. 2019. View Article : Google Scholar : PubMed/NCBI

134 

Abbotts R, Dellomo AJ and Rassool FV: Pharmacologic induction of BRCAness in BRCA-proficient cancers: Expanding PARP inhibitor use. Cancers (Basel). 14:26402022. View Article : Google Scholar : PubMed/NCBI

135 

Nelson LJ, Castro KE, Xu B, Li J, Dinh NB, Thompson JM, Woytash J, Kipp KR and Razorenova OV: Synthetic lethality of cyclin-dependent kinase inhibitor Dinaciclib with VHL-deficiency allows for selective targeting of clear cell renal cell carcinoma. Cell Cycle. 21:1103–1119. 2022. View Article : Google Scholar : PubMed/NCBI

136 

Zhao Y, Zhou K, Xia X, Guo Y and Tao L: Chk1 inhibition-induced BRCAness synergizes with olaparib in p53-deficient cancer cells. Cell Cycle. 1–13. 2022.doi: 10.1080/15384101.2022.2111769 (Epub ahead of print). View Article : Google Scholar

137 

Zhou J, Gelot C, Pantelidou C, Li A, Yucel H, Davis RE, Farkkila A, Kochupurakkal B, Syed A, Shapiro GI, et al: A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors. Nat Cancer. 2:598–610. 2021. View Article : Google Scholar : PubMed/NCBI

138 

Ding L, Chen X, Xu X, Qian Y, Liang G, Yao F, Yao Z, Wu H, Zhang J, He Q and Yang B: PARP1 suppresses the transcription of PD-L1 by Poly(ADP-Ribosyl)ating STAT3. Cancer Immunol Res. 7:136–149. 2019. View Article : Google Scholar : PubMed/NCBI

139 

Jiao S, Xia W, Yamaguchi H, Wei Y, Chen MK, Hsu JM, Hsu JL, Yu WH, Du Y, Lee HH, et al: PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin Cancer Res. 23:3711–3720. 2017. View Article : Google Scholar : PubMed/NCBI

140 

Higuchi T, Flies DB, Marjon NA, Mantia-Smaldone G, Ronner L, Gimotty PA and Adams SF: CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer. Cancer Immunol Res. 3:1257–1268. 2015. View Article : Google Scholar : PubMed/NCBI

141 

Gallo D, Young JTF, Fourtounis J, Martino G, Alvarez-Quilon A, Bernier C, Duffy NM, Papp R, Roulston A, Stocco R, et al: CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Nature. 604:749–756. 2022. View Article : Google Scholar : PubMed/NCBI

142 

Bajrami I, Marlow R, van de Ven M, Brough R, Pemberton HN, Frankum J, Song F, Rafiq R, Konde A, Krastev DB, et al: E-Cadherin/ROS1 inhibitor synthetic lethality in breast cancer. Cancer Discov. 8:498–515. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lai Y, Li Z, Lu Z, Zheng H, Chen C, Liu C, Yang Y, Tang F and He Z: Roles of DNA damage repair and precise targeted therapy in renal cancer (Review). Oncol Rep 48: 213, 2022.
APA
Lai, Y., Li, Z., Lu, Z., Zheng, H., Chen, C., Liu, C. ... He, Z. (2022). Roles of DNA damage repair and precise targeted therapy in renal cancer (Review). Oncology Reports, 48, 213. https://doi.org/10.3892/or.2022.8428
MLA
Lai, Y., Li, Z., Lu, Z., Zheng, H., Chen, C., Liu, C., Yang, Y., Tang, F., He, Z."Roles of DNA damage repair and precise targeted therapy in renal cancer (Review)". Oncology Reports 48.6 (2022): 213.
Chicago
Lai, Y., Li, Z., Lu, Z., Zheng, H., Chen, C., Liu, C., Yang, Y., Tang, F., He, Z."Roles of DNA damage repair and precise targeted therapy in renal cancer (Review)". Oncology Reports 48, no. 6 (2022): 213. https://doi.org/10.3892/or.2022.8428
Copy and paste a formatted citation
x
Spandidos Publications style
Lai Y, Li Z, Lu Z, Zheng H, Chen C, Liu C, Yang Y, Tang F and He Z: Roles of DNA damage repair and precise targeted therapy in renal cancer (Review). Oncol Rep 48: 213, 2022.
APA
Lai, Y., Li, Z., Lu, Z., Zheng, H., Chen, C., Liu, C. ... He, Z. (2022). Roles of DNA damage repair and precise targeted therapy in renal cancer (Review). Oncology Reports, 48, 213. https://doi.org/10.3892/or.2022.8428
MLA
Lai, Y., Li, Z., Lu, Z., Zheng, H., Chen, C., Liu, C., Yang, Y., Tang, F., He, Z."Roles of DNA damage repair and precise targeted therapy in renal cancer (Review)". Oncology Reports 48.6 (2022): 213.
Chicago
Lai, Y., Li, Z., Lu, Z., Zheng, H., Chen, C., Liu, C., Yang, Y., Tang, F., He, Z."Roles of DNA damage repair and precise targeted therapy in renal cancer (Review)". Oncology Reports 48, no. 6 (2022): 213. https://doi.org/10.3892/or.2022.8428
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team