Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
January-2023 Volume 49 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2023 Volume 49 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Loss of CD24 promotes radiation‑ and chemo‑resistance by inducing stemness properties associated with a hybrid E/M state in breast cancer cells

  • Authors:
    • Isaline Bontemps
    • Celine Lallemand
    • Denis Biard
    • Nathalie Dechamps
    • Thierry Kortulewski
    • Emmanuelle Bourneuf
    • Capucine Siberchicot
    • François Boussin
    • Sylvie Chevillard
    • Anna Campalans
    • Jerome Lebeau
  • View Affiliations / Copyright

    Affiliations: Laboratory of Experimental Cancerology, Institute of Cellular and Molecular Radiobiology, Genetic Stability Stem Cells and Radiation, François Jacob Institute of Biology, French Alternative Energies and Atomic Energy Commission (CEA), Paris University and Paris‑Saclay University, F‑92265 Fontenay‑aux‑Roses, France, Unit of Prion Disorders and Related Infectious Agents, François Jacob Institute of Biology, CEA, Paris‑Saclay University, F‑92265 Fontenay‑aux‑Roses, France, Laboratory of Radiopathology, Institute of Cellular and Molecular Radiobiology, Genetic Stability Stem Cells and Radiation, François Jacob Institute of Biology, CEA, French National Health and Medical Research Institute U1274, Paris University and Paris‑Saclay University, F‑92265 Fontenay‑aux‑Roses, France
    Copyright: © Bontemps et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 4
    |
    Published online on: November 7, 2022
       https://doi.org/10.3892/or.2022.8441
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer stem cells (CSCs) serve an essential role in failure of conventional antitumor therapy. In breast cancer, CD24‑/low/CD44+ phenotype and high aldehyde dehydrogenase activity are associated with CSC subtypes. Furthermore, CD24‑/low/CD44+ pattern is also characteristic of mesenchymal cells generated by epithelial‑mesenchymal transition (EMT). CD24 is a surface marker expressed in numerous types of tumor, however, its biological functions and role in cancer progression and treatment resistance remain poorly documented. Loss of CD24 expression in breast cancer cells is associated with radiation resistance and control of oxidative stress. Reactive oxygen species (ROS) mediate the effects of anticancer drugs as well as ionizing radiation; therefore, the present study investigated if CD24 mediates radiation‑ and chemo‑resistance of breast cancer cells. Using a HMLE breast cancer cell model, CD24 expression has been artificially modulated and it was observed that loss of CD24 expression induced stemness properties associated with acquisition of a hybrid E/M phenotype. CD24‑/low cells were more radiation‑ and chemo‑resistant than CD24+ cells. The resistance was associated with lower levels of ROS; CD24 controlled ROS levels via regulation of mitochondrial function independently of antioxidant activity. Together, these results suggested a key role of CD24 in de‑differentiation of breast cancer cells and promoting acquisition of therapeutic resistance properties.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Marusyk A, Almendro V and Polyak K: Intra-tumour heterogeneity: A looking glass for cancer? Nat Rev Cancer. 12:323–334. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG and Di Fiore PP: Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell. 140:62–73. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Batlle E and Clevers H: Cancer stem cells revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, et al: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 1:555–567. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Hwang-Verslues WW, Kuo WH, Chang PH, Pan CC, Wang HH, Tsai ST, Jeng YM, Shew JY, Kung JT, Chen CH, et al: Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS One. 4:e83772009. View Article : Google Scholar : PubMed/NCBI

7 

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Zhang R, Tu J and Liu S: Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Semin Cancer Biol. 82:11–25. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Morel AP, Lièvre M, Thomas C, Hinkal G, Ansieau S and Puisieux A: Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 3:e28882008. View Article : Google Scholar : PubMed/NCBI

10 

Konge J, Leteurtre F, Goislard M, Biard D, Morel-Altmeyer S, Vaurijoux A, Gruel G, Chevillard S and Lebeau J: Breast cancer stem cell-like cells generated during TGFβ-induced EMT are radioresistant. Oncotarget. 9:23519–23531. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD, et al: Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports. 2:78–91. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Pastushenko I and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Pasani S, Sahoo S and Jolly MK: Hybrid E/M phenotype(s) and stemness: A mechanistic connection embedded in network topology. J Clin Med. 10:602020. View Article : Google Scholar : PubMed/NCBI

14 

Kröger C, Afeyan A, Mraz J, Eaton EN, Reinhardt F, Khodor YL, Thiru P, Bierie B, Ye X, Burge CB and Weinberg RA: Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc Natl Acad Sci USA. 116:7353–7362. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Luo M, Brooks M and Wicha MS: Epithelial-mesenchymal plasticity of breast cancer stem cells: Implications for metastasis and therapeutic resistance. Curr Pharm Des. 21:1301–1310. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Phillips TM, McBride WH and Pajonk F: The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 98:1777–1785. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, et al: Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 100:672–679. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Kamble D, Mahajan M, Dhat R and Sitasawad S: Keap1-Nrf2 pathway regulates ALDH and contributes to radioresistance in breast cancer stem cells. Cells. 10:832021. View Article : Google Scholar : PubMed/NCBI

19 

Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, Tamaki Y and Noguchi S: Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-base chemotherapy for breast cancers. Clin Cancer Res. 15:4234–4241. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Palomeras S, Ruiz-Martínez S and Puig T: Targeting breast cancer stem cells to overcome treatment resistance. Molecules. 23:21932018. View Article : Google Scholar : PubMed/NCBI

21 

García-Heredia JM and Carnero A: Role of mitochondria in cancer stem cell resistance. Cells. 9:16932020. View Article : Google Scholar : PubMed/NCBI

22 

Bensimon J, Altmeyer-Morel S, Benjelloun H, Chevillard S and Lebeau J: CD24(−/low) stem-like breast cancer marker defines the radiation-resistant cells involved in memorization and transmission of radiation-induced genomic instability. Oncogene. 32:251–258. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Bensimon J, Biard D, Paget V, Goislard M, Morel-Altmeyer S, Konge J, Chevillard S and Lebeau J: Forced extinction of CD24 stem-like breast cancer marker alone promotes radiation resistance through the control of oxidative stress. Mol Carcinog. 55:245–254. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, et al: Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 458:780–783. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Lee JH, Kim SH, Lee ES and Kim YS: CD24 overexpression in cancer development and progression: A meta-analysis. Oncol Rep. 22:1149–1156. 2009.PubMed/NCBI

26 

Altevogt P, Sammar M, Hüser L and Kristiansen G: Novel insights into the function of CD24: A driving force in cancer. Int J Cancer. 148:546–559. 2021. View Article : Google Scholar : PubMed/NCBI

27 

Kristiansen G, Machado E, Bretz N, Rupp C, Winzer KJ, König AK, Moldenhauer G, Marmé F, Costa J and Altevogt P: Molecular and clinical dissection of CD24 antibody specificity by a comprehensive comparative analysis. Lab Invest. 90:1102–1116. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Weber E, Lehmann HP, Beck-Sickinger AG, Wawrzynczak EJ, Waibel R, Folkers G and Stahel RA: Antibodies to the protein core of the small cell lung cancer workshop antigen cluster-w4 and to the leucocyte workshop antigen CD24 recognize the same short protein sequence leucine-alanine-proline. Clin Exp Immunol. 93:279–285. 1993. View Article : Google Scholar : PubMed/NCBI

29 

Riley PA: Free radicals in biology: Oxidative stress and the effects of ionizing radiation. Int J Radiat Biol. 65:27–33. 1994. View Article : Google Scholar : PubMed/NCBI

30 

Mohiuddin M and Kasahara K: Cisplatin activates the growth inhibitory signaling pathways by enhancing the production of reactive oxygen species in non-small cell lung cancer carrying an EGFR exon 19 deletion. Cancer Genomics Proteomics. 18 (3 Suppl):S471–S486. 2021. View Article : Google Scholar : PubMed/NCBI

31 

Mosca L, Ilari A, Fazi F, Assaraf YG and Colotti G: Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat. 54:1007422021. View Article : Google Scholar : PubMed/NCBI

32 

Pan X, Zhang X, Sun H, Zhang J, Yan M and Zhang H: Autophagy inhibition promotes 5-fluorouraci-induced apoptosis by stimulating ROS formation in human non-small cell lung cancer A549 cells. PLoS One. 8:e566792013. View Article : Google Scholar : PubMed/NCBI

33 

Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, Popescu NC, Hahn WC and Weinberg RA: Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15:50–65. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Lombardo Y, de Giorgio A, Coombes CR, Stebbing J and Castellano L: Mammosphere formation assay from human breast cancer tissues and cell lines. J Vis Exp. 526712015.PubMed/NCBI

35 

Biard DS, Despras E, Sarasin A and Angulo JF: Development of new EBV-based vectors for stable expression of small interfering RNA to mimick human syndromes: Application to NER gene silencing. Mol Cancer Res. 3:519–529. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Vert JP, Foveau N, Lajaunie C and Vandenbrouck Y: An accurate and interpretable model for siRNA efficacy prediction. BMC Bioinformatics. 7:5202006. View Article : Google Scholar : PubMed/NCBI

37 

Meijering E, Dzyubachyk O and Smal I: Methods for cell and particle tracking. Methods Enzymol. 504:183–200. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Gorelik R and Gautreau A: Quantitative and unbiased analysis of directional persistence in cell migration. Nat Protoc. 9:1931–1943. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, Van Keymeulen A, Brown D, Moers V, Lemaire S, et al: Identification of the tumour transition states occurring during EMT. Nature. 556:463–468. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Yoh KE, Regunath K, Guzman A, Lee SM, Pfister NT, Akanni O, Kaufman LJ, Prives C and Prywes R: Repression of p63 and induction of EMT by mutant Ras in mammary epithelial cells. Proc Natl Acad Sci USA. 113:E6107–E6116. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Bocci F, Tripathi SC, Vilchez Mercedes SA, George JT, Casabar JP, Wong PK, Hanash SM, Levine H, Onuchic JN and Jolly MK: NRF2 activates a partial epithelial-mesenchymal transition and is maximally present in a hybrid epithelial/mesenchymal phenotype. Integr Biol (Camb). 11:251–263. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Kim D, Choi B, Ryoo I and Kwak MK: High NRF2 level mediates cancer stem cell-like properties of aldehyde dehydrogenase (ALDH)-high ovarian cancer cells: Inhibitory role of all-trans retinoic acid in ALDH/NRF2 signaling. Cell Death Dis. 9:8962018. View Article : Google Scholar : PubMed/NCBI

43 

Tang JY, Ou-Yang F, Hou MF, Huang HW, Wang HR, Li KT, Fayyaz S, Shu CW and Chang HW: Oxidative stress-modulating drugs have preferential anticancer effects-involving the regulation of apoptosis, DNA damage, endoplasmic reticulum stress, autophagy, metabolism, and migration. Semin Cancer Biol. 58:109–117. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Peiris-Pagès M, Martinez-Outschoorn UE, Pestell RG, Sotgia F and Lisanti MP: Cancer stem cell metabolism. Breast Cancer Res. 18:552016. View Article : Google Scholar : PubMed/NCBI

45 

Bhatia S, Monkman J, Blick T, Pinto C, Waltham M, Nagaraj SH and Thompson EW: Interrogation of phenotypic plasticity between epithelial and mesenchymal states in breast cancer. J Clin Med. 8:8932019. View Article : Google Scholar : PubMed/NCBI

46 

Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C and Lander ES: Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell. 146:633–644. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Ruscetti M, Dadashian EL, Guo W, Mulholland DJ, Park JW, Tran LM, Kobayashi N, Bianchi-Frias D, Xing Y, Nelson PS and Wu H: HDAC inhibition impedes epithelial-mesenchymal plasticity and suppresses metastatic, castration-resistant prostate cancer. Oncogene. 35:3781–3795. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Meyer MJ, Fleming JM, Ali MA, Pesesky MW, Ginsburg E and Vonderhaar BK: Dynamic regulation of CD24 and the invasive, CD44posCD24neg phenotype in breast cancer cell lines. Breast Cancer Res. 11:R822009. View Article : Google Scholar : PubMed/NCBI

49 

Ricardo S, Vieira AF, Gerhard R, Leitão D, Pinto R, Cameselle-Teijeiro JF, Milanezi F, Schmitt F and Paredes J: Breast cancer stem cell markers CD44, CD24 and ALDH1: Expression distribution within intrinsic molecular subtype. J Clin Pathol. 64:937–946. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Xia F and Powell SN: The molecular basis of radiosensitivity and chemosensitivity in the treatment of breast cancer. Semin Radiat Oncol. 12:296–304. 2002. View Article : Google Scholar : PubMed/NCBI

51 

Luce A, Courtin A, Levalois C, Altmeyer-Morel S, Romeo PH, Chevillard S and Lebeau J: Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells. Carcinogenesis. 30:432–439. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Longley DB, Harkin DP and Johnston PG: 5-fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer. 3:330–338. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Tchounwou PB, Dasari S, Noubissi FK, Ray P and Kumar S: Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy. J Exp Pharmacol. 13:303–328. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Abu Samaan TM, Samec M, Liskova A, Kubatka P and Büsselberg D: Paclitaxel's mechanistic and clinical effects on breast cancer. Biomolecules. 9:7892019. View Article : Google Scholar : PubMed/NCBI

55 

Pinto CA, Widodo E, Waltham M and Thompson EW: Breast cancer stem cells and epithelial mesenchymal plasticity-implications for chemoresistance. Cancer Lett. 341:56–62. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Bierie B, Pierce SE, Kroeger C, Stover DG, Pattabiraman DR, Thiru P, Liu Donaher J, Reinhardt F, Chaffer CL, Keckesova Z and Weinberg RA: Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc Natl Acad Sci USA. 114:E2337–E2346. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Unternaehrer JJ, Zhao R, Kim K, Cesana M, Powers JT, Ratanasirintrawoot S, Onder T, Shibue T, Weinberg RA and Daley GQ: The epithelial-mesenchymal transition factor SNAIL paradoxically enhances reprogramming. Stem Cell Reports. 3:691–698. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Gingold JA, Fidalgo M, Guallar D, Lau Z, Sun Z, Zhou H, Faiola F, Huang X, Lee DF, Waghray A, et al: A genome-wide RNAi screen identifies opposing functions of Snai1 and Snai2 on the Nanog dependency in reprogramming. Mol Cell. 56:140–152. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Ma SY, Park JH, Jung H, Ha SM, Kim Y, Park DH, Lee DH, Lee S, Chu IH, Jung SY, et al: Snail maintains metastatic potential, cancer stem-like properties, and chemoresistance in mesenchymal mouse breast cancer TUBO-P2J cells. Oncol Rep. 38:1867–1876. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Roca H, Hernandez J, Weidner S, McEachin RC, Fuller D, Sud S, Schumann T, Wilkinson JE, Zaslavsky A, Li H, et al: Transcription factors OVOL1 and OVOL2 induce the mesenchymal to epithelial transition in human cancer. PLoS One. 8:e767732013. View Article : Google Scholar : PubMed/NCBI

61 

Wu RS, Hong JJ, Wu JF, Yan S, Wu D, Liu N, Liu QF, Wu QW, Xie YY, Liu YJ, et al: OVOL2 antagonizes TGF-β signaling to regulate epithelial to mesenchymal transition during mammary tumor metastasis. Oncotarget. 8:39401–39416. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Hong T, Watanabe K, Ta CH, Villarreal-Ponce A, Nie Q and Dai X: An Ovol2-Zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states. PLoS Comput Biol. 11:e10045692015. View Article : Google Scholar : PubMed/NCBI

63 

Westcott JM, Camacho S, Nasir A, Huysman ME, Rahhal R, Dang TT, Riegel AT, Brekken RA and Pearson GW: ΔNp63-regulated epithelial-to-mesenchymal transition state heterogeneity confers a leader-follower relationship that drives collective invasion. Cancer Res. 80:3933–3944. 2020. View Article : Google Scholar : PubMed/NCBI

64 

Jolly MK, Boareto M, Debeb BG, Aceto N, Farach-Carson MC, Woodward WA and Levine H: Inflammatory breast cancer: A model for investigating cluster-based dissemination. NPJ Breast Cancer. 3:1–8. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Ryoo I, Lee S and Kwak MK: Redox modulating NRF2: A potential mediator of cancer stem cell resistance. Oxid Med Cell Longev. 2016:24281532016. View Article : Google Scholar : PubMed/NCBI

66 

Jia D, Tan Y, Liu H, Ooi S, Li L, Wright K, Bennett S, Addison CL and Wang L: Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells in vitro and in vivo. Oncotarget. 7:771–785. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Vipparthi K, Hari K, Chakraborty P, Ghosh S, Patel AK, Ghosh A, Biswas NK, Sharan R, Arun P, Jolly MK and Singh S: Emergence of hybrid states of stem-like cancer cells correlates with poor prognosis in oral cancer. iScience. 25:1043172022. View Article : Google Scholar : PubMed/NCBI

68 

Grosse-Wilde A, Kuestner RE, Skelton SM, MacIntosh E, d'Hérouël AF, Ertaylan G, Del Sol A, Skupin A and Huang S: Loss of inter-cellular cooperation by complete epithelial-mesenchymal transition supports favorable outcomes in basal breast cancer patients. Oncotarget. 9:20018–20033. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Gammon L, Biddle A, Heywood HK, Johannessen AC and Mackenzie IC: Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism. PLoS One. 8:e624932013. View Article : Google Scholar : PubMed/NCBI

70 

Sciacovelli M and Frezza C: Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J. 284:3132–3144. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Lee SY, Ju MK, Jeon HM, Lee YJ, Kim CH, Park HG, Han SI and Kang HS: Reactive oxygen species induce epithelial-mesenchymal transition, glycolytic switch, and mitochondrial repression through the Dlx-2/Snail signaling pathways in MCF-7 cells. Mol Med Rep. 20:2339–2346. 2019.PubMed/NCBI

72 

Jia D, Park JH, Kaur H, Jung KH, Yang S, Tripathi S, Galbraith M, Deng Y, Jolly MK, Kaipparettu BA, et al: Towards decoding the coupled decision-making of metabolism and epithelial-to-mesenchymal transition in cancer. Br J Cancer. 124:1902–1911. 2021. View Article : Google Scholar : PubMed/NCBI

73 

Fang X, Zheng P, Tang J and Liu Y: CD24: From A to Z. Cell Mol Immunol. 7:100–103. 2010. View Article : Google Scholar : PubMed/NCBI

74 

Deng X, Apple S, Zhao H, Song J, Lee M, Luo W, Wu X, Chung D, Pietras RJ and Chang HR: CD24 expression and differential resistance to chemotherapy in triple-negative breast cancer. Oncotarget. 8:38294–38308. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Shen Y, Schmidt BUS, Kubitschke H, Morawetz EW, Wolf B, Käs JA and Losert W: Detecting heterogeneity in and between breast cancer cell lines. Cancer Converg. 4:12020. View Article : Google Scholar : PubMed/NCBI

76 

Li W, Ma H, Zhang J, Zhu L, Wang C and Yang Y: Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep. 7:138562017. View Article : Google Scholar : PubMed/NCBI

77 

Gupta PB, Pastushenko I, Skibinski A, Blanpain C and Kuperwasser C: Phenotypic plasticity: Driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell. 24:65–78. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Bontemps I, Lallemand C, Biard D, Dechamps N, Kortulewski T, Bourneuf E, Siberchicot C, Boussin F, Chevillard S, Campalans A, Campalans A, et al: Loss of CD24 promotes radiation‑ and chemo‑resistance by inducing stemness properties associated with a hybrid E/M state in breast cancer cells. Oncol Rep 49: 4, 2023.
APA
Bontemps, I., Lallemand, C., Biard, D., Dechamps, N., Kortulewski, T., Bourneuf, E. ... Lebeau, J. (2023). Loss of CD24 promotes radiation‑ and chemo‑resistance by inducing stemness properties associated with a hybrid E/M state in breast cancer cells. Oncology Reports, 49, 4. https://doi.org/10.3892/or.2022.8441
MLA
Bontemps, I., Lallemand, C., Biard, D., Dechamps, N., Kortulewski, T., Bourneuf, E., Siberchicot, C., Boussin, F., Chevillard, S., Campalans, A., Lebeau, J."Loss of CD24 promotes radiation‑ and chemo‑resistance by inducing stemness properties associated with a hybrid E/M state in breast cancer cells". Oncology Reports 49.1 (2023): 4.
Chicago
Bontemps, I., Lallemand, C., Biard, D., Dechamps, N., Kortulewski, T., Bourneuf, E., Siberchicot, C., Boussin, F., Chevillard, S., Campalans, A., Lebeau, J."Loss of CD24 promotes radiation‑ and chemo‑resistance by inducing stemness properties associated with a hybrid E/M state in breast cancer cells". Oncology Reports 49, no. 1 (2023): 4. https://doi.org/10.3892/or.2022.8441
Copy and paste a formatted citation
x
Spandidos Publications style
Bontemps I, Lallemand C, Biard D, Dechamps N, Kortulewski T, Bourneuf E, Siberchicot C, Boussin F, Chevillard S, Campalans A, Campalans A, et al: Loss of CD24 promotes radiation‑ and chemo‑resistance by inducing stemness properties associated with a hybrid E/M state in breast cancer cells. Oncol Rep 49: 4, 2023.
APA
Bontemps, I., Lallemand, C., Biard, D., Dechamps, N., Kortulewski, T., Bourneuf, E. ... Lebeau, J. (2023). Loss of CD24 promotes radiation‑ and chemo‑resistance by inducing stemness properties associated with a hybrid E/M state in breast cancer cells. Oncology Reports, 49, 4. https://doi.org/10.3892/or.2022.8441
MLA
Bontemps, I., Lallemand, C., Biard, D., Dechamps, N., Kortulewski, T., Bourneuf, E., Siberchicot, C., Boussin, F., Chevillard, S., Campalans, A., Lebeau, J."Loss of CD24 promotes radiation‑ and chemo‑resistance by inducing stemness properties associated with a hybrid E/M state in breast cancer cells". Oncology Reports 49.1 (2023): 4.
Chicago
Bontemps, I., Lallemand, C., Biard, D., Dechamps, N., Kortulewski, T., Bourneuf, E., Siberchicot, C., Boussin, F., Chevillard, S., Campalans, A., Lebeau, J."Loss of CD24 promotes radiation‑ and chemo‑resistance by inducing stemness properties associated with a hybrid E/M state in breast cancer cells". Oncology Reports 49, no. 1 (2023): 4. https://doi.org/10.3892/or.2022.8441
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team