Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
January-2023 Volume 49 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2023 Volume 49 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Research progress on the circRNA‑mediated regulation of tumor angiogenesis through ceRNA mechanisms (Review)

  • Authors:
    • Dandan Meng
    • Ruixue Jia
    • Shun Yuan
    • Mengjuan Wei
    • Xingxun Bao
    • Chengfeng Zhu
    • Wantao Wang
    • Zongxin Li
  • View Affiliations / Copyright

    Affiliations: Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China, First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China, Institute of Integrative Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China, Second Department of Hematology, Jinan Hematology Hospital, Jinan, Shandong 250014, P.R. China
    Copyright: © Meng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 12
    |
    Published online on: November 22, 2022
       https://doi.org/10.3892/or.2022.8449
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Tumors are one of the most common fatal diseases worldwide and pose a severe threat to human health. Effective tumor prevention and treatment strategies are persistent challenges in the medical community. Angiogenesis plays a critical role in and is the basis for tumor development and metastasis. Circular RNAs (circRNAs) are novel single‑stranded covalently closed RNA molecules that are widely expressed in tumors due to their structural specificity and conservation. circRNAs affect angiogenesis by functioning as microRNA sponges to regulate vascular endothelial growth factor‑related pathways, thereby participating in various stages of tumor growth, invasion and proliferation. The present review summarizes the involvement of circRNAs in the regulation of tumor angiogenesis through competing endogenous RNA mechanisms, with a particular focus on the regulatory role of circRNAs in tumor angiogenesis in various systems. It is considered that circRNAs have great potential for use as tumor diagnostic markers and anti‑angiogenic therapies, and are thus worthy of further research and exploration.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Folkman J: Tumor angiogenesis: Therapeutic implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI

2 

Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D and Lawrie CH: CircRNAs and cancer: Biomarkers and master regulators. Semin Cancer Biol. 58:90–99. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Kristensen LS, Hansen TB, Venø MT and Kjems J: Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Flemming A: The enigma of circular RNA. Nat Rev Immunol. 19:3512019. View Article : Google Scholar : PubMed/NCBI

5 

Croce CM: Genetics: Are circRNAs involved in cancer pathogenesis? Nat Rev Clin Oncol. 13:6582016. View Article : Google Scholar

6 

Fischer JW and Leung AK: CircRNAs: A regulator of cellular stress. Crit Rev Biochem Mol Biol. 52:220–233. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Carmeliet P and Jain RK: Angiogenesis in cancer and other diseases. Nature. 407:249–257. 2000. View Article : Google Scholar : PubMed/NCBI

8 

Sun LL, Li WD, Lei FR and Li XQ: The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med. 22:4568–4587. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Hanahan D and Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86:353–364. 1996. View Article : Google Scholar : PubMed/NCBI

10 

Baeriswyl V and Christofori G: The angiogenic switch in carcinogenesis. Semin Cancer Biol. 19:329–337. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Miao S, Qiu T, Zhao Y, Wang H, Sun X, Wang Y, Xuan Y, Qin Y and Jiao W: Overexpression of S100A13 protein is associated with tumor angiogenesis and poor survival in patients with early-stage non-small cell lung cancer. Thorac Cancer. 9:1136–1144. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Liu X, Cui H, Niu H, Wang L, Li X, Sun J, Wei Q, Dong J, Liu L and Xian CJ: Hydrocortisone suppresses early paraneoplastic inflammation and angiogenesis to attenuate early hepatocellular carcinoma progression in rats. Onco Targets Ther. 12:9481–9493. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Goussia A, Simou N, Zagouri F, Manousou K, Lazaridis G, Gogas H, Koutras A, Sotiropoulou M, Pentheroudakis G, Bafaloukos D, et al: Associations of angiogenesis-related proteins with specific prognostic factors, breast cancer subtypes and survival outcome in early-stage breast cancer patients. A hellenic cooperative oncology group (HeCOG) trial. PLoS One. 13:e2003022018. View Article : Google Scholar : PubMed/NCBI

15 

Senger DR, Van de Water L, Brown LF, Nagy JA, Yeo KT, Yeo TK, Berse B, Jackman RW, Dvorak AM and Dvorak HF: Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev. 12:303–324. 1993. View Article : Google Scholar : PubMed/NCBI

16 

Senger DR, Perruzzi CA, Feder J and Dvorak HF: A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res. 46:5629–5632. 1986.PubMed/NCBI

17 

Fagiani E and Christofori G: Angiopoietins in angiogenesis. Cancer Lett. 328:18–26. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Ebrahem Q, Chaurasia SS, Vasanji A, Qi JH, Klenotic PA, Cutler A, Asosingh K, Erzurum S and Anand-Apte B: Cross-talk between vascular endothelial growth factor and matrix metalloproteinases in the induction of neovascularization in vivo. Am J Pathol. 176:496–503. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Itoh Y: Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol. 44–46. 207–223. 2015.PubMed/NCBI

20 

Cross MJ and Claesson-Welsh L: FGF and VEGF function in angiogenesis: Signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 22:201–207. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Carmeliet P: VEGF as a key mediator of angiogenesis in cancer. Oncology. 69 (Suppl 3):S4–S10. 2005. View Article : Google Scholar

22 

Claffey KP and Robinson GS: Regulation of VEGF/VPF expression in tumor cells: Consequences for tumor growth and metastasis. Cancer Metastasis Rev. 15:165–176. 1996. View Article : Google Scholar : PubMed/NCBI

23 

Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Barbagallo D, Caponnetto A, Cirnigliaro M, Brex D, Barbagallo C, D'Angeli F, Morrone A, Caltabiano R, Barbagallo GM, Ragusa M, et al: CircSMARCA5 inhibits migration of glioblastoma multiforme cells by regulating a molecular axis involving splicing factors SRSF1/SRSF3/PTB. Int J Mol Sci. 19:4802018. View Article : Google Scholar : PubMed/NCBI

25 

Lu WY: Roles of the circular RNA circ-Foxo3 in breast cancer progression. Cell Cycle. 16:589–590. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Xiao Y: Construction of a circRNA-miRNA-mRNA network to explore the pathogenesis and treatment of pancreatic ductal adenocarcinoma. J Cell Biochem. 121:394–406. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Zang J, Lu D and Xu A: The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J Neurosci Res. 98:87–97. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 110:304–315. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Xia X, Li X, Li F, Wu X, Zhang M, Zhou H, Huang N, Yang X, Xiao F, Liu D, et al: A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent kinase-1. Mol Cancer. 18:1312019. View Article : Google Scholar : PubMed/NCBI

31 

Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei P, Liu H, Xu J, Xiao F, Zhou H, et al: A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun. 9:44752018. View Article : Google Scholar : PubMed/NCBI

32 

Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR and Lai EC: Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9:1966–1980. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DT and Xiao X: The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 61:221–230. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Liu H, Chen D, Bi J, Han J, Yang M, Dong W, Lin T and Huang J: Circular RNA circUBXN7 represses cell growth and invasion by sponging miR-1247-3p to enhance B4GALT3 expression in bladder cancer. Aging (Albany NY). 10:2606–2623. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Taulli R, Loretelli C and Pandolfi PP: From pseudo-ceRNAs to circ-ceRNAs: A tale of cross-talk and competition. Nat Struct Mol Biol. 20:541–543. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Annese T, Tamma R, De Giorgis M and Ribatti D: microRNAs biogenesis, functions and role in tumor angiogenesis. Front Oncol. 10:5810072020. View Article : Google Scholar : PubMed/NCBI

39 

Tay Y, Rinn J and Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature. 505:344–352. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Lu J, Wang YH, Yoon C, Huang XY, Xu Y, Xie JW, Wang JB, Lin JX, Chen QY, Cao LL, et al: Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877-3p to facilitate gastric cancer invasion and metastasis. Cancer Lett. 471:38–48. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Cao W, Zhao Y, Wang L and Huang X: Circ0001429 regulates progression of bladder cancer through binding miR-205-5p and promoting VEGFA expression. Cancer Biomark. 25:101–113. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Meng Q, Li S, Liu Y, Zhang S, Jin J, Zhang Y, Guo C, Liu B and Sun Y: Circular RNA circSCAF11 accelerates the glioma tumorigenesis through the miR-421/SP1/VEGFA axis. Mol Ther Nucleic Acids. 17:669–677. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Wang J, Lin Y, Jiang DH, Yang X and He XG: CircRNA ZNF609 promotes angiogenesis in nasopharyngeal carcinoma by regulating miR-145/STMN1 axis. Kaohsiung J Med Sci. 37:686–698. 2021. View Article : Google Scholar : PubMed/NCBI

44 

Yu J, Yang M, Zhou B, Luo J, Zhang Z, Zhang W and Yan Z: CircRNA-104718 acts as competing endogenous RNA and promotes hepatocellular carcinoma progression through microRNA-218-5p/TXNDC5 signaling pathway. Clin Sci (Lond). 133:1487–1503. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Zhang H, Yu Z, Wu B and Sun F: Circular RNA circFOXP1 promotes angiogenesis by regulating microRNA-127-5p/CDKN2AIP signaling pathway in osteosarcoma. Bioengineered. 12:9991–9999. 2021. View Article : Google Scholar : PubMed/NCBI

46 

Cassiday LA and Maher LR III: Having it both ways: Transcription factors that bind DNA and RNA. Nucleic Acids Res. 30:4118–4126. 2002. View Article : Google Scholar : PubMed/NCBI

47 

He Z, Ruan X, Liu X, Zheng J, Liu Y, Liu L, Ma J, Shao L, Wang D, Shen S, et al: FUS/circ_002136/miR-138-5p/SOX13 feedback loop regulates angiogenesis in glioma. J Exp Clin Cancer Res. 38:652019. View Article : Google Scholar : PubMed/NCBI

48 

Ferrara N: Vascular endothelial growth factor: Basic science and clinical progress. Endocr Rev. 25:581–611. 2004. View Article : Google Scholar : PubMed/NCBI

49 

Guo J, Chen M, Ai G, Mao W, Li H and Zhou J: Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomed Pharmacother. 115:1089572019. View Article : Google Scholar : PubMed/NCBI

50 

Garikipati VNS, Verma SK, Cheng Z, Liang D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, et al: Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun. 10:43172019. View Article : Google Scholar : PubMed/NCBI

51 

Zhong Z, Huang M, Lv M, He Y, Duan C, Zhang L and Chen J: Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett. 403:305–317. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Li P, Chen H, Chen S, Mo X, Li T, Xiao B, Yu R and Guo J: Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br J Cancer. 116:626–633. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Barbagallo D, Caponnetto A, Brex D, Mirabella F, Barbagallo C, Lauretta G, Morrone A, Certo F, Broggi G, Caltabiano R, et al: CircSMARCA5 regulates VEGFA mRNA splicing and angiogenesis in glioblastoma multiforme through the binding of SRSF1. Cancers (Basel). 11:1942019. View Article : Google Scholar : PubMed/NCBI

54 

Carmeliet P and Jain RK: Molecular mechanisms and clinical applications of angiogenesis. Nature. 473:298–307. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Costa PM, Cardoso AL, Pereira de Almeida LF, Bruce JN, Canoll P and Pedroso de Lima MC: PDGF-B-mediated downregulation of miR-21: New insights into PDGF signaling in glioblastoma. Hum Mol Genet. 21:5118–5130. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Zehetner C, Kirchmair R, Neururer SB, Kralinger MT, Bechrakis NE and Kieselbach GF: Systemic upregulation of PDGF-B in patients with neovascular AMD. Invest Ophthalmol Vis Sci. 55:337–344. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Liu F, Zhang H, Xie F, Tao D, Xiao X, Huang C, Wang M, Gu C, Zhang X and Jiang G: Hsa_circ_0001361 promotes bladder cancer invasion and metastasis through miR-491-5p/MMP9 axis. Oncogene. 39:1696–1709. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Liu H, Lan T, Li H, Xu L, Chen X, Liao H, Chen X, Du J, Cai Y, Wang J, et al: Circular RNA circDLC1 inhibits MMP1-mediated liver cancer progression via interaction with HuR. Theranostics. 11:1396–1411. 2021. View Article : Google Scholar : PubMed/NCBI

59 

Hou JP, Men XB, Yang LY, Han EK, Han CQ and Liu LB: CircCCT3 acts as a sponge of miR-613 to promote tumor growth of pancreatic cancer through regulating VEGFA/VEGFR2 signaling. Balkan Med J. 38:229–238. 2021. View Article : Google Scholar : PubMed/NCBI

60 

Zhu J, Luo Y, Zhao Y, Kong Y, Zheng H, Li Y, Gao B, Ai L, Huang H, Huang J, et al: circEHBP1 promotes lymphangiogenesis and lymphatic metastasis of bladder cancer via miR-130a-3p/TGFβR1/VEGF-D signaling. Mol Ther. 29:1838–1852. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Qi L, Wang W, Zhao G, Jiang H, Zhang Y, Zhao D, Jin H, Yu H and Xu H: Circular RNA circitga7 accelerates glioma progression via miR-34a-5p/VEGFA axis. Aging (Albany NY). 13:13138–13152. 2021. View Article : Google Scholar : PubMed/NCBI

62 

Ji X, Shan L, Shen P and He M: Circular RNA circ_001621 promotes osteosarcoma cells proliferation and migration by sponging miR-578 and regulating VEGF expression. Cell Death Dis. 11:182020. View Article : Google Scholar : PubMed/NCBI

63 

Li S, Li J, Zhang H, Zhang Y, Wang X, Yang H, Zhou Z, Hao X, Ying G and Ba Y: Gastric cancer derived exosomes mediate the delivery of circRNA to promote angiogenesis by targeting miR-29a/VEGF axis in endothelial cells. Biochem Biophys Res Commun. 560:37–44. 2021. View Article : Google Scholar : PubMed/NCBI

64 

Kong Y, Li Y, Luo Y, Zhu J, Zheng H, Gao B, Guo X, Li Z, Chen R and Chen C: circNFIB1 inhibits lymphangiogenesis and lymphatic metastasis via the miR-486-5p/PIK3R1/VEGF-C axis in pancreatic cancer. Mol Cancer. 19:822020. View Article : Google Scholar : PubMed/NCBI

65 

Xing C, Ye H, Wang W, Sun M, Zhang J, Zhao Z and Jiang G: Circular RNA ADAM9 facilitates the malignant behaviours of pancreatic cancer by sponging miR-217 and upregulating PRSS3 expression. Artif Cells Nanomed Biotechnol. 47:3920–3928. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Zheng X, Ma YF, Zhang XR, Li Y, Zhao HH and Han SG: Circ_0056618 promoted cell proliferation, migration and angiogenesis through sponging with miR-206 and upregulating CXCR4 and VEGF-A in colorectal cancer. Eur Rev Med Pharmacol Sci. 24:4190–4202. 2020.PubMed/NCBI

67 

Dai J, Zhuang Y, Tang M, Qian Q and Chen JP: CircRNA UBAP2 facilitates the progression of colorectal cancer by regulating miR-199a/VEGFA pathway. Eur Rev Med Pharmacol Sci. 24:7963–7971. 2020.PubMed/NCBI

68 

Chen MS, Lin CH, Huang LY and Qiu XM: CircRNA SMARCC1 sponges MiR-140-3p to regulate cell progression in colorectal cancer. Cancer Manag Res. 12:4899–4910. 2020. View Article : Google Scholar : PubMed/NCBI

69 

Chen C, Huang Z, Mo X, Song Y, Li X, Li X and Zhang M: The circular RNA 001971/miR-29c-3p axis modulates colorectal cancer growth, metastasis, and angiogenesis through VEGFA. J Exp Clin Cancer Res. 39:912020. View Article : Google Scholar : PubMed/NCBI

70 

Li W, Xu Y, Wang X, Cao G, Bu W, Wang X, Fang Z, Xu Y, Dong M and Tao Q: circCCT3 modulates vascular endothelial growth factor A and Wnt signaling to enhance colorectal cancer metastasis through sponging miR-613. DNA Cell Biol. 39:118–125. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Fang N, Shi Y, Fan Y, Long T, Shu Y and Zhou J: Circ_0072088 promotes proliferation, migration, and invasion of esophageal squamous cell cancer by absorbing miR-377. J Oncol. 2020:89671262020. View Article : Google Scholar : PubMed/NCBI

72 

Gao S, Hu W, Huang X, Huang X, Chen W, Hao L, Chen Z, Wang J and Wei H: Circ_0001178 regulates miR-382/VEGFA axis to facilitate hepatocellular carcinoma progression. Cell Signal. 72:1096212020. View Article : Google Scholar : PubMed/NCBI

73 

Chen J, Li X, Yang L, Li M, Zhang Y and Zhang J: CircASH2L promotes ovarian cancer tumorigenesis, angiogenesis, and lymphangiogenesis by regulating the miR-665/VEGFA axis as a competing endogenous RNA. Front Cell Dev Biol. 8:5955852020. View Article : Google Scholar : PubMed/NCBI

74 

Wang LL, Zong ZH, Liu Y, Guan X, Chen S and Zhao Y: CircRhoC promotes tumorigenicity and progression in ovarian cancer by functioning as a miR-302e sponge to positively regulate VEGFA. J Cell Mol Med. 23:8472–8481. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Li QH, Liu Y, Chen S, Zong ZH, Du YP, Sheng XJ and Zhao Y: circ-CSPP1 promotes proliferation, invasion and migration of ovarian cancer cells by acting as a miR-1236-3p sponge. Biomed Pharmacother. 114:1088322019. View Article : Google Scholar : PubMed/NCBI

76 

Lu Y, Qin T, Li J, Wang L, Zhang Q, Jiang Z and Mao J: MicroRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer. Cancer Gene Ther. 24:386–392. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Wang B, Duan R, Li ZB and Wang L: Circ-RPL15/miR-146b-3p/VEGFA feedback loop is responsible for triggering proliferation and migration in glioma. Eur Rev Med Pharmacol Sci. 24:6204–6210. 2020.PubMed/NCBI

78 

Barbagallo D, Caponnetto A, Barbagallo C, Battaglia R, Mirabella F, Brex D, Stella M, Broggi G, Altieri R, Certo F, et al: The GAUGAA motif is responsible for the binding between circSMARCA5 and SRSF1 and related downstream effects on glioblastoma multiforme cell migration and angiogenic potential. Int J Mol Sci. 22:16782021. View Article : Google Scholar : PubMed/NCBI

79 

Liu W, Zhang J, Zou C, Xie X, Wang Y, Wang B, Zhao Z, Tu J, Wang X, Li H, et al: Microarray expression profile and functional analysis of circular RNAs in osteosarcoma. Cell Physiol Biochem. 43:969–985. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Zeng L, Yuan S, Zhou P, Gong J, Kong X and Wu M: Circular RNA Pvt1 oncogene (CircPVT1) promotes the progression of papillary thyroid carcinoma by activating the Wnt/β-catenin signaling pathway and modulating the ratio of microRNA-195 (miR-195) to vascular endothelial growth factor A (VEGFA) expression. Bioengineered. 12:11795–11810. 2021. View Article : Google Scholar : PubMed/NCBI

81 

Ren M, Song X, Niu J, Tang G, Sun Z, Li Y and Kong F: The malignant property of circHIPK2 for angiogenesis and chemoresistance in non-small cell lung cancer. Exp Cell Res. 419:1132762022. View Article : Google Scholar : PubMed/NCBI

82 

Luo Y, Zhang Q, Lv B, Shang Y, Li J, Yang L, Yu Z, Luo K, Deng X, Min L and Zhu T: CircFOXP1: A novel serum diagnostic biomarker for non-small cell lung cancer. Int J Biol Markers. 37:58–65. 2022. View Article : Google Scholar : PubMed/NCBI

83 

Yuan X, Xu Y, Wei Z and Ding Q: CircAP2A2 acts as a ceRNA to participate in infantile hemangiomas progression by sponging miR-382-5p via regulating the expression of VEGFA. J Clin Lab Anal. 34:e232582020. View Article : Google Scholar : PubMed/NCBI

84 

Chen B and Huang S: Circular RNA: An emerging non-coding RNA as a regulator and biomarker in cancer. Cancer Lett. 418:41–50. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Bai H, Lei K, Huang F, Jiang Z and Zhou X: Exo-circRNAs: A new paradigm for anticancer therapy. Mol Cancer. 18:562019. View Article : Google Scholar : PubMed/NCBI

86 

Liu Y, Gao Y, Li D, He L, Iw L, Hao B, Chen X and Cao Y: LASP1 promotes glioma cell proliferation and migration and is negatively regulated by miR-377-3p. Biomed Pharmacother. 108:845–851. 2018. View Article : Google Scholar : PubMed/NCBI

87 

Montes M, Sanford BL, Comiskey DF and Chandler DS: RNA splicing and disease: Animal models to therapies. Trends Genet. 35:68–87. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Mody K, Baldeo C and Bekaii-Saab T: Antiangiogenic therapy in colorectal cancer. Cancer J. 24:165–170. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Ferrara N and Adamis AP: Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 15:385–403. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Altesha MA, Ni T, Khan A, Liu K and Zheng X: Circular RNA in cardiovascular disease. J Cell Physiol. 234:5588–5600. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Jia P, Cai H, Liu X, Chen J, Ma J, Wang P, Liu Y, Zheng J and Xue Y: Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a. Cancer Lett. 381:359–369. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Zhang H, Bai M, Deng T, Liu R, Wang X, Qu Y, Duan J, Zhang L, Ning T, Ge S, et al: Cell-derived microvesicles mediate the delivery of miR-29a/c to suppress angiogenesis in gastric carcinoma. Cancer Lett. 375:331–339. 2016. View Article : Google Scholar : PubMed/NCBI

93 

He Q, Zhao L, Liu X, Zheng J, Liu Y, Liu L, Ma J, Cai H, Li Z and Xue Y: MOV10 binding circ-DICER1 regulates the angiogenesis of glioma via miR-103a-3p/miR-382-5p mediated ZIC4 expression change. J Exp Clin Cancer Res. 38:92019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Meng D, Jia R, Yuan S, Wei M, Bao X, Zhu C, Wang W and Li Z: Research progress on the circRNA‑mediated regulation of tumor angiogenesis through ceRNA mechanisms (Review). Oncol Rep 49: 12, 2023.
APA
Meng, D., Jia, R., Yuan, S., Wei, M., Bao, X., Zhu, C. ... Li, Z. (2023). Research progress on the circRNA‑mediated regulation of tumor angiogenesis through ceRNA mechanisms (Review). Oncology Reports, 49, 12. https://doi.org/10.3892/or.2022.8449
MLA
Meng, D., Jia, R., Yuan, S., Wei, M., Bao, X., Zhu, C., Wang, W., Li, Z."Research progress on the circRNA‑mediated regulation of tumor angiogenesis through ceRNA mechanisms (Review)". Oncology Reports 49.1 (2023): 12.
Chicago
Meng, D., Jia, R., Yuan, S., Wei, M., Bao, X., Zhu, C., Wang, W., Li, Z."Research progress on the circRNA‑mediated regulation of tumor angiogenesis through ceRNA mechanisms (Review)". Oncology Reports 49, no. 1 (2023): 12. https://doi.org/10.3892/or.2022.8449
Copy and paste a formatted citation
x
Spandidos Publications style
Meng D, Jia R, Yuan S, Wei M, Bao X, Zhu C, Wang W and Li Z: Research progress on the circRNA‑mediated regulation of tumor angiogenesis through ceRNA mechanisms (Review). Oncol Rep 49: 12, 2023.
APA
Meng, D., Jia, R., Yuan, S., Wei, M., Bao, X., Zhu, C. ... Li, Z. (2023). Research progress on the circRNA‑mediated regulation of tumor angiogenesis through ceRNA mechanisms (Review). Oncology Reports, 49, 12. https://doi.org/10.3892/or.2022.8449
MLA
Meng, D., Jia, R., Yuan, S., Wei, M., Bao, X., Zhu, C., Wang, W., Li, Z."Research progress on the circRNA‑mediated regulation of tumor angiogenesis through ceRNA mechanisms (Review)". Oncology Reports 49.1 (2023): 12.
Chicago
Meng, D., Jia, R., Yuan, S., Wei, M., Bao, X., Zhu, C., Wang, W., Li, Z."Research progress on the circRNA‑mediated regulation of tumor angiogenesis through ceRNA mechanisms (Review)". Oncology Reports 49, no. 1 (2023): 12. https://doi.org/10.3892/or.2022.8449
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team