|
1
|
Folkman J: Tumor angiogenesis: Therapeutic
implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Arnaiz E, Sole C, Manterola L,
Iparraguirre L, Otaegui D and Lawrie CH: CircRNAs and cancer:
Biomarkers and master regulators. Semin Cancer Biol. 58:90–99.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kristensen LS, Hansen TB, Venø MT and
Kjems J: Circular RNAs in cancer: Opportunities and challenges in
the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Flemming A: The enigma of circular RNA.
Nat Rev Immunol. 19:3512019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Croce CM: Genetics: Are circRNAs involved
in cancer pathogenesis? Nat Rev Clin Oncol. 13:6582016. View Article : Google Scholar
|
|
6
|
Fischer JW and Leung AK: CircRNAs: A
regulator of cellular stress. Crit Rev Biochem Mol Biol.
52:220–233. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Carmeliet P and Jain RK: Angiogenesis in
cancer and other diseases. Nature. 407:249–257. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sun LL, Li WD, Lei FR and Li XQ: The
regulatory role of microRNAs in angiogenesis-related diseases. J
Cell Mol Med. 22:4568–4587. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hanahan D and Folkman J: Patterns and
emerging mechanisms of the angiogenic switch during tumorigenesis.
Cell. 86:353–364. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Baeriswyl V and Christofori G: The
angiogenic switch in carcinogenesis. Semin Cancer Biol. 19:329–337.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Miao S, Qiu T, Zhao Y, Wang H, Sun X, Wang
Y, Xuan Y, Qin Y and Jiao W: Overexpression of S100A13 protein is
associated with tumor angiogenesis and poor survival in patients
with early-stage non-small cell lung cancer. Thorac Cancer.
9:1136–1144. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Liu X, Cui H, Niu H, Wang L, Li X, Sun J,
Wei Q, Dong J, Liu L and Xian CJ: Hydrocortisone suppresses early
paraneoplastic inflammation and angiogenesis to attenuate early
hepatocellular carcinoma progression in rats. Onco Targets Ther.
12:9481–9493. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Goussia A, Simou N, Zagouri F, Manousou K,
Lazaridis G, Gogas H, Koutras A, Sotiropoulou M, Pentheroudakis G,
Bafaloukos D, et al: Associations of angiogenesis-related proteins
with specific prognostic factors, breast cancer subtypes and
survival outcome in early-stage breast cancer patients. A hellenic
cooperative oncology group (HeCOG) trial. PLoS One. 13:e2003022018.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Senger DR, Van de Water L, Brown LF, Nagy
JA, Yeo KT, Yeo TK, Berse B, Jackman RW, Dvorak AM and Dvorak HF:
Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer
Metastasis Rev. 12:303–324. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Senger DR, Perruzzi CA, Feder J and Dvorak
HF: A highly conserved vascular permeability factor secreted by a
variety of human and rodent tumor cell lines. Cancer Res.
46:5629–5632. 1986.PubMed/NCBI
|
|
17
|
Fagiani E and Christofori G: Angiopoietins
in angiogenesis. Cancer Lett. 328:18–26. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ebrahem Q, Chaurasia SS, Vasanji A, Qi JH,
Klenotic PA, Cutler A, Asosingh K, Erzurum S and Anand-Apte B:
Cross-talk between vascular endothelial growth factor and matrix
metalloproteinases in the induction of neovascularization in vivo.
Am J Pathol. 176:496–503. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Itoh Y: Membrane-type matrix
metalloproteinases: Their functions and regulations. Matrix Biol.
44–46. 207–223. 2015.PubMed/NCBI
|
|
20
|
Cross MJ and Claesson-Welsh L: FGF and
VEGF function in angiogenesis: Signalling pathways, biological
responses and therapeutic inhibition. Trends Pharmacol Sci.
22:201–207. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Carmeliet P: VEGF as a key mediator of
angiogenesis in cancer. Oncology. 69 (Suppl 3):S4–S10. 2005.
View Article : Google Scholar
|
|
22
|
Claffey KP and Robinson GS: Regulation of
VEGF/VPF expression in tumor cells: Consequences for tumor growth
and metastasis. Cancer Metastasis Rev. 15:165–176. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin
QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long
noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Barbagallo D, Caponnetto A, Cirnigliaro M,
Brex D, Barbagallo C, D'Angeli F, Morrone A, Caltabiano R,
Barbagallo GM, Ragusa M, et al: CircSMARCA5 inhibits migration of
glioblastoma multiforme cells by regulating a molecular axis
involving splicing factors SRSF1/SRSF3/PTB. Int J Mol Sci.
19:4802018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lu WY: Roles of the circular RNA
circ-Foxo3 in breast cancer progression. Cell Cycle. 16:589–590.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Xiao Y: Construction of a
circRNA-miRNA-mRNA network to explore the pathogenesis and
treatment of pancreatic ductal adenocarcinoma. J Cell Biochem.
121:394–406. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zang J, Lu D and Xu A: The interaction of
circRNAs and RNA binding proteins: An important part of circRNA
maintenance and function. J Neurosci Res. 98:87–97. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao
F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7
circular RNA in repressing glioma tumorigenesis. J Natl Cancer
Inst. 110:304–315. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Xia X, Li X, Li F, Wu X, Zhang M, Zhou H,
Huang N, Yang X, Xiao F, Liu D, et al: A novel tumor suppressor
protein encoded by circular AKT3 RNA inhibits glioblastoma
tumorigenicity by competing with active phosphoinositide-dependent
kinase-1. Mol Cancer. 18:1312019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei
P, Liu H, Xu J, Xiao F, Zhou H, et al: A peptide encoded by
circular form of LINC-PINT suppresses oncogenic transcriptional
elongation in glioblastoma. Nat Commun. 9:44752018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Westholm JO, Miura P, Olson S, Shenker S,
Joseph B, Sanfilippo P, Celniker SE, Graveley BR and Lai EC:
Genome-wide analysis of drosophila circular RNAs reveals their
structural and sequence properties and age-dependent neural
accumulation. Cell Rep. 9:1966–1980. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bahn JH, Zhang Q, Li F, Chan TM, Lin X,
Kim Y, Wong DT and Xiao X: The landscape of microRNA,
Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem.
61:221–230. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J,
Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable
in exosomes: A promising biomarker for cancer diagnosis. Cell Res.
25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liu H, Chen D, Bi J, Han J, Yang M, Dong
W, Lin T and Huang J: Circular RNA circUBXN7 represses cell growth
and invasion by sponging miR-1247-3p to enhance B4GALT3 expression
in bladder cancer. Aging (Albany NY). 10:2606–2623. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Taulli R, Loretelli C and Pandolfi PP:
From pseudo-ceRNAs to circ-ceRNAs: A tale of cross-talk and
competition. Nat Struct Mol Biol. 20:541–543. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Annese T, Tamma R, De Giorgis M and
Ribatti D: microRNAs biogenesis, functions and role in tumor
angiogenesis. Front Oncol. 10:5810072020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Tay Y, Rinn J and Pandolfi PP: The
multilayered complexity of ceRNA crosstalk and competition. Nature.
505:344–352. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Lu J, Wang YH, Yoon C, Huang XY, Xu Y, Xie
JW, Wang JB, Lin JX, Chen QY, Cao LL, et al: Circular RNA
circ-RanGAP1 regulates VEGFA expression by targeting miR-877-3p to
facilitate gastric cancer invasion and metastasis. Cancer Lett.
471:38–48. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cao W, Zhao Y, Wang L and Huang X:
Circ0001429 regulates progression of bladder cancer through binding
miR-205-5p and promoting VEGFA expression. Cancer Biomark.
25:101–113. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Meng Q, Li S, Liu Y, Zhang S, Jin J, Zhang
Y, Guo C, Liu B and Sun Y: Circular RNA circSCAF11 accelerates the
glioma tumorigenesis through the miR-421/SP1/VEGFA axis. Mol Ther
Nucleic Acids. 17:669–677. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang J, Lin Y, Jiang DH, Yang X and He XG:
CircRNA ZNF609 promotes angiogenesis in nasopharyngeal carcinoma by
regulating miR-145/STMN1 axis. Kaohsiung J Med Sci. 37:686–698.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yu J, Yang M, Zhou B, Luo J, Zhang Z,
Zhang W and Yan Z: CircRNA-104718 acts as competing endogenous RNA
and promotes hepatocellular carcinoma progression through
microRNA-218-5p/TXNDC5 signaling pathway. Clin Sci (Lond).
133:1487–1503. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhang H, Yu Z, Wu B and Sun F: Circular
RNA circFOXP1 promotes angiogenesis by regulating
microRNA-127-5p/CDKN2AIP signaling pathway in osteosarcoma.
Bioengineered. 12:9991–9999. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cassiday LA and Maher LR III: Having it
both ways: Transcription factors that bind DNA and RNA. Nucleic
Acids Res. 30:4118–4126. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
He Z, Ruan X, Liu X, Zheng J, Liu Y, Liu
L, Ma J, Shao L, Wang D, Shen S, et al:
FUS/circ_002136/miR-138-5p/SOX13 feedback loop regulates
angiogenesis in glioma. J Exp Clin Cancer Res. 38:652019.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ferrara N: Vascular endothelial growth
factor: Basic science and clinical progress. Endocr Rev.
25:581–611. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Guo J, Chen M, Ai G, Mao W, Li H and Zhou
J: Hsa_circ_0023404 enhances cervical cancer metastasis and
chemoresistance through VEGFA and autophagy signaling by sponging
miR-5047. Biomed Pharmacother. 115:1089572019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Garikipati VNS, Verma SK, Cheng Z, Liang
D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, et
al: Circular RNA CircFndc3b modulates cardiac repair after
myocardial infarction via FUS/VEGF-A axis. Nat Commun. 10:43172019.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhong Z, Huang M, Lv M, He Y, Duan C,
Zhang L and Chen J: Circular RNA MYLK as a competing endogenous RNA
promotes bladder cancer progression through modulating VEGFA/VEGFR2
signaling pathway. Cancer Lett. 403:305–317. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Li P, Chen H, Chen S, Mo X, Li T, Xiao B,
Yu R and Guo J: Circular RNA 0000096 affects cell growth and
migration in gastric cancer. Br J Cancer. 116:626–633. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Barbagallo D, Caponnetto A, Brex D,
Mirabella F, Barbagallo C, Lauretta G, Morrone A, Certo F, Broggi
G, Caltabiano R, et al: CircSMARCA5 regulates VEGFA mRNA splicing
and angiogenesis in glioblastoma multiforme through the binding of
SRSF1. Cancers (Basel). 11:1942019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Carmeliet P and Jain RK: Molecular
mechanisms and clinical applications of angiogenesis. Nature.
473:298–307. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Costa PM, Cardoso AL, Pereira de Almeida
LF, Bruce JN, Canoll P and Pedroso de Lima MC: PDGF-B-mediated
downregulation of miR-21: New insights into PDGF signaling in
glioblastoma. Hum Mol Genet. 21:5118–5130. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zehetner C, Kirchmair R, Neururer SB,
Kralinger MT, Bechrakis NE and Kieselbach GF: Systemic upregulation
of PDGF-B in patients with neovascular AMD. Invest Ophthalmol Vis
Sci. 55:337–344. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liu F, Zhang H, Xie F, Tao D, Xiao X,
Huang C, Wang M, Gu C, Zhang X and Jiang G: Hsa_circ_0001361
promotes bladder cancer invasion and metastasis through
miR-491-5p/MMP9 axis. Oncogene. 39:1696–1709. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Liu H, Lan T, Li H, Xu L, Chen X, Liao H,
Chen X, Du J, Cai Y, Wang J, et al: Circular RNA circDLC1 inhibits
MMP1-mediated liver cancer progression via interaction with HuR.
Theranostics. 11:1396–1411. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hou JP, Men XB, Yang LY, Han EK, Han CQ
and Liu LB: CircCCT3 acts as a sponge of miR-613 to promote tumor
growth of pancreatic cancer through regulating VEGFA/VEGFR2
signaling. Balkan Med J. 38:229–238. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhu J, Luo Y, Zhao Y, Kong Y, Zheng H, Li
Y, Gao B, Ai L, Huang H, Huang J, et al: circEHBP1 promotes
lymphangiogenesis and lymphatic metastasis of bladder cancer via
miR-130a-3p/TGFβR1/VEGF-D signaling. Mol Ther. 29:1838–1852. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Qi L, Wang W, Zhao G, Jiang H, Zhang Y,
Zhao D, Jin H, Yu H and Xu H: Circular RNA circitga7 accelerates
glioma progression via miR-34a-5p/VEGFA axis. Aging (Albany NY).
13:13138–13152. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ji X, Shan L, Shen P and He M: Circular
RNA circ_001621 promotes osteosarcoma cells proliferation and
migration by sponging miR-578 and regulating VEGF expression. Cell
Death Dis. 11:182020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li S, Li J, Zhang H, Zhang Y, Wang X, Yang
H, Zhou Z, Hao X, Ying G and Ba Y: Gastric cancer derived exosomes
mediate the delivery of circRNA to promote angiogenesis by
targeting miR-29a/VEGF axis in endothelial cells. Biochem Biophys
Res Commun. 560:37–44. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kong Y, Li Y, Luo Y, Zhu J, Zheng H, Gao
B, Guo X, Li Z, Chen R and Chen C: circNFIB1 inhibits
lymphangiogenesis and lymphatic metastasis via the
miR-486-5p/PIK3R1/VEGF-C axis in pancreatic cancer. Mol Cancer.
19:822020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xing C, Ye H, Wang W, Sun M, Zhang J, Zhao
Z and Jiang G: Circular RNA ADAM9 facilitates the malignant
behaviours of pancreatic cancer by sponging miR-217 and
upregulating PRSS3 expression. Artif Cells Nanomed Biotechnol.
47:3920–3928. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zheng X, Ma YF, Zhang XR, Li Y, Zhao HH
and Han SG: Circ_0056618 promoted cell proliferation, migration and
angiogenesis through sponging with miR-206 and upregulating CXCR4
and VEGF-A in colorectal cancer. Eur Rev Med Pharmacol Sci.
24:4190–4202. 2020.PubMed/NCBI
|
|
67
|
Dai J, Zhuang Y, Tang M, Qian Q and Chen
JP: CircRNA UBAP2 facilitates the progression of colorectal cancer
by regulating miR-199a/VEGFA pathway. Eur Rev Med Pharmacol Sci.
24:7963–7971. 2020.PubMed/NCBI
|
|
68
|
Chen MS, Lin CH, Huang LY and Qiu XM:
CircRNA SMARCC1 sponges MiR-140-3p to regulate cell progression in
colorectal cancer. Cancer Manag Res. 12:4899–4910. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chen C, Huang Z, Mo X, Song Y, Li X, Li X
and Zhang M: The circular RNA 001971/miR-29c-3p axis modulates
colorectal cancer growth, metastasis, and angiogenesis through
VEGFA. J Exp Clin Cancer Res. 39:912020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Li W, Xu Y, Wang X, Cao G, Bu W, Wang X,
Fang Z, Xu Y, Dong M and Tao Q: circCCT3 modulates vascular
endothelial growth factor A and Wnt signaling to enhance colorectal
cancer metastasis through sponging miR-613. DNA Cell Biol.
39:118–125. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Fang N, Shi Y, Fan Y, Long T, Shu Y and
Zhou J: Circ_0072088 promotes proliferation, migration, and
invasion of esophageal squamous cell cancer by absorbing miR-377. J
Oncol. 2020:89671262020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Gao S, Hu W, Huang X, Huang X, Chen W, Hao
L, Chen Z, Wang J and Wei H: Circ_0001178 regulates miR-382/VEGFA
axis to facilitate hepatocellular carcinoma progression. Cell
Signal. 72:1096212020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chen J, Li X, Yang L, Li M, Zhang Y and
Zhang J: CircASH2L promotes ovarian cancer tumorigenesis,
angiogenesis, and lymphangiogenesis by regulating the miR-665/VEGFA
axis as a competing endogenous RNA. Front Cell Dev Biol.
8:5955852020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang LL, Zong ZH, Liu Y, Guan X, Chen S
and Zhao Y: CircRhoC promotes tumorigenicity and progression in
ovarian cancer by functioning as a miR-302e sponge to positively
regulate VEGFA. J Cell Mol Med. 23:8472–8481. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Li QH, Liu Y, Chen S, Zong ZH, Du YP,
Sheng XJ and Zhao Y: circ-CSPP1 promotes proliferation, invasion
and migration of ovarian cancer cells by acting as a miR-1236-3p
sponge. Biomed Pharmacother. 114:1088322019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lu Y, Qin T, Li J, Wang L, Zhang Q, Jiang
Z and Mao J: MicroRNA-140-5p inhibits invasion and angiogenesis
through targeting VEGF-A in breast cancer. Cancer Gene Ther.
24:386–392. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wang B, Duan R, Li ZB and Wang L:
Circ-RPL15/miR-146b-3p/VEGFA feedback loop is responsible for
triggering proliferation and migration in glioma. Eur Rev Med
Pharmacol Sci. 24:6204–6210. 2020.PubMed/NCBI
|
|
78
|
Barbagallo D, Caponnetto A, Barbagallo C,
Battaglia R, Mirabella F, Brex D, Stella M, Broggi G, Altieri R,
Certo F, et al: The GAUGAA motif is responsible for the binding
between circSMARCA5 and SRSF1 and related downstream effects on
glioblastoma multiforme cell migration and angiogenic potential.
Int J Mol Sci. 22:16782021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Liu W, Zhang J, Zou C, Xie X, Wang Y, Wang
B, Zhao Z, Tu J, Wang X, Li H, et al: Microarray expression profile
and functional analysis of circular RNAs in osteosarcoma. Cell
Physiol Biochem. 43:969–985. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zeng L, Yuan S, Zhou P, Gong J, Kong X and
Wu M: Circular RNA Pvt1 oncogene (CircPVT1) promotes the
progression of papillary thyroid carcinoma by activating the
Wnt/β-catenin signaling pathway and modulating the ratio of
microRNA-195 (miR-195) to vascular endothelial growth factor A
(VEGFA) expression. Bioengineered. 12:11795–11810. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ren M, Song X, Niu J, Tang G, Sun Z, Li Y
and Kong F: The malignant property of circHIPK2 for angiogenesis
and chemoresistance in non-small cell lung cancer. Exp Cell Res.
419:1132762022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Luo Y, Zhang Q, Lv B, Shang Y, Li J, Yang
L, Yu Z, Luo K, Deng X, Min L and Zhu T: CircFOXP1: A novel serum
diagnostic biomarker for non-small cell lung cancer. Int J Biol
Markers. 37:58–65. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Yuan X, Xu Y, Wei Z and Ding Q: CircAP2A2
acts as a ceRNA to participate in infantile hemangiomas progression
by sponging miR-382-5p via regulating the expression of VEGFA. J
Clin Lab Anal. 34:e232582020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chen B and Huang S: Circular RNA: An
emerging non-coding RNA as a regulator and biomarker in cancer.
Cancer Lett. 418:41–50. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bai H, Lei K, Huang F, Jiang Z and Zhou X:
Exo-circRNAs: A new paradigm for anticancer therapy. Mol Cancer.
18:562019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liu Y, Gao Y, Li D, He L, Iw L, Hao B,
Chen X and Cao Y: LASP1 promotes glioma cell proliferation and
migration and is negatively regulated by miR-377-3p. Biomed
Pharmacother. 108:845–851. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Montes M, Sanford BL, Comiskey DF and
Chandler DS: RNA splicing and disease: Animal models to therapies.
Trends Genet. 35:68–87. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Mody K, Baldeo C and Bekaii-Saab T:
Antiangiogenic therapy in colorectal cancer. Cancer J. 24:165–170.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ferrara N and Adamis AP: Ten years of
anti-vascular endothelial growth factor therapy. Nat Rev Drug
Discov. 15:385–403. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Altesha MA, Ni T, Khan A, Liu K and Zheng
X: Circular RNA in cardiovascular disease. J Cell Physiol.
234:5588–5600. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Jia P, Cai H, Liu X, Chen J, Ma J, Wang P,
Liu Y, Zheng J and Xue Y: Long non-coding RNA H19 regulates glioma
angiogenesis and the biological behavior of glioma-associated
endothelial cells by inhibiting microRNA-29a. Cancer Lett.
381:359–369. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhang H, Bai M, Deng T, Liu R, Wang X, Qu
Y, Duan J, Zhang L, Ning T, Ge S, et al: Cell-derived microvesicles
mediate the delivery of miR-29a/c to suppress angiogenesis in
gastric carcinoma. Cancer Lett. 375:331–339. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
He Q, Zhao L, Liu X, Zheng J, Liu Y, Liu
L, Ma J, Cai H, Li Z and Xue Y: MOV10 binding circ-DICER1 regulates
the angiogenesis of glioma via miR-103a-3p/miR-382-5p mediated ZIC4
expression change. J Exp Clin Cancer Res. 38:92019. View Article : Google Scholar : PubMed/NCBI
|