Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
March-2023 Volume 49 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2023 Volume 49 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Modulating epigenetic modifications for cancer therapy (Review)

  • Authors:
    • Leonardo Josué Castro-Muñoz
    • Elenaé Vázquez Ulloa
    • Cecilia Sahlgren
    • Marcela Lizano
    • Erick De La Cruz-Hernández
    • Adriana Contreras-Paredes
  • View Affiliations / Copyright

    Affiliations: The Wistar Institute, Philadelphia, PA 19104, USA, Faculty of Science and Engineering/Cell Biology, University of Turku and Åbo Akademi University, Turku 20500, Finland, Unidad de Investigacion Biomedica en Cancer, Instituto Nacional de Cancerología-Universidad Nacional Autonoma de Mexico, Ciudad de Mexico 14080, Mexico, Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco, Tabasco 86650, Mexico
    Copyright: © Castro-Muñoz et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 59
    |
    Published online on: February 10, 2023
       https://doi.org/10.3892/or.2023.8496
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer is a global public health concern. Alterations in epigenetic processes are among the earliest genomic aberrations occurring during cancer development and are closely related to progression. Unlike genetic mutations, aberrations in epigenetic processes are reversible, which opens the possibility for novel pharmacological treatments. Non‑coding RNAs (ncRNAs) represent an essential epigenetic mechanism, and emerging evidence links ncRNAs to carcinogenesis. Epigenetic drugs (epidrugs) are a group of promising target therapies for cancer treatment acting as coadjuvants to reverse drug resistance in cancer. The present review describes central epigenetic aberrations during malignant transformation and explains how epidrugs target DNA methylation, histone modifications and ncRNAs. Furthermore, clinical trials focused on evaluating the effect of these epidrugs alone or in combination with other anticancer therapies and other ncRNA‑based therapies are discussed. The use of epidrugs promises to be an effective tool for reversing drug resistance in some patients with cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Mantovani F, Collavin L and Del Sal G: Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 26:199–212. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Deans C and Maggert KA: What do you mean, ‘epigenetic’? Genetics. 199:887–896. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Bashyam MD, Animireddy S, Bala P, Naz A and George SA: The Yin and Yang of cancer genes. Gene. 704:121–133. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Chen P, Li W and Li G: Structures and functions of chromatin fibers. Annu Rev Biophys. 50:95–116. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Ferreira HJ and Esteller M: Non-coding RNAs, epigenetics, and cancer: Tying it all together. Cancer Metastasis Rev. 37:55–73. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Zhang L, Lu Q and Chang C: Epigenetics in health and disease. Adv Exp Med Biol. 1253:3–55. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Lu Y, Chan YT, Tan HY, Li S, Wang N and Feng Y: Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Mol Cancer. 19:792020. View Article : Google Scholar : PubMed/NCBI

9 

Ding X, He M, Chan AWH, Song QX, Sze SC, Chen H, Man MKH, Man K, Chan SL, Lai PBS, et al: Genomic and epigenomic features of primary and recurrent hepatocellular carcinomas. Gastroenterology. 157:1630–1645.e6. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Malouf GG, Taube JH, Lu Y, Roysarkar T, Panjarian S, Estecio MR, Jelinek J, Yamazaki J, Raynal NJ, Long H, et al: Architecture of epigenetic reprogramming following Twist1-mediated epithelial-mesenchymal transition. Genome Biol. 14:R1442013. View Article : Google Scholar : PubMed/NCBI

11 

Miranda Furtado CL, Dos Santos Luciano MC, Silva Santos RD, Furtado GP, Moraes MO and Pessoa C: Epidrugs: targeting epigenetic marks in cancer treatment. Epigenetics. 14:1164–1176. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Lyko F: The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 19:81–92. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Ren W, Gao L and Song J: Structural basis of DNMT1 and DNMT3A-mediated DNA methylation. Genes (Basel). 9:6202018. View Article : Google Scholar : PubMed/NCBI

14 

Chen Z and Zhang Y: Role of mammalian DNA methyltransferases in development. Annu Rev Biochem. 89:135–158. 2020. View Article : Google Scholar : PubMed/NCBI

15 

Smith ZD and Meissner A: DNA methylation: Roles in mammalian development. Nat Rev Genet. 14:204–220. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Zhang ZM, Lu R, Wang P, Yu Y, Chen D, Gao L, Liu S, Ji D, Rothbart SB, Wang Y, et al: Structural basis for DNMT3A-mediated de novo DNA methylation. Nature. 554:387–391. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Veland N, Lu Y, Hardikar S, Gaddis S, Zeng Y, Liu B, Estecio MR, Takata Y, Lin K, Tomida MW, et al: DNMT3L facilitates DNA methylation partly by maintaining DNMT3A stability in mouse embryonic stem cells. Nucleic Acids Res. 47:152–167. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Loaeza-Loaeza J, Beltran AS and Hernández-Sotelo D: DNMTs and impact of CpG content, transcription factors, consensus motifs, lncRNAs, and histone marks on DNA methylation. Genes (Basel). 11:13362020. View Article : Google Scholar : PubMed/NCBI

19 

Onodera A, González-Avalos E, Lio CWJ, Georges RO, Bellacosa A, Nakayama T and Rao A: Roles of TET and TDG in DNA demethylation in proliferating and non-proliferating immune cells. Genome Biol. 22:1862021. View Article : Google Scholar : PubMed/NCBI

20 

Rasmussen KD and Helin K: Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30:733–750. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Sabino JC, de Almeida MR, Abreu PL, Ferreira AM, Caldas P, Domingues MM, Santos NC, Azzalin CM, Grosso AR and de Almeida SF: Epigenetic reprogramming by TET enzymes impacts co-transcriptional R-loops. Elife. 11:e694762022. View Article : Google Scholar : PubMed/NCBI

22 

Li C, Fan Y, Li G, Xu X, Duan J, Li R, Kang X, Ma X, Chen X, Ke Y, et al: DNA methylation reprogramming of functional elements during mammalian embryonic development. Cell Discov. 4:412018. View Article : Google Scholar : PubMed/NCBI

23 

Dossin F, Pinheiro I, Żylicz JJ, Roensch J, Collombet S, Le Saux A, Chelmicki T, Attia M, Kapoor V, Zhan Y, et al: SPEN integrates transcriptional and epigenetic control of X-inactivation. Nature. 578:455–460. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Tucci V, Isles AR, Kelsey G and Ferguson-Smith AC; Erice Imprinting Group, : Genomic imprinting and physiological processes in mammals. Cell. 176:952–965. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Zhang M, Wu J, Zhong W, Zhao Z and He W: DNA-methylation-induced silencing of DIO3OS drives non-small cell lung cancer progression via activating hnRNPK-MYC-CDC25A axis. Mol Ther Oncolytics. 23:205–219. 2021. View Article : Google Scholar : PubMed/NCBI

26 

Kennedy EM, Goehring GN, Nichols MH, Robins C, Mehta D, Klengel T, Eskin E, Smith AK and Conneely KN: An integrated-omics analysis of the epigenetic landscape of gene expression in human blood cells. BMC Genomics. 19:4762018. View Article : Google Scholar : PubMed/NCBI

27 

Kanwal R, Gupta K and Gupta S: Cancer epigenetics: An introduction. Methods Mol Biol. 1238:3–25. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Klutstein M, Nejman D, Greenfield R and Cedar H: DNA methylation in cancer and aging. Cancer Res. 76:3446–3450. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Sheaffer KL, Elliott EN and Kaestner KH: DNA hypomethylation contributes to genomic instability and intestinal cancer initiation. Cancer Prev Res (Phila). 9:534–546. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Hatziapostolou M and Iliopoulos D: Epigenetic aberrations during oncogenesis. Cell Mol Life Sci. 68:1681–1702. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Guerrero-Preston R, Michailidi C, Marchionni L, Pickering CR, Frederick MJ, Myers JN, Yegnasubramanian S, Hadar T, Noordhuis MG, Zizkova V, et al: Key tumor suppressor genes inactivated by ‘greater promoter’ methylation and somatic mutations in head and neck cancer. Epigenetics. 9:1031–1046. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Faam B, Ghaffari MA, Khorsandi L, Ghadiri AA, Totonchi M, Amouzegar A, Fanaei SA, Azizi F, Shahbazian HB and Hashemi Tabar M: RAP1GAP functions as a tumor suppressor gene and is regulated by DNA methylation in differentiated thyroid cancer. Cytogenet Genome Res. 161:227–235. 2021. View Article : Google Scholar : PubMed/NCBI

33 

Chantre-Justino M, Gonçalves da Veiga Pires I, Cardoso Figueiredo M, Dos Santos Moreira A, Alves G and Faria Ornellas MH: Genetic and methylation status of CDKN2A (p14ARF/p16INK4A) and TP53 genes in recurrent respiratory papillomatosis. Hum Pathol. 119:94–104. 2022. View Article : Google Scholar : PubMed/NCBI

34 

Han B, Yang X, Zhang P, Zhang Y, Tu Y, He Z, Li Y, Yuan J, Dong Y, Hosseini DK, et al: DNA methylation biomarkers for nasopharyngeal carcinoma. PLoS One. 15:e02305242020. View Article : Google Scholar : PubMed/NCBI

35 

Hoang NM and Rui L: DNA methyltransferases in hematological malignancies. J Genet Genomics. 47:361–372. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Steele N, Finn P, Brown R and Plumb JA: Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo. Br J Cancer. 100:758–763. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Bao Y, Oguz G, Lee WC, Lee PL, Ghosh K, Li J, Wang P, Lobie PE, Ehmsen S, Ditzel HJ, et al: EZH2-mediated PP2A inactivation confers resistance to HER2-targeted breast cancer therapy. Nat Commun. 11:58782020. View Article : Google Scholar : PubMed/NCBI

38 

Vijayaraghavalu S and Labhasetwar V: Nanogel-mediated delivery of a cocktail of epigenetic drugs plus doxorubicin overcomes drug resistance in breast cancer cells. Drug Deliv Transl Res. 8:1289–1299. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Zhou Z, Li HQ and Liu F: DNA methyltransferase inhibitors and their therapeutic potential. Curr Top Med Chem. 18:2448–2457. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Kedhari Sundaram M, Hussain A, Haque S, Raina R and Afroze N: Quercetin modifies 5′CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells. J Cell Biochem. 120:18357–18369. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Sanaei M, Kavoosi F and Behjoo H: Effect of valproic acid and zebularine on SOCS-1 and SOCS-3 gene expression in colon carcinoma SW48 cell line. Exp Oncol. 42:183–187. 2020.PubMed/NCBI

42 

Capdevila J, Arqués O, Hernández Mora JR, Matito J, Caratù G, Mancuso FM, Landolfi S, Barriuso J, Jimenez-Fonseca P, Lopez Lopez C, et al: Epigenetic EGFR gene repression confers sensitivity to therapeutic BRAFV600E blockade in colon neuroendocrine carcinomas. Clin Cancer Res. 26:902–909. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Marques-Magalhães Â, Graça I, Henrique R and Jerónimo C: Targeting DNA methyltranferases in urological tumors. Front Pharmacol. 9:3662018. View Article : Google Scholar : PubMed/NCBI

44 

Xylinas E, Hassler MR, Zhuang D, Krzywinski M, Erdem Z, Robinson BD, Elemento O, Clozel T and Shariat SF: An epigenomic approach to improving response to neoadjuvant cisplatin chemotherapy in bladder cancer. Biomolecules. 6:372016. View Article : Google Scholar : PubMed/NCBI

45 

Stresemann C and Lyko F: Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 123:8–13. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Chakrawarti L, Agrawal R, Dang S, Gupta S and Gabrani R: Therapeutic effects of EGCG: A patent review. Expert Opin Ther Pat. 26:907–916. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Beisler JA: Isolation, characterization, and properties of a labile hydrolysis product of the antitumor nucleoside, 5-azacytidine. J Med Chem. 21:204–208. 1978. View Article : Google Scholar : PubMed/NCBI

48 

Rahman MF, Raj R and Govindarajan R: Identification of structural and molecular features involved in the transport of 3′-Deoxy-nucleoside analogs by human equilibrative nucleoside transporter 3. Drug Metab Dispos. 46:600–609. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Momparler RL and Derse D: Kinetics of phosphorylation of 5-aza-2′-deoxyycytidine by deoxycytidine kinase. Biochem Pharmacol. 28:1443–1444. 1979. View Article : Google Scholar : PubMed/NCBI

50 

Santi DV, Garrett CE and Barr PJ: On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell. 33:9–10. 1983. View Article : Google Scholar : PubMed/NCBI

51 

Seelan RS, Mukhopadhyay P, Pisano MM and Greene RM: Effects of 5-Aza-2′-deoxycytidine (decitabine) on gene expression. Drug Metab Rev. 50:193–207. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Zheng Z, Li L, Liu X, Wang D, Tu B, Wang L, Wang H and Zhu WG: 5-Aza-2′-deoxycytidine reactivates gene expression via degradation of pRb pocket proteins. FASEB J. 26:449–459. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Sorm F, Pískala A, Cihák A and Veselý J: 5-Azacytidine, a new, highly effective cancerostatic. Experientia. 20:202–203. 1964. View Article : Google Scholar : PubMed/NCBI

54 

Sorm F and Vesely J: The activity of a new antimetabolite, 5-azacytidine, against lymphoid leukaemia in AK mice. Neoplasma. 11:123–130. 1964.PubMed/NCBI

55 

Case DC Jr: 5-azacytidine in refractory acute leukemia. Oncology. 39:218–221. 1982. View Article : Google Scholar : PubMed/NCBI

56 

Tanaka K, Appella E and Jay G: Developmental activation of the H-2K gene is correlated with an increase in DNA methylation. Cell. 35:457–465. 1983. View Article : Google Scholar : PubMed/NCBI

57 

Vogler WR, Miller DS and Keller JW: 5-Azacytidine (NSC 102816): A new drug for the treatment of myeloblastic leukemia. Blood. 48:331–337. 1976. View Article : Google Scholar : PubMed/NCBI

58 

Kaminskas E, Farrell A, Abraham S, Baird A, Hsieh LS, Lee SL, Leighton JK, Patel H, Rahman A, Sridhara R, et al: Approval summary: Azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res. 11:3604–3608. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Ganesan A, Arimondo PB, Rots MG, Jeronimo C and Berdasco M: The timeline of epigenetic drug discovery: From reality to dreams. Clin Epigenetics. 11:1742019. View Article : Google Scholar : PubMed/NCBI

60 

Duchmann M and Itzykson R: Clinical update on hypomethylating agents. Int J Hematol. 110:161–169. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Schaefer M, Hagemann S, Hanna K and Lyko F: Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res. 69:8127–8132. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Hollenbach PW, Nguyen AN, Brady H, Williams M, Ning Y, Richard N, Krushel L, Aukerman SL, Heise C and MacBeth KJ: A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One. 5:e90012010. View Article : Google Scholar : PubMed/NCBI

63 

Venturelli S, Berger A, Weiland T, Essmann F, Waibel M, Nuebling T, Häcker S, Schenk M, Schulze-Osthoff K, Salih HR, et al: Differential induction of apoptosis and senescence by the DNA methyltransferase inhibitors 5-azacytidine and 5-aza-2′-deoxycytidine in solid tumor cells. Mol Cancer Ther. 12:2226–2236. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Jin S, Cojocari D, Purkal JJ, Popovic R, Talaty NN, Xiao Y, Solomon LR, Boghaert ER, Leverson JD and Phillips DC: 5-Azacitidine induces NOXA to prime AML cells for venetoclax-mediated apoptosis. Clin Cancer Res. 26:3371–3383. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Fabre C, Grosjean J, Tailler M, Boehrer S, Adès L, Perfettini JL, de Botton S, Fenaux P and Kroemer G: A novel effect of DNA methyltransferase and histone deacetylase inhibitors: NFkappaB inhibition in malignant myeloblasts. Cell Cycle. 7:2139–2145. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Carbajo-García MC, Corachán A, Segura-Benitez M, Monleón J, Escrig J, Faus A, Pellicer A, Cervelló I and Ferrero H: 5-aza-2′-deoxycitidine inhibits cell proliferation, extracellular matrix formation and Wnt/β-catenin pathway in human uterine leiomyomas. Reprod Biol Endocrinol. 19:1062021. View Article : Google Scholar : PubMed/NCBI

67 

Linnekamp JF, Kandimalla R, Fessler E, de Jong JH, Rodermond HM, van Bochove GGW, The FO, Punt CJA, Bemelman WA, van de Ven AWH, et al: Pre-operative decitabine in colon cancer patients: Analyses on WNT target methylation and expression. Cancers (Basel). 13:23572021. View Article : Google Scholar : PubMed/NCBI

68 

Santini V: How I treat MDS after hypomethylating agent failure. Blood. 133:521–529. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Mabaera R, Greene MR, Richardson CA, Conine SJ, Kozul CD and Lowrey CH: Neither DNA hypomethylation nor changes in the kinetics of erythroid differentiation explain 5-azacytidine's ability to induce human fetal hemoglobin. Blood. 111:411–420. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Susanto JM, Colvin EK, Pinese M, Chang DK, Pajic M, Mawson A, Caldon CE, Musgrove EA, Henshall SM, Sutherland RL, et al: The epigenetic agents suberoylanilide hydroxamic acid and 5-AZA-2′ deoxycytidine decrease cell proliferation, induce cell death and delay the growth of MiaPaCa2 pancreatic cancer cells in vivo. Int J Oncol. 46:2223–2230. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Evans IC, Barnes JL, Garner IM, Pearce DR, Maher TM, Shiwen X, Renzoni EA, Wells AU, Denton CP, Laurent GJ, et al: Epigenetic regulation of cyclooxygenase-2 by methylation of c8orf4 in pulmonary fibrosis. Clin Sci (Lond). 130:575–586. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Allis CD and Jenuwein T: The molecular hallmarks of epigenetic control. Nat Rev Genet. 17:487–500. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Meng CF, Zhu XJ, Peng G and Dai DQ: Promoter histone H3 lysine 9 di-methylation is associated with DNA methylation and aberrant expression of p16 in gastric cancer cells. Oncol Rep. 22:1221–1227. 2009.PubMed/NCBI

74 

Lee SH, Kim J, Kim WH and Lee YM: Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene. 28:184–194. 2009. View Article : Google Scholar : PubMed/NCBI

75 

Nguyen CT, Weisenberger DJ, Velicescu M, Gonzales FA, Lin JCY, Liang G and Jones PA: Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res. 62:6456–6461. 2002.PubMed/NCBI

76 

Griffiths EA and Gore SD: Epigenetic therapies in MDS and AML. Adv Exp Med Biol. 754:253–283. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Nguyen AN, Hollenbach PW, Richard N, Luna-Moran A, Brady H, Heise C and MacBeth KJ: Azacitidine and decitabine have different mechanisms of action in non-small cell lung cancer cell lines. Lung Cancer (Auckl). 1:119–140. 2010.PubMed/NCBI

78 

Home-ClinicalTrials.govNovember 22–2022https://clinicaltrials.gov/

79 

Hurd PJ, Whitmarsh AJ, Baldwin GS, Kelly SM, Waltho JP, Price NC, Connolly BA and Hornby DP: Mechanism-based inhibition of C5-cytosine DNA methyltransferases by 2-H pyrimidinone. J Mol Biol. 286:389–401. 1999. View Article : Google Scholar : PubMed/NCBI

80 

Yoo CB, Cheng JC and Jones PA: Zebularine: A new drug for epigenetic therapy. Biochem Soc Trans. 32:910–912. 2004. View Article : Google Scholar : PubMed/NCBI

81 

Ferguson LR, Tatham AL, Lin Z and Denny WA: Epigenetic regulation of gene expression as an anticancer drug target. Curr Cancer Drug Targets. 11:199–212. 2011. View Article : Google Scholar : PubMed/NCBI

82 

Dueñas-Gonzalez A, Coronel J, Cetina L, González-Fierro A, Chavez-Blanco A and Taja-Chayeb L: Hydralazine-valproate: A repositioned drug combination for the epigenetic therapy of cancer. Expert Opin Drug Metab Toxicol. 10:1433–1444. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Singh N, Dueñas-González A, Lyko F and Medina-Franco JL: Molecular modeling and molecular dynamics studies of hydralazine with human DNA methyltransferase 1. ChemMedChem. 4:792–799. 2009. View Article : Google Scholar : PubMed/NCBI

84 

Daher-Reyes GS, Merchan BM and Yee KWL: Guadecitabine (SGI-110): An investigational drug for the treatment of myelodysplastic syndrome and acute myeloid leukemia. Expert Opin Investig Drugs. 28:835–849. 2019. View Article : Google Scholar : PubMed/NCBI

85 

Salvador LA and Luesch H: Discovery and mechanism of natural products as modulators of histone acetylation. Curr Drug Targets. 13:1029–1047. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Zhang Y, Wang X, Han L, Zhou Y and Sun S: Green tea polyphenol EGCG reverse cisplatin resistance of A549/DDP cell line through candidate genes demethylation. Biomed Pharmacother. 69:285–290. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Alaskhar Alhamwe B, Khalaila R, Wolf J, von Bülow V, Harb H, Alhamdan F, Hii CS, Prescott SL, Ferrante A, Renz H, et al: Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy Asthma Clin Immunol. 14:392018. View Article : Google Scholar : PubMed/NCBI

88 

Lawrence M, Daujat S and Schneider R: Lateral thinking: How histone modifications regulate gene expression. Trends Genet. 32:42–56. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Lakshmaiah KC, Jacob LA, Aparna S, Lokanatha D and Saldanha SC: Epigenetic therapy of cancer with histone deacetylase inhibitors. J Cancer Res Ther. 10:469–478. 2014.PubMed/NCBI

90 

Albaugh BN, Arnold KM and Denu JM: KAT(ching) metabolism by the tail: Insight into the links between lysine acetyltransferases and metabolism. Chembiochem. 12:290–298. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Yang J, Song C and Zhan X: The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol (Lausanne). 13:9723122022. View Article : Google Scholar : PubMed/NCBI

92 

Cohen I, Poręba E, Kamieniarz K and Schneider R: Histone modifiers in cancer: Friends or foes? Genes Cancer. 2:631–647. 2011. View Article : Google Scholar : PubMed/NCBI

93 

Fan P, Zhao J, Meng Z, Wu H, Wang B, Wu H and Jin X: Overexpressed histone acetyltransferase 1 regulates cancer immunity by increasing programmed death-ligand 1 expression in pancreatic cancer. J Exp Clin Cancer Res. 38:472019. View Article : Google Scholar : PubMed/NCBI

94 

Sun XJ, Man N, Tan Y, Nimer SD and Wang L: The role of histone acetyltransferases in normal and malignant hematopoiesis. Front Oncol. 5:1082015. View Article : Google Scholar : PubMed/NCBI

95 

Wang P, Wang Z and Liu J: Role of HDACs in normal and malignant hematopoiesis. Mol Cancer. 19:52020. View Article : Google Scholar : PubMed/NCBI

96 

Carraway HE, Malkaram SA, Cen Y, Shatnawi A, Fan J, Ali HEA, Abd Elmageed ZY, Buttolph T, Denvir J, Primerano DA and Fandy TE: Activation of SIRT6 by DNA hypomethylating agents and clinical consequences on combination therapy in leukemia. Sci Rep. 10:103252020. View Article : Google Scholar : PubMed/NCBI

97 

Hu XT, Xing W, Zhao RS, Tan Y, Wu XF, Ao LQ, Li Z, Yao MW, Yuan M, Guo W, et al: HDAC2 inhibits EMT-mediated cancer metastasis by downregulating the long noncoding RNA H19 in colorectal cancer. J Exp Clin Cancer Res. 39:2702020. View Article : Google Scholar : PubMed/NCBI

98 

Körholz K, Ridinger J, Krunic D, Najafi S, Gerloff XF, Frese K, Meder B, Peterziel H, Vega-Rubin-de-Celis S, Witt O and Oehme I: Broad-spectrum HDAC inhibitors promote autophagy through FOXO transcription factors in neuroblastoma. Cells. 10:10012021. View Article : Google Scholar : PubMed/NCBI

99 

Chun P: Histone deacetylase inhibitors in hematological malignancies and solid tumors. Arch Pharm Res. 38:933–949. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Jęśko H, Wencel P, Strosznajder RP and Strosznajder JB: Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res. 42:876–890. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Willis-Martinez D, Richards HW, Timchenko NA and Medrano EE: Role of HDAC1 in senescence, aging, and cancer. Exp Gerontol. 45:279–285. 2010. View Article : Google Scholar : PubMed/NCBI

102 

Glozak MA and Seto E: Histone deacetylases and cancer. Oncogene. 26:5420–5432. 2007. View Article : Google Scholar : PubMed/NCBI

103 

Audia JE and Campbell RM: Histone modifications and cancer. Cold Spring Harb Perspect Biol. 8:a0195212016. View Article : Google Scholar : PubMed/NCBI

104 

Bergamin E, Sarvan S, Malette J, Eram MS, Yeung S, Mongeon V, Joshi M, Brunzelle JS, Michaels SD, Blais A, et al: Molecular basis for the methylation specificity of ATXR5 for histone H3. Nucleic Acids Res. 45:6375–6387. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Mohan M, Herz HM and Shilatifard A: SnapShot: Histone lysine methylase complexes. Cell. 149:498–498.e1. 2012. View Article : Google Scholar : PubMed/NCBI

106 

From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR), ; et al: Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke. 13:612–632. 2018.PubMed/NCBI

107 

McGrath J and Trojer P: Targeting histone lysine methylation in cancer. Pharmacol Ther. 150:1–22. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Wan YCE, Liu J and Chan KM: Histone H3 mutations in cancer. Curr Pharmacol Rep. 4:292–300. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Salz T, Deng C, Pampo C, Siemann D, Qiu Y, Brown K and Huang S: Histone methyltransferase hSETD1A is a novel regulator of metastasis in breast cancer. Mol Cancer Res. 13:461–469. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, Wedge DC, Cooke SL, Gundem G, Davies H, et al: Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet. 45:1479–1482. 2013. View Article : Google Scholar : PubMed/NCBI

111 

Papillon-Cavanagh S, Lu C, Gayden T, Mikael LG, Bechet D, Karamboulas C, Ailles L, Karamchandani J, Marchione DM, Garcia BA, et al: Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat Genet. 49:180–185. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Yang T, Yang Y and Wang Y: Predictive biomarkers and potential drug combinations of epi-drugs in cancer therapy. Clin Epigenetics. 13:1132021. View Article : Google Scholar : PubMed/NCBI

113 

Bates SE: Epigenetic therapies for cancer. N Engl J Med. 383:650–663. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Yaseen A, Chen S, Hock S, Rosato R, Dent P, Dai Y and Grant S: Resveratrol sensitizes acute myelogenous leukemia cells to histone deacetylase inhibitors through reactive oxygen species-mediated activation of the extrinsic apoptotic pathway. Mol Pharmacol. 82:1030–1041. 2012. View Article : Google Scholar : PubMed/NCBI

115 

Bubna AK: Vorinostat-an overview. Indian J Dermatol. 60:4192015. View Article : Google Scholar : PubMed/NCBI

116 

Richon VM: Cancer biology: Mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. Br J Cancer. 95 (Suppl 1):S2–S6. 2006. View Article : Google Scholar

117 

Bolden JE, Peart MJ and Johnstone RW: Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 5:769–784. 2006. View Article : Google Scholar : PubMed/NCBI

118 

Siegel D, Hussein M, Belani C, Robert F, Galanis E, Richon VM, Garcia-Vargas J, Sanz-Rodriguez C and Rizvi S: Vorinostat in solid and hematologic malignancies. J Hematol Oncol. 2:312009. View Article : Google Scholar : PubMed/NCBI

119 

Nakajima H, Kim YB, Terano H, Yoshida M and Horinouchi S: FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res. 241:126–133. 1998. View Article : Google Scholar : PubMed/NCBI

120 

VanderMolen KM, McCulloch W, Pearce CJ and Oberlies NH: Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): A natural product recently approved for cutaneous T-cell lymphoma. J Antibiot (Tokyo). 64:525–531. 2011. View Article : Google Scholar : PubMed/NCBI

121 

Marshall JL, Rizvi N, Kauh J, Dahut W, Figuera M, Kang MH, Figg WD, Wainer I, Chaissang C, Li MZ and Hawkins MJ: A phase I trial of depsipeptide (FR901228) in patients with advanced cancer. J Exp Ther Oncol. 2:325–332. 2002. View Article : Google Scholar : PubMed/NCBI

122 

Petrich A and Nabhan C: Use of class I histone deacetylase inhibitor romidepsin in combination regimens. Leuk Lymphoma. 57:1755–1765. 2016. View Article : Google Scholar : PubMed/NCBI

123 

O'Connor OA, Horwitz S, Masszi T, Van Hoof A, Brown P, Doorduijn J, Hess G, Jurczak W, Knoblauch P, Chawla S, et al: Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: Results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol. 33:2492–2499. 2015. View Article : Google Scholar : PubMed/NCBI

124 

Poole RM: Belinostat: First global approval. Drugs. 74:1543–1554. 2014. View Article : Google Scholar : PubMed/NCBI

125 

Autin P, Blanquart C and Fradin D: Epigenetic drugs for cancer and microRNAs: A focus on histone deacetylase inhibitors. Cancers (Basel). 11:15302019. View Article : Google Scholar : PubMed/NCBI

126 

Spratlin JL, Pitts TM, Kulikowski GN, Morelli MP, Tentler JJ, Serkova NJ and Eckhardt SG: Synergistic activity of histone deacetylase and proteasome inhibition against pancreatic and hepatocellular cancer cell lines. Anticancer Res. 31:1093–1103. 2011.PubMed/NCBI

127 

Lee MJ, Kim YS, Kummar S, Giaccone G and Trepel JB: Histone deacetylase inhibitors in cancer therapy. Curr Opin Oncol. 20:639–649. 2008. View Article : Google Scholar : PubMed/NCBI

128 

Gibney ER and Nolan CM: Epigenetics and gene expression. Heredity (Edinb). 105:4–13. 2010. View Article : Google Scholar : PubMed/NCBI

129 

He J, Xie Q, Xu H, Li J and Li Y: Circular RNAs and cancer. Cancer Lett. 396:138–144. 2017. View Article : Google Scholar : PubMed/NCBI

130 

Khanna A and Stamm S: Regulation of alternative splicing by short non-coding nuclear RNAs. RNA Biol. 7:480–485. 2010. View Article : Google Scholar : PubMed/NCBI

131 

Kwek KY, Murphy S, Furger A, Thomas B, O'Gorman W, Kimura H, Proudfoot NJ and Akoulitchev A: U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Mol Biol. 9:800–805. 2002.PubMed/NCBI

132 

Eilebrecht S, Brysbaert G, Wegert T, Urlaub H, Benecke BJ and Benecke A: 7SK small nuclear RNA directly affects HMGA1 function in transcription regulation. Nucleic Acids Res. 39:2057–2072. 2011. View Article : Google Scholar : PubMed/NCBI

133 

Szymanski M, Erdmann VA and Barciszewski J: Noncoding RNAs database (ncRNAdb). Nucleic Acids Res. 35:(Database Issue). D162–D164. 2007. View Article : Google Scholar : PubMed/NCBI

134 

Chu CY and Rana TM: Small RNAs: Regulators and guardians of the genome. J Cell Physiol. 213:412–419. 2007. View Article : Google Scholar : PubMed/NCBI

135 

Abi A, Farahani N, Molavi G and Gheibi Hayat SM: Circular RNAs: Epigenetic regulators in cancerous and noncancerous skin diseases. Cancer Gene Ther. 27:280–293. 2020. View Article : Google Scholar : PubMed/NCBI

136 

Quinn JJ and Chang HY: Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 17:47–62. 2016. View Article : Google Scholar : PubMed/NCBI

137 

Ding X, Zhang S, Li X, Feng C, Huang Q, Wang S, Wang S, Xia W, Yang F, Yin R, et al: Profiling expression of coding genes, long noncoding RNA, and circular RNA in lung adenocarcinoma by ribosomal RNA-depleted RNA sequencing. FEBS Open Bio. 8:544–555. 2018. View Article : Google Scholar : PubMed/NCBI

138 

Lam JKW, Chow MYT, Zhang Y and Leung SWS: siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 4:e2522015. View Article : Google Scholar : PubMed/NCBI

139 

Meister G and Tuschl T: Mechanisms of gene silencing by double-stranded RNA. Nature. 431:343–349. 2004. View Article : Google Scholar : PubMed/NCBI

140 

Kim VN: MicroRNA biogenesis: Coordinated cropping and dicing. Nat Rev Mol Cell Biol. 6:376–385. 2005. View Article : Google Scholar : PubMed/NCBI

141 

Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI

142 

Tomari Y and Zamore PD: Perspective: Machines for RNAi. Genes Dev. 19:517–529. 2005. View Article : Google Scholar : PubMed/NCBI

143 

Paturi S and Deshmukh MV: A glimpse of ‘dicer biology’ through the structural and functional perspective. Front Mol Biosci. 8:6436572021. View Article : Google Scholar : PubMed/NCBI

144 

Alagia A, Jorge AF, Aviñó A, Cova TFGG, Crehuet R, Grijalvo S, Pais AACC and Eritja R: Exploring PAZ/3′-overhang interaction to improve siRNA specificity. A combined experimental and modeling study. Chem Sci. 9:2074–2086. 2018. View Article : Google Scholar : PubMed/NCBI

145 

Wu L, Fan J and Belasco JG: MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA. 103:4034–4039. 2006. View Article : Google Scholar : PubMed/NCBI

146 

Chen L, Dahlstrom JE, Lee SH and Rangasamy D: Naturally occurring endo-siRNA silences LINE-1 retrotransposons in human cells through DNA methylation. Epigenetics. 7:758–771. 2012. View Article : Google Scholar : PubMed/NCBI

147 

Guo B, Li D, Du L and Zhu X: piRNAs: Biogenesis and their potential roles in cancer. Cancer Metastasis Rev. 39:567–575. 2020. View Article : Google Scholar : PubMed/NCBI

148 

Sparmann A: piRNAs-guardians of the germline. Nat Res. 2019.

149 

Iwasaki YW, Siomi MC and Siomi H: PIWI-interacting RNA: Its biogenesis and functions. Annu Rev Biochem. 84:405–433. 2015. View Article : Google Scholar : PubMed/NCBI

150 

Caramuta S, Egyházi S, Rodolfo M, Witten D, Hansson J, Larsson C and Lui WO: MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol. 130:2062–2070. 2010. View Article : Google Scholar : PubMed/NCBI

151 

Chi J, Ballabio E, Chen XH, Kušec R, Taylor S, Hay D, Tramonti D, Saunders NJ, Littlewood T, Pezzella F, et al: MicroRNA expression in multiple myeloma is associated with genetic subtype, isotype and survival. Biol Direct. 6:232011. View Article : Google Scholar : PubMed/NCBI

152 

Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C, Volinia S, Liu CG, Schnittger S, Haferlach T, et al: Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA. 105:3945–3950. 2008. View Article : Google Scholar : PubMed/NCBI

153 

Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, et al: MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65:7065–7070. 2005. View Article : Google Scholar : PubMed/NCBI

154 

Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aqeilan RI, et al: MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA. 105:5166–5171. 2008. View Article : Google Scholar : PubMed/NCBI

155 

Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, et al: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 102:13944–13949. 2005. View Article : Google Scholar : PubMed/NCBI

156 

Mogilyansky E and Rigoutsos I: The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 20:1603–1614. 2013. View Article : Google Scholar : PubMed/NCBI

157 

Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P and Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum Mutat. 28:622–629. 2007. View Article : Google Scholar : PubMed/NCBI

158 

Liao JM, Cao B, Zhou X and Lu H: New insights into p53 functions through its target microRNAs. J Mol Cell Biol. 6:206–213. 2014. View Article : Google Scholar : PubMed/NCBI

159 

Madrigal T, Hernández-Monge J, Herrera LA, González-De la Rosa CH, Domínguez-Gómez G, Candelaria M, Luna-Maldonado F, Calderón González KG and Díaz-Chávez J: Regulation of miRNAs expression by mutant p53 gain of function in cancer. Front Cell Dev Biol. 9:6957232021. View Article : Google Scholar : PubMed/NCBI

160 

Tornesello ML, Annunziata C, Tornesello AL, Buonaguro L and Buonaguro FM: Human oncoviruses and p53 tumor suppressor pathway deregulation at the origin of human cancers. Cancers (Basel). 10:2132018. View Article : Google Scholar : PubMed/NCBI

161 

Hassler MR, Turanov AA, Alterman JF, Haraszti RA, Coles AH, Osborn MF, Echeverria D, Nikan M, Salomon WE, Roux L, et al: Comparison of partially and fully chemically-modified siRNA in conjugate-mediated delivery in vivo. Nucleic Acids Res. 46:2185–2196. 2018. View Article : Google Scholar : PubMed/NCBI

162 

Statello L, Guo CJ, Chen LL and Huarte M: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. View Article : Google Scholar : PubMed/NCBI

163 

Gao N, Li Y, Li J, Gao Z, Yang Z, Li Y, Liu H and Fan T: Long non-coding RNAs: The regulatory mechanisms, research strategies, and future directions in cancers. Front Oncol. 10:5988172020. View Article : Google Scholar : PubMed/NCBI

164 

Fang Y and Fullwood MJ: Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics. 14:42–54. 2016. View Article : Google Scholar : PubMed/NCBI

165 

Mathy NW and Chen XM: Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. J Biol Chem. 292:12375–12382. 2017. View Article : Google Scholar : PubMed/NCBI

166 

Wang KC and Chang HY: Molecular mechanisms of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar : PubMed/NCBI

167 

Amirinejad R, Rezaei M and Shirvani-Farsani Z: An update on long intergenic noncoding RNA p21: A regulatory molecule with various significant functions in cancer. Cell Biosci. 10:822020. View Article : Google Scholar : PubMed/NCBI

168 

Hall JR, Messenger ZJ, Tam HW, Phillips SL, Recio L and Smart RC: Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Dis. 6:e17002015. View Article : Google Scholar : PubMed/NCBI

169 

Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, et al: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 142:409–419. 2010. View Article : Google Scholar : PubMed/NCBI

170 

Dai X, Kaushik AC and Zhang J: The emerging role of major regulatory RNAs in cancer control. Front Oncol. 9:9202019. View Article : Google Scholar : PubMed/NCBI

171 

Fox AH, Nakagawa S, Hirose T and Bond CS: Paraspeckles: Where long noncoding RNA meets phase separation. Trends Biochem Sci. 43:124–135. 2018. View Article : Google Scholar : PubMed/NCBI

172 

Sun TT, He J, Liang Q, Ren LL, Yan TT, Yu TC, Tang JY, Bao YJ, Hu Y, Lin Y, et al: LncRNA GClnc1 promotes gastric carcinogenesis and may Act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discov. 6:784–801. 2016. View Article : Google Scholar : PubMed/NCBI

173 

Wang J, Zhu S, Meng N, He Y, Lu R and Yan GR: ncRNA-encoded peptides or proteins and cancer. Mol Ther. 27:1718–1725. 2019. View Article : Google Scholar : PubMed/NCBI

174 

Xing J, Liu H, Jiang W and Wang L: LncRNA-encoded peptide: Functions and predicting methods. Front Oncol. 10:6222942021. View Article : Google Scholar : PubMed/NCBI

175 

Kong S, Tao M, Shen X and Ju S: Translatable circRNAs and lncRNAs: Driving mechanisms and functions of their translation products. Cancer Lett. 483:59–65. 2020. View Article : Google Scholar : PubMed/NCBI

176 

Huang JZ, Chen M, Chen D, Gao XC, Zhu S, Huang H, Hu M, Zhu H and Yan GR: A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell. 68:171–184.e6. 2017. View Article : Google Scholar : PubMed/NCBI

177 

Chen Y, Long W, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Yang Z, Wen Q, et al: Functional peptides encoded by long non-coding RNAs in gastrointestinal cancer. Front Oncol. 11:7773742021. View Article : Google Scholar : PubMed/NCBI

178 

Chakraborty S, Andrieux G, Hasan AMM, Ahmed M, Hosen MI, Rahman T, Hossain MA and Boerries M: Harnessing the tissue and plasma lncRNA-peptidome to discover peptide-based cancer biomarkers. Sci Rep. 9:123222019. View Article : Google Scholar : PubMed/NCBI

179 

Welden JR and Stamm S: Pre-mRNA structures forming circular RNAs. Biochim Biophys Acta Gene Regul Mech. 1862:1944102019. View Article : Google Scholar : PubMed/NCBI

180 

Eger N, Schoppe L, Schuster S, Laufs U and Boeckel JN: Circular RNA splicing. Xiao J: Circular RNAs. Advances in Experimental Medicine and Biology. 1087. Springer; Singapore: pp. 41–52. 2018, View Article : Google Scholar : PubMed/NCBI

181 

Nisar S, Bhat AA, Singh M, Karedath T, Rizwan A, Hashem S, Bagga P, Reddy R, Jamal F, Uddin S, et al: Insights into the role of CircRNAs: Biogenesis, characterization, functional, and clinical impact in human malignancies. Front Cell Dev Biol. 9:6172812021. View Article : Google Scholar : PubMed/NCBI

182 

Zhao J, Tao Y, Zhou Y, Qin N, Chen C, Tian D and Xu L: MicroRNA-7: A promising new target in cancer therapy. Cancer Cell Int. 15:1032015. View Article : Google Scholar : PubMed/NCBI

183 

Liu T, Liu S, Xu Y, Shu R, Wang F, Chen C, Zeng Y and Luo H: Circular RNA-ZFR inhibited cell proliferation and promoted apoptosis in gastric cancer by sponging miR-130a/miR-107 and modulating PTEN. Cancer Res Treat. 50:1396–1417. 2018. View Article : Google Scholar : PubMed/NCBI

184 

Yu CY and Kuo HC: The emerging roles and functions of circular RNAs and their generation. J Biomed Sci. 26:292019. View Article : Google Scholar : PubMed/NCBI

185 

Jiang MP, Xu WX, Hou JC, Xu Q, Wang DD and Tang JH: The emerging role of the interactions between circular RNAs and RNA-binding proteins in common human cancers. J Cancer. 12:5206–5219. 2021. View Article : Google Scholar : PubMed/NCBI

186 

Huang A, Zheng H, Wu Z, Chen M and Huang Y: Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics. 10:3503–3517. 2020. View Article : Google Scholar : PubMed/NCBI

187 

Du WW, Yang W, Li X, Awan FM, Yang Z, Fang L, Lyu J, Li F, Peng C, Krylov SN, et al: A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene. 37:5829–5842. 2018. View Article : Google Scholar : PubMed/NCBI

188 

Chen S, Thorne RF, Zhang XD, Wu M and Liu L: Non-coding RNAs, guardians of the p53 galaxy. Semin Cancer Biol. 75:72–83. 2021. View Article : Google Scholar : PubMed/NCBI

189 

Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI

190 

Wang C, Tao W, Ni S and Chen Q: Circular RNA circ-Foxo3 induced cell apoptosis in urothelial carcinoma via interaction with miR-191-5p. Onco Targets Ther. 12:8085–8094. 2019. View Article : Google Scholar : PubMed/NCBI

191 

Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 110:304–315. 2018. View Article : Google Scholar : PubMed/NCBI

192 

Park JW, Lagniton PNP, Liu Y and Xu RH: mRNA vaccines for COVID-19: What, why and how. Int J Biol Sci. 17:1446–1460. 2021. View Article : Google Scholar : PubMed/NCBI

193 

Damase TR, Sukhovershin R, Boada C, Taraballi F, Pettigrew RI and Cooke JP: The limitless future of RNA therapeutics. Front Bioeng Biotechnol. 9:6281372021. View Article : Google Scholar : PubMed/NCBI

194 

Qian Y, Shi L and Luo Z: Long non-coding RNAs in cancer: Implications for diagnosis, prognosis, and therapy. Front Med (Lausanne). 7:6123932020. View Article : Google Scholar : PubMed/NCBI

195 

Kristensen LS, Hansen TB, Venø MT and Kjems J: Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : PubMed/NCBI

196 

Ling H: Non-coding RNAs: Therapeutic strategies and delivery systems. Adv Exp Med Biol. 937:229–237. 2016. View Article : Google Scholar : PubMed/NCBI

197 

Weinberg MS and Morris KV: Transcriptional gene silencing in humans. Nucleic Acids Res. 44:6505–6517. 2016. View Article : Google Scholar : PubMed/NCBI

198 

Kotowska-Zimmer A, Pewinska M and Olejniczak M: Artificial miRNAs as therapeutic tools: Challenges and opportunities. Wiley Interdiscip Rev RNA. 12:e16402021. View Article : Google Scholar : PubMed/NCBI

199 

Turner AMW and Morris KV: Controlling transcription with noncoding RNAs in mammalian cells. Biotechniques. 48:9–16. 2010. View Article : Google Scholar : PubMed/NCBI

200 

Yoon S and Rossi JJ: Therapeutic potential of small activating RNAs (saRNAs) in human cancers. Curr Pharm Biotechnol. 19:604–610. 2018. View Article : Google Scholar : PubMed/NCBI

201 

Scoles DR, Minikel EV and Pulst SM: Antisense oligonucleotides: A primer. Neurol Genet. 5:e3232019. View Article : Google Scholar : PubMed/NCBI

202 

Raghavendra P and Pullaiah T: RNA-based applications in diagnostic and therapeutics for cancer. Advances in Cell and Molecular Diagnostics. Elsevier; pp. 33–55. 2018, View Article : Google Scholar

203 

Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N and Hahne JC: MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Targ Oncol. 15:261–278. 2020. View Article : Google Scholar : PubMed/NCBI

204 

Vicentini C, Galuppini F, Corbo V and Fassan M: Current role of non-coding RNAs in the clinical setting. Noncoding RNA Res. 4:82–85. 2019. View Article : Google Scholar : PubMed/NCBI

205 

Giudice V, Mensitieri F, Izzo V, Filippelli A and Selleri C: Aptamers and antisense oligonucleotides for diagnosis and treatment of hematological diseases. Int J Mol Sci. 21:32522020. View Article : Google Scholar : PubMed/NCBI

206 

Maruyama R and Yokota T: Knocking down long noncoding RNAs using antisense oligonucleotide gapmers. Methods Mol Biol. 2176:49–56. 2020. View Article : Google Scholar : PubMed/NCBI

207 

Bhan A, Hussain I, Ansari KI, Bobzean SAM, Perrotti LI and Mandal SS: Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo. J Steroid Biochem Mol Biol. 141:160–170. 2014. View Article : Google Scholar : PubMed/NCBI

208 

Simonson B and Das S: MicroRNA therapeutics: The next magic bullet? Mini Rev Med Chem. 15:467–474. 2015. View Article : Google Scholar : PubMed/NCBI

209 

Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, Ren D, Ye X, Li C, Wang Y, et al: Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer. 17:792018. View Article : Google Scholar : PubMed/NCBI

210 

Ebert MS, Neilson JR and Sharp PA: MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 4:721–726. 2007. View Article : Google Scholar : PubMed/NCBI

211 

Banks IR, Zhang Y, Wiggins BE, Heck GR and Ivashuta S: RNA decoys: An emerging component of plant regulatory networks? Plant Signal Behav. 7:1188–1193. 2012. View Article : Google Scholar : PubMed/NCBI

212 

Ebert MS and Sharp PA: MicroRNA sponges: Progress and possibilities. RNA. 16:2043–2050. 2010. View Article : Google Scholar : PubMed/NCBI

213 

Bernardo BC, Ooi JY, Lin RC and McMullen JR: miRNA therapeutics: A new class of drugs with potential therapeutic applications in the heart. Future Med Chem. 7:1771–1792. 2015. View Article : Google Scholar : PubMed/NCBI

214 

Yoo J, Hajjar R and Jeong D: Generation of efficient miRNA inhibitors using tough decoy constructs. Ishikawa K: Cardiac Gene Therapy. Methods in Molecular Biology. 1521. Humana Press; New York, NY: pp. 41–53. 2017, View Article : Google Scholar : PubMed/NCBI

215 

Feng R, Patil S, Zhao X, Miao Z and Qian A: RNA therapeutics-research and clinical advancements. Front Mol Biosci. 8:7107382021. View Article : Google Scholar : PubMed/NCBI

216 

Aimo A, Castiglione V, Rapezzi C, Franzini M, Panichella G, Vergaro G, Gillmore J, Fontana M, Passino C and Emdin M: RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nat Rev Cardiol. 19:655–667. 2022. View Article : Google Scholar : PubMed/NCBI

217 

Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S, et al: CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature. 539:384–389. 2016. View Article : Google Scholar : PubMed/NCBI

218 

Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R and Olson EN: Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 351:400–403. 2016. View Article : Google Scholar : PubMed/NCBI

219 

Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T and Anderson DG: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 32:551–553. 2014. View Article : Google Scholar : PubMed/NCBI

220 

Lee SWL, Paoletti C, Campisi M, Osaki T, Adriani G, Kamm RD, Mattu C and Chiono V: MicroRNA delivery through nanoparticles. J Control Release. 313:80–95. 2019. View Article : Google Scholar : PubMed/NCBI

221 

Kawakami S and Hashida M: Targeted delivery systems of small interfering RNA by systemic administration. Drug Metab Pharmacokinet. 22:142–151. 2007. View Article : Google Scholar : PubMed/NCBI

222 

Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, Herman JG, Gerald WL, Lazebnik YA, et al: Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature. 409:207–211. 2001. View Article : Google Scholar : PubMed/NCBI

223 

Mann BS, Johnson JR, Cohen MH, Justice R and Pazdur R: FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 12:1247–1252. 2007. View Article : Google Scholar : PubMed/NCBI

224 

Grant C, Rahman F, Piekarz R, Peer C, Frye R, Robey RW, Gardner ER, Figg WD and Bates SE: Romidepsin: A new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev Anticancer Ther. 10:997–1008. 2010. View Article : Google Scholar : PubMed/NCBI

225 

Moore D: Panobinostat (Farydak): A novel option for the treatment of relapsed or relapsed and refractory multiple myeloma. P T. 41:296–300. 2016.PubMed/NCBI

226 

Gilles ME and Slack FJ: Let-7 microRNA as a potential therapeutic target with implications for immunotherapy. Expert Opin Ther Targets. 22:929–939. 2018. View Article : Google Scholar : PubMed/NCBI

227 

Segal M, Biscans A, Gilles ME, Anastasiadou E, De Luca R, Lim J, Khvorova A and Slack FJ: Hydrophobically modified let-7b miRNA enhances biodistribution to NSCLC and downregulates HMGA2 in vivo. Mol Ther Nucleic Acids. 19:267–277. 2020. View Article : Google Scholar : PubMed/NCBI

228 

Wu L, Wang Q, Yao J, Jiang H, Xiao C and Wu F: MicroRNA let-7g and let-7i inhibit hepatoma cell growth concurrently via downregulation of the anti-apoptotic protein B-cell lymphoma-extra large. Oncol Lett. 9:213–218. 2015. View Article : Google Scholar : PubMed/NCBI

229 

Pan X, Wang G and Wang B: MicroRNA-1182 and let-7a exert synergistic inhibition on invasion, migration and autophagy of cholangiocarcinoma cells through down-regulation of NUAK1. Cancer Cell Int. 21:1612021. View Article : Google Scholar : PubMed/NCBI

230 

Li M, Dou J, Pan M, Xu H and Xu Z: MicroRNA-7 agomir is a potential bioactive material for breast cancer therapy by inhibiting breast cancer stem cell tumorigenicity. Mater Express. 11:824–831. 2021. View Article : Google Scholar

231 

Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, et al: Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 122:1630–1637. 2020. View Article : Google Scholar : PubMed/NCBI

232 

van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, Huynh Y, Chrzanowska A, Fulham MJ, Bailey DL, et al: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 18:1386–1396. 2017. View Article : Google Scholar : PubMed/NCBI

233 

Winata P, Williams M, McGowan E, Nassif N, van Zandwijk N and Reid G: The analysis of novel microRNA mimic sequences in cancer cells reveals lack of specificity in stem-loop RT-qPCR-based microRNA detection. BMC Res Notes. 10:6002017. View Article : Google Scholar : PubMed/NCBI

234 

Filippova EA, Fridman MV, Burdennyy AM, Loginov VI, Pronina IV, Lukina SS, Dmitriev AA and Braga EA: Long Noncoding RNA GAS5 in breast cancer: Epigenetic mechanisms and biological functions. Int J Mol Sci. 22:68102021. View Article : Google Scholar : PubMed/NCBI

235 

Williams GT and Pickard MR: Long non-coding RNAs: New opportunities and old challenges in cancer therapy. Transl Cancer Res. 5 (Suppl 3):S564–S565. 2016. View Article : Google Scholar

236 

Liu W, Zhan J, Zhong R, Li R, Sheng X, Xu M, Lu Z and Zhang S: Upregulation of long noncoding RNA_GAS5 suppresses cell proliferation and metastasis in laryngeal cancer via regulating PI3K/AKT/mTOR signaling pathway. Technol Cancer Res Treat. 20:15330338219900742021. View Article : Google Scholar : PubMed/NCBI

237 

Smaldone MC and Davies BJ: BC-819, a plasmid comprising the H19 gene regulatory sequences and diphtheria toxin A, for the potential targeted therapy of cancers. Curr Opin Mol Ther. 12:607–616. 2010.PubMed/NCBI

238 

Zhao X, Reebye V, Hitchen P, Fan J, Jiang H, Sætrom P, Rossi J, Habib NA and Huang KW: Mechanisms involved in the activation of C/EBPα by small activating RNA in hepatocellular carcinoma. Oncogene. 38:3446–3457. 2019. View Article : Google Scholar : PubMed/NCBI

239 

Reebye V, Sætrom P, Mintz PJ, Huang KW, Swiderski P, Peng L, Liu C, Liu X, Lindkaer-Jensen S, Zacharoulis D, et al: Novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo. Hepatology. 59:216–227. 2014. View Article : Google Scholar : PubMed/NCBI

240 

Seto AG, Beatty X, Lynch JM, Hermreck M, Tetzlaff M, Duvic M and Jackson AL: Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol. 183:428–444. 2018. View Article : Google Scholar : PubMed/NCBI

241 

Ijaz M, Wang F, Shahbaz M, Jiang W, Fathy AH and Nesa EU: The role of Grb2 in cancer and peptides as Grb2 antagonists. Protein Pept Lett. 24:1084–1095. 2018. View Article : Google Scholar : PubMed/NCBI

242 

Ohanian M, Tari Ashizawa A, Garcia-Manero G, Pemmaraju N, Kadia T, Jabbour E, Ravandi F, Borthakur G, Andreeff M, Konopleva M, et al: Liposomal Grb2 antisense oligodeoxynucleotide (BP1001) in patients with refractory or relapsed haematological malignancies: A single-centre, open-label, dose-escalation, phase 1/1b trial. Lancet Haematol. 5:e136–e146. 2018. View Article : Google Scholar : PubMed/NCBI

243 

Golan T, Khvalevsky EZ, Hubert A, Gabai RM, Hen N, Segal A, Domb A, Harari G, David EB, Raskin S, et al: RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget. 6:24560–24570. 2015. View Article : Google Scholar : PubMed/NCBI

244 

Timar J and Kashofer K: Molecular epidemiology and diagnostics of KRAS mutations in human cancer. Cancer Metastasis Rev. 39:1029–1038. 2020. View Article : Google Scholar : PubMed/NCBI

245 

Zhang P, Liu X, Abegg D, Tanaka T, Tong Y, Benhamou RI, Baisden J, Crynen G, Meyer SM, Cameron MD, et al: Repro-gramming of protein-targeted small-molecule medicines to RNA by ribonuclease recruitment. J Am Chem Soc. 143:13044–13055. 2021. View Article : Google Scholar : PubMed/NCBI

246 

Shortridge MD, Chaubey B, Zhang HJ, Pavelitz T, Olsen GL, Calin GA and Varani G: Drug-like small molecules that inhibit expression of the oncogenic microRNA-21. bioRxiv. doi:. https://doi.org/10.1101/2022.04.30.490150

247 

Donlic A, Morgan BS, Xu JL, Liu A, Roble C Jr and Hargrove AE: Discovery of small molecule ligands for MALAT1 by tuning an RNA-binding scaffold. Angew Chem Int Ed Engl. 57:13242–13247. 2018. View Article : Google Scholar : PubMed/NCBI

248 

Goyal B, Yadav SRM, Awasthee N, Gupta S, Kunnumakkara AB and Gupta SC: Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer. 1875:1885022021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Castro-Muñoz LJ, Ulloa EV, Sahlgren C, Lizano M, De La Cruz-Hernández E and Contreras-Paredes A: Modulating epigenetic modifications for cancer therapy (Review). Oncol Rep 49: 59, 2023.
APA
Castro-Muñoz, L.J., Ulloa, E.V., Sahlgren, C., Lizano, M., De La Cruz-Hernández, E., & Contreras-Paredes, A. (2023). Modulating epigenetic modifications for cancer therapy (Review). Oncology Reports, 49, 59. https://doi.org/10.3892/or.2023.8496
MLA
Castro-Muñoz, L. J., Ulloa, E. V., Sahlgren, C., Lizano, M., De La Cruz-Hernández, E., Contreras-Paredes, A."Modulating epigenetic modifications for cancer therapy (Review)". Oncology Reports 49.3 (2023): 59.
Chicago
Castro-Muñoz, L. J., Ulloa, E. V., Sahlgren, C., Lizano, M., De La Cruz-Hernández, E., Contreras-Paredes, A."Modulating epigenetic modifications for cancer therapy (Review)". Oncology Reports 49, no. 3 (2023): 59. https://doi.org/10.3892/or.2023.8496
Copy and paste a formatted citation
x
Spandidos Publications style
Castro-Muñoz LJ, Ulloa EV, Sahlgren C, Lizano M, De La Cruz-Hernández E and Contreras-Paredes A: Modulating epigenetic modifications for cancer therapy (Review). Oncol Rep 49: 59, 2023.
APA
Castro-Muñoz, L.J., Ulloa, E.V., Sahlgren, C., Lizano, M., De La Cruz-Hernández, E., & Contreras-Paredes, A. (2023). Modulating epigenetic modifications for cancer therapy (Review). Oncology Reports, 49, 59. https://doi.org/10.3892/or.2023.8496
MLA
Castro-Muñoz, L. J., Ulloa, E. V., Sahlgren, C., Lizano, M., De La Cruz-Hernández, E., Contreras-Paredes, A."Modulating epigenetic modifications for cancer therapy (Review)". Oncology Reports 49.3 (2023): 59.
Chicago
Castro-Muñoz, L. J., Ulloa, E. V., Sahlgren, C., Lizano, M., De La Cruz-Hernández, E., Contreras-Paredes, A."Modulating epigenetic modifications for cancer therapy (Review)". Oncology Reports 49, no. 3 (2023): 59. https://doi.org/10.3892/or.2023.8496
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team