|
1
|
Chen X, Mangala LS, Rodriguez-Aguayo C,
Kong X, Lopez-Berestein G and Sood AK: RNA interference-based
therapy and its delivery systems. Cancer Metastasis Rev. 1:107–124.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Seitz H: Issues in current microRNA target
identification methods. RNA Biol. 14:831–834. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Shi Y, Yang F, Wei S and Xu G:
Identification of key genes affecting results of hyperthermia in
osteosarcoma based on integrative ChIP-Seq/TargetScan analysis. Med
Sci Monit. 23:2042–2048. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Loher P and Rigoutsos I: Interactive
exploration of RNA22 microRNA target predictions. Bioinformatics.
28:3322–3323. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chen Y and Wang X: miRDB: An online
database for prediction of functional microRNA targets. Nucleic
Acids Res. 48:D127–D131. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Rennie W, Liu C, Carmack CS, Wolenc A,
Kanoria S, Lu J, Long D and Ding Y: STarMir: A web server for
prediction of microRNA binding sites. Nucleic Acids Res.
42:W114–W118. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Akhtar MM, Micolucci L, Islam MS, Olivieri
F and Procopio AD: Bioinformatic tools for microRNA dissection.
Nucleic Acids Res. 44:24–44. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Rincón-Riveros A, Morales D, Rodríguez JA,
Villegas VE and López-Kleine L: Bioinformatic tools for the
analysis and prediction of ncRNA interactions. Int J Mol Sci.
22:113972021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Reczko M, Maragkakis M, Alexiou P, Grosse
I and Hatzigeorgiou AG: Functional microRNA targets in protein
coding sequences. Bioinformatics. 6:771–776. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Qin X, Zhang J, Lin Y, Sun XM, Zhang JN
and Cheng ZQ: Identification of MiR-211-5p as a tumor suppressor by
targeting ACSL4 in Hepatocellular Carcinoma. J Transl Med.
18:3262020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Dou XQ, Chen XJ, Zhou Q, Wen MX, Zhang SZ
and Zhang SQ: miR-335 modulates Numb alternative splicing via
targeting RBM10 in endometrial cancer. Kaohsiung J Med Sci.
36:171–177. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sang K, Yi T, Huang X, Pan C, Zhou J and
Yu L: MiR-370-5p inhibits the progression of breast cancer via
targeting LUC7L3. J Recept Signal Transduct Res. 41:442–450. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bridges MC, Daulagala AC and Kourtidis A:
LNCcation: lncRNA localization and function. J Cell Biol.
220:e2020090452021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Herman AB, Tsitsipatis D and Gorospe M:
Integrated lncRNA function upon genomic and epigenomic regulation.
Mol Cell. 82:2252–2266. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng
X, Xiong F, Guo C, Wu X, Li Y, et al: Emerging role of
tumor-related functional peptides encoded by lncRNA and circRNA.
Mol Cancer. 19:222020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Tay Y, Rinn J and Pandolfi PP: The
multilayered complexity of ceRNA crosstalk and competition. Nature.
505:344–352. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Li C, Ge Q, Liu J, Zhang Q, Wang C, Cui K
and Chen Z: Effects of miR-1236-3p and miR-370-5p on activation of
p21 in various tumors and its inhibition on the growth of lung
cancer cells. Tumour Biol. 39:10104283177108242017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zou Y, Zhong C, Hu Z and Duan S:
MiR-873-5p: A potential molecular marker for cancer diagnosis and
prognosis. Front Oncol. 11:7437012021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang C, Chen Z, Ge Q, Hu J, Li F, Hu J, Xu
H, Ye Z and Li LC: Up-regulation of p21(WAF1/CIP1) by miRNAs and
its implications in bladder cancer cells. FEBS Lett. 588:4654–4664.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Li S, Wang C, Yu X, Wu H, Hu J, Wang S and
Ye Z: miR-3619-5p inhibits prostate cancer cell growth by
activating CDKN1A expression. Oncol Rep. 37:241–248. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wu F and Zhou J: CircAGFG1 promotes
cervical cancer progression via miR-370-3p/RAF1 signaling. BMC
Cancer. 19:10672019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Shen X, Zuo X, Zhang W, Bai Y, Qin X and
Hou N: MiR-370 promotes apoptosis in colon cancer by directly
targeting MDM4. Oncol Lett. 15:1673–1679. 2018.PubMed/NCBI
|
|
23
|
Xiong H, Yu J, Jia G, Su Y, Zhang J, Xu Q
and Sun X: Emerging roles of circUBAP2 targeting miR-370-3p in
proliferation, apoptosis, and invasion of papillary thyroid cancer
cells. Hum Cell. 34:1866–1877. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wang DW, Su F, Zhang T, Yang TC, Wang HQ,
Yang LJ, Zhou FF and Feng MH: The miR-370/UQCRC2 axis facilitates
tumorigenesis by regulating epithelial-mesenchymal transition in
Gastric Cancer. J Cancer. 11:5042–5055. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wang Y, Ding M, Yuan X, Jiao R, Zhu D,
Huang W, Deng W and Liu Y: lncRNA SNHG15 promotes ovarian cancer
progression through regulated CDK6 via sponging miR-370-3p. Biomed
Res Int. 2021:93945632021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Mao J, Wang L, Wu J, Wang Y, Wen H, Zhu X,
Wang B and Yang H: miR-370-3p as a novel biomarker promotes breast
cancer progression by targeting FBLN5. Stem Cells Int.
2021:46498902021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Maftouh M, Avan A, Funel N, Frampton AE,
Fiuji H, Pelliccioni S, Castellano L, Galla V, Peters GJ and
Giovannetti E: miR-211 modulates gemcitabine activity through
downregulation of ribonucleotide reductase and inhibits the
invasive behavior of pancreatic cancer cells. Nucleosides
Nucleotides Nucleic Acids. 33:384–393. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chang KW, Chu TH, Gong NR, Chiang WF, Yang
CC, Liu CJ, Wu CH and Lin SC: miR-370 modulates insulin receptor
substrate-1 expression and inhibits the tumor phenotypes of oral
carcinoma. Oral Dis. 19:611–619. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yungang W, Xiaoyu L, Pang T, Wenming L and
Pan X: miR-370 targeted FoxM1 functions as a tumor suppressor in
laryngeal squamous cell carcinoma (LSCC). Biomed Pharmacother.
68:149–154. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chen F, Feng Z, Zhu J, Liu P, Yang C,
Huang R and Deng Z: Emerging roles of circRNA_NEK6 targeting
miR-370-3p in the proliferation and invasion of thyroid cancer via
Wnt signaling pathway. Cancer Biol Ther. 19:1139–1152. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Han Y, Yang X, Zhao N, Peng J, Gao H and
Qiu X: Alpinumisoflavone induces apoptosis in esophageal squamous
cell carcinoma by modulating miR-370/PIM1 signaling. Am J Cancer
Res. 6:2755–2771. 2016.PubMed/NCBI
|
|
32
|
Sun G, Hou YB, Jia HY, Bi XH, Yu L and
Chen DJ: MiR-370 promotes cell death of liver cancer cells by
Akt/FoxO3a signalling pathway. Eur Rev Med Pharmacol Sci.
20:2011–2019. 2016.PubMed/NCBI
|
|
33
|
Liu Z, Ma M, Yan L, Chen S, Li S, Yang D,
Wang X, Xiao H, Deng H, Zhu H, et al: miR-370 regulates ISG15
expression and influences IFN-α sensitivity in hepatocellular
carcinoma cells. Cancer Biomark. 22:453–466. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chen Q, Zhang J, He Y and Wang Y:
hsa_circ_0061140 knockdown reverses FOXM1-mediated cell growth and
metastasis in ovarian cancer through miR-370 sponge activity. Mol
Ther Nucleic Acids. 13:55–63. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chen J, Liu G, Wu Y, Ma J, Wu H, Xie Z,
Chen S, Yang Y, Wang S, Shen P, et al: CircMYO10 promotes
osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to
enhance the transcriptional activity of β-catenin/LEF1 complex via
effects on chromatin remodeling. Mol Cancer. 18:1502019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wei S and Ma W: MiR-370 functions as
oncogene in melanoma by direct targeting pyruvate dehydrogenase B.
Biomed Pharmacother. 90:278–286. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
García-Ortí L, Cristóbal I, Cirauqui C,
Guruceaga E, Marcotegui N, Calasanz MJ, Castello-Cros R and Odero
MD: Integration of SNP and mRNA arrays with microRNA profiling
reveals that MiR-370 is upregulated and targets NF1 in acute
myeloid leukemia. PLoS One. 7:e477172012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ali MM, Mohamed RH, Sayed AA, Ahmed S,
Yassin DA and El-Sayed WM: miR-370 is better than miR-375 as a
non-invasive diagnostic biomarker for pediatric acute myeloid
leukemia patients. Cancer Biomark. 34:403–411. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Jin Y, Zhang M, Duan R, Yang J, Yang Y,
Wang J, Jiang C, Yao B, Li L, Yuan H, et al: Long noncoding RNA
FGF14-AS2 inhibits breast cancer metastasis by regulating the
miR-370-3p/FGF14 axis. Cell Death Discov. 6:1032020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Fan C, Liu S, Zhao Y, Han Y, Yang L, Tao
G, Li Q and Zhang L: Upregulation of miR-370 contributes to the
progression of gastric carcinoma via suppression of FOXO1. Biomed
Pharmacother. 67:521–526. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lo SS, Hung PS, Chen JH, Tu HF, Fang WL,
Chen CY, Chen WT, Gong NR and Wu CW: Overexpression of miR-370 and
downregulation of its novel target TGFβ-RII contribute to the
progression of gastric carcinoma. Oncogene. 31:226–237. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ning T, Zhang H, Wang X, Li S, Zhang L,
Deng T, Zhou L, Liu R, Wang X, Bai M, et al: miR-370 regulates cell
proliferation and migration by targeting EGFR in gastric cancer.
Oncol Rep. 38:384–392. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pan X, Chen G and Hu W: lncRNA HLA complex
group 18 (HCG18) facilitated cell proliferation, invasion, and
migration of prostate cancer through modulating miR-370-3p/DDX3X
axis. Reprod Sci. 28:3406–3416. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wu Z, Sun H, Zeng W, He J and Mao X:
Upregulation of MircoRNA-370 induces proliferation in human
prostate cancer cells by downregulating the transcription factor
FOXO1. PLoS One. 7:e458252012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Xia S, Ji R and Zhan W: Long noncoding RNA
papillary thyroid carcinoma susceptibility candidate 3 (PTCSC3)
inhibits proliferation and invasion of glioma cells by suppressing
the Wnt/β-catenin signaling pathway. BMC Neurol. 17:302017.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Klaus A and Birchmeier W: Wnt signalling
and its impact on development and cancer. Nat Rev Cancer.
8:387–398. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Bauer A, Chauvet S, Huber O, Usseglio F,
Rothbächer U, Aragnol D, Kemler R and Pradel J: Pontin52 and
reptin52 function as antagonistic regulators of beta-catenin
signalling activity. EMBO J. 19:6121–6130. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhang W, Duan N, Zhang Q, Song T, Li Z,
Zhang C, Chen X and Wang K: DNA methylation mediated
down-regulation of miR-370 regulates cell growth through activation
of the Wnt/β-catenin signaling pathway in human osteosarcoma cells.
Int J Biol Sci. 13:561–573. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Xu X, Zhang M, Xu F and Jiang S: Wnt
signaling in breast cancer: Biological mechanisms, challenges and
opportunities. Mol Cancer. 19:1652020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Huang X, Zhu H, Gao Z, Li J, Zhuang J,
Dong Y, Shen B, Li M, Zhou H, Guo H, et al: Wnt7a activates
canonical Wnt signaling, promotes bladder cancer cell invasion, and
is suppressed by miR-370-3p. J Biol Chem. 293:6693–6706. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang R, Wang J, Jia E, Zhang J, Liu N and
Chi C: lncRNA BCAR4 sponges miR-370-3p to promote bladder cancer
progression via Wnt signaling. Int J Mol Med. 45:578–588.
2020.PubMed/NCBI
|
|
52
|
Asati V, Mahapatra DK and Bharti SK:
PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as
anticancer agents: Structural and pharmacological perspectives. Eur
J Med Chem. 109:314–341. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li G, Zheng P, Wang H, Ai Y and Mao X:
Long Non-coding RNA TUG1 modulates proliferation, migration, and
invasion of acute myeloid leukemia cells via regulating
miR-370-3p/MAPK1/ERK. Onco Targets Ther. 12:10375–10388. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Aoki M and Fujishita T: Oncogenic roles of
the PI3K/AKT/mTOR axis. Curr Top Microbiol Immunol. 7:153–189.
2017.PubMed/NCBI
|
|
55
|
Poma P: NF-κB and disease. Int J Mol Sci.
21:91812020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Patel M, Horgan PG, McMillan DC and
Edwards J: NF-κB pathways in the development and progression of
colorectal cancer. Transl Res. 197:43–56. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li R, Wu H, Jiang H, Wang Q, Dou Z, Ma H,
Yan S, Yuan C, Yang N and Kong B: FBLN5 is targeted by
microRNA-27a-3p and suppresses tumorigenesis and progression in
high-grade serous ovarian carcinoma. Oncol Rep. 44:2143–2151.
2020.PubMed/NCBI
|
|
58
|
Matthews HK, Bertoli C and de Bruin RAM:
Cell cycle control in cancer. Nat Rev Mol Cell Biol. 23:74–88.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liu J, Peng Y and Wei W: Cell cycle on the
crossroad of tumorigenesis and cancer therapy. Trends Cell Biol.
32:30–44. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Jiang X, Yang L, Gao Q, Liu Y, Feng X, Ye
S and Yang Z: The role of RAB GTPases and its potential in
predicting immunotherapy response and prognosis in colorectal
cancer. Front Genet. 13:8283732022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Guo M, Li S, Zhao X, Yuan Y, Zhang B and
Guan Y: Knockdown of circular RNA Hsa_circ_0000714 can regulate
RAB17 by sponging miR-370-3p to reduce paclitaxel resistance of
ovarian cancer through CDK6/RB pathway. Onco Targets Ther.
13:13211–13224. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Takayama Y, Kamimura Y, Okawa M, Muramatsu
S, Sugino A and Araki H: GINS, a novel multiprotein complex
required for chromosomal DNA replication in budding yeast. Genes
Dev. 17:1153–1165. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yamane K, Naito H, Wakabayashi T, Yoshida
H, Muramatsu F, Iba T, Kidoya H and Takakura N: Regulation of SLD5
gene expression by miR-370 during acute growth of cancer cells. Sci
Rep. 6:309412016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wang Y, Lyu Z, Qin Y, Wang X, Sun L, Zhang
Y, Gong L, Wu S, Han S, Tang Y, et al: FOXO1 promotes tumor
progression by increased M2 macrophage infiltration in esophageal
squamous cell carcinoma. Theranostics. 10:11535–11548. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tang Y, Jiang L, Zhao X, Hu D, Zhao G, Luo
S, Du X and Tang W: FOXO1 inhibits prostate cancer cell
proliferation via suppressing E2F1 activated NPRL2 expression. Cell
Biol Int. 45:2510–2520. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yang H, Wen L, Wen M, Liu T, Zhao L, Wu B,
Yun Y, Liu W, Wang H, Wang Y and Wen N: FoxM1 promotes
epithelial-mesenchymal transition, invasion, and migration of
tongue squamous cell carcinoma cells through a c-Met/AKT-dependent
positive feedback loop. Anticancer Drugs. 29:216–226. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang Y, Ye X, Chen L, Wu Q, Gao Y and Li
Y: PARI functions as a new transcriptional target of FOXM1 involved
in gastric cancer development. Int J Biol Sci. 14:531–541. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Narlik-Grassow M, Blanco-Aparicio C and
Carnero A: The PIM family of serine/threonine kinases in cancer.
Med Res Rev. 34:136–159. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fang C, Wang X, Guo D, Fang R and Zhu T:
Circular RNA CircITGA7 promotes tumorigenesis of osteosarcoma via
miR-370/PIM1 axis. Comput Math Methods Med. 2020:13675762020.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zou FW, Yang SZ, Li WY, Liu CY, Liu XH, Hu
CH, Liu ZH and Xu S: circRNA_001275 upregulates Wnt7a expression by
competitively sponging miR-370-3p to promote cisplatin resistance
in esophageal cancer. Int J Oncol. 57:151–160. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Reiss K, Del Valle L, Lassak A and
Trojanek J: Nuclear IRS-1 and cancer. J Cell Physiol. 27:2992–3000.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Li Q, Ye L, Zhang X, Wang M, Lin C, Huang
S, Guo W, Lai Y, Du H, Li J, et al: FZD8, a target of p53, promotes
bone metastasis in prostate cancer by activating canonical
Wnt/β-catenin signaling. Cancer Lett. 402:166–176. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wang N, Dong Q and Zhou XN: LMO4 promotes
the invasion and proliferation of gastric cancer by activating
PI3K-Akt-mTOR signaling. Am J Transl Res. 11:6534–6543.
2019.PubMed/NCBI
|
|
74
|
Xiong X, Feng Y, Li L, Yao J, Zhou M, Zhao
P, Huang F, Zeng L and Yuan L: Long non-coding RNA SNHG1 promotes
breast cancer progression by regulation of LMO4. Oncol Rep.
43:1503–1515. 2020.PubMed/NCBI
|
|
75
|
Liu L, Yan C, Tao S and Wang H:
Circ_0058124 aggravates the progression of papillary thyroid
carcinoma by activating LMO4 expression via targeting miR-370-3p.
Cancer Manag Res. 12:9459–9470. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang B, Qi X, Liu J, Zhou R, Lin C,
Shangguan J, Zhang Z, Zhao L and Li G: MYH9 promotes growth and
metastasis via activation of MAPK/AKT signaling in colorectal
cancer. J Cancer. 10:874–884. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen F, Yin S, Feng Z, Liu C, Lv J, Chen
Y, Shen R, Wang J and Deng Z: Knockdown of circ_NEK6 decreased
131I resistance of differentiated thyroid carcinoma via
regulating miR-370-3p/MYH9 axis. Technol Cancer Res Treat.
20:153303382110049502021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Peng J, Chen XL, Cheng HZ, Xu ZY, Wang H,
Shi ZZ, Liu J, Ning XG and Peng H: Silencing of KCNK15-AS1 inhibits
lung cancer cell proliferation via upregulation of miR-202 and
miR-370. Oncol Lett. 18:5968–5976. 2019.PubMed/NCBI
|
|
79
|
Luo Q, Lin H, Ye X, Huang J, Lu S and Xu
L: Trim44 facilitates the migration and invasion of human lung
cancer cells via the NF-κB signaling pathway. Int J Clin Oncol.
20:508–517. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ma Q, Huai B, Liu Y, Jia Z and Zhao Q:
Circular RNA circ_0020123 promotes non-small cell lung cancer
progression through miR-384/TRIM44 axis. Cancer Manag Res.
13:75–87. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang X, Lv J, He B and Zhou D: CircFBXW8
acts an oncogenic role in the malignant progression of non-small
cell lung carcinoma by miR-370-3p-dependent regulation of TRIM44.
Biochem Genet. 60:1313–1332. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ciardiello F and Tortora G: EGFR
antagonists in cancer treatment. N Engl J Med. 358:1160–1174. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li C, Zhang J, Zhou Y and Li B: Long
non-coding RNA CASC9 promotes the progression and development of
gastric cancer via regulating miR-370/EGFR axis. Dig Liver Dis.
53:509–516. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Lin L, Wang D, Qu S, Zhao H and Lin Y:
miR-370-3p alleviates ulcerative Colitis-related colorectal cancer
in mice through inhibiting the inflammatory response and
epithelial-mesenchymal transition. Drug Des Devel Ther.
14:1127–1141. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wu J, Lu G and Wang X: MDM4 alternative
splicing and implication in MDM4 targeted cancer therapies. Am J
Cancer Res. 11:5864–5880. 2021.PubMed/NCBI
|
|
86
|
Mo Y, Lu Q, Zhang Q, Chen J, Deng Y, Zhang
K, Tao R, Liu W and Wang Y: Circular RNA CCDC66 improves murine
double minute 4 (MDM4) expression through targeting miR-370 in
colorectal cancer. Comput Math Methods Med. 2022:77239952022.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Kusakabe Y, Chiba T, Oshima M, Koide S,
Rizq O, Aoyama K, Ao J, Kaneko T, Kanzaki H, Kanayama K, et al:
EZH1/2 inhibition augments the anti-tumor effects of sorafenib in
hepatocellular carcinoma. Sci Rep. 11:213962021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhang Y, Li L, Lu XK, Yu LB, Meng J and
Liu CY: LncRNA SNHG3 is responsible for the deterioration of
colorectal carcinoma through regulating the miR-370-5p/EZH1 axis.
Eur Rev Med Pharmacol Sci. 25:6131–6137. 2021.PubMed/NCBI
|
|
89
|
Liu Y, Ao X, Ding W, Ponnusamy M, Wu W,
Hao X, Yu W, Wang Y, Li P and Wang J: Critical role of FoxO3a in
carcinogenesis. Mol Cancer. 17:1042018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Li C, Wang J, Zhang H, Zhu M, Chen F, Hu
Y, Liu H and Zhu H: Interferon-stimulated gene 15 (ISG15) is a
trigger for tumorigenesis and metastasis of hepatocellular
carcinoma. Oncotarget. 5:8429–8441. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Riva V and Maga G: From the magic bullet
to the magic target: Exploiting the diverse roles of DDX3X in viral
infections and tumorigenesis. Future Med Chem. 11:1357–1381. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Xu Y, Zheng Y, Liu H and Li T: Modulation
of IGF2BP1 by long non-coding RNA HCG11 suppresses apoptosis of
hepatocellular carcinoma cells via MAPK signaling transduction. Int
J Oncol. 51:791–800. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wagner EF and Nebreda AR: Signal
integration by JNK and p38 MAPK pathways in cancer development. Nat
Rev Cancer. 9:537–549. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yin X, Liu Z, Zhu P, Wang Y, Ren Q, Chen H
and Xu J: CXCL12/CXCR4 promotes proliferation, migration, and
invasion of adamantinomatous craniopharyngiomas via PI3K/AKT signal
pathway. J Cell Biochem. 120:9724–9736. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wei CY, Zhu MX, Lu NH, Liu JQ, Yang YW,
Zhang Y, Shi YD, Feng ZH, Li JX, Qi FZ and Gu JY: Circular RNA
circ_0020710 drives tumor progression and immune evasion by
regulating the miR-370-3p/CXCL12 axis in melanoma. Mol Cancer.
19:842020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Shang Y, Zhang F, Li D, Li C, Li H, Jiang
Y and Zhang D: Overexpression of UQCRC2 is correlated with tumor
progression and poor prognosis in colorectal cancer. Pathol Res
Pract. 214:1613–1620. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Luo G, Li G, Wan Z, Zhang Y, Liu D and Guo
Y: circITGA7 Acts as a miR-370-3p sponge to suppress the
proliferation of prostate cancer. J Oncol. 2021:80603892021.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Saunier E, Benelli C and Bortoli S: The
pyruvate dehydrogenase complex in cancer: An old metabolic
gatekeeper regulated by new pathways and pharmacological agents.
Int J Cancer. 138:809–817. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Parkin B, Ouillette P, Wang Y, Liu Y,
Wright W, Roulston D, Purkayastha A, Dressel A, Karp J, Bockenstedt
P, et al: NF1 inactivation in adult acute myelogenous leukemia.
Clin Cancer Res. 16:4135–4147. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Xiao B, Chen D, Zhou Q, Hang J, Zhang W,
Kuang Z, Sun Z and Li L: Glutamate metabotropic receptor 4 (GRM4)
inhibits cell proliferation, migration and invasion in breast
cancer and is regulated by miR-328-3p and miR-370-3p. BMC Cancer.
19:8912019. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Bera K, Kiepas A, Godet I, Li Y, Mehta P,
Ifemembi B, Paul CD, Sen A, Serra SA, Stoletov K, et al:
Extracellular fluid viscosity enhances cell migration and cancer
dissemination. Nature. 611:365–373. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Su T, Huang L, Zhang N, Peng S, Li X, Wei
G, Zhai E, Zeng Z and Xu L: FGF14 Functions as a Tumor Suppressor
through Inhibiting PI3K/AKT/mTOR Pathway in Colorectal Cancer. J
Cancer. 11:819–825. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Komuro A, Yashiro M, Iwata C, Morishita Y,
Johansson E, Matsumoto Y, Watanabe A, Aburatani H, Miyoshi H,
Kiyono K, et al: Diffuse-type gastric carcinoma: Progression,
angiogenesis, and transforming growth factor beta signaling. J Natl
Cancer Inst. 101:592–604. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Nassar D and Blanpain C: Cancer stem
cells: Basic concepts and therapeutic implications. Annu Rev
Pathol. 11:47–76. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Walcher L, Kistenmacher AK, Suo H, Kitte
R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S and
Kossatz-Boehlert U: Cancer stem cells-origins and biomarkers:
Perspectives for targeted personalized therapies. Front Immunol.
11:12802020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Kaltschmidt C, Banz-Jansen C, Benhidjeb T,
Beshay M, Förster C, Greiner J, Hamelmann E, Jorch N, Mertzlufft F,
Pfitzenmaier J, et al: A role for NF-κB in organ specific cancer
and cancer stem cells. Cancers (Basel). 11:6552019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Liu AM, Zhu Y, Huang ZW, Lei L, Fu SZ and
Chen Y: Long noncoding RNA FAM201A involves in radioresistance of
non-small-cell lung cancer by enhancing EGFR expression via
miR-370. Eur Rev Med Pharmacol Sci. 23:5802–5814. 2019.PubMed/NCBI
|
|
108
|
Wang K, Zhu G, Bao S and Chen S: Long
non-coding RNA LINC00511 mediates the effects of ESR1 on
proliferation and invasion of ovarian cancer through miR-424-5p and
miR-370-5p. Cancer Manag Res. 11:10807–10819. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Endo M, Tanaka Y, Otsuka M and Minami Y:
E2F1-Ror2 signaling mediates coordinated transcriptional regulation
to promote G1/S phase transition in bFGF-stimulated NIH/3T3
fibroblasts. FASEB J. 34:3413–3428. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zeng B, Li Z, Chen R, Guo N, Zhou J, Zhou
Q, Lin Q, Cheng D, Liao Q, Zheng L and Gong Y: Epigenetic
regulation of miR-124 by hepatitis C virus core protein promotes
migration and invasion of intrahepatic cholangiocarcinoma cells by
targeting SMYD3. FEBS Lett. 586:3271–3278. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Pan X, Wang H, Tong D, Wang C, Sun L, Zhao
C, Li Y, Zhu L and Wu D: Physcion induces apoptosis in
hepatocellular carcinoma by modulating miR-370. Am J Cancer Res.
6:2919–2931. 2016.PubMed/NCBI
|
|
112
|
Kuete V, Mbaveng AT, Nono EC, Simo CC,
Zeino M, Nkengfack AE and Efferth T: Cytotoxicity of seven
naturally occurring phenolic compounds towards multi-factorial
drug-resistant cancer cells. Phytomedicine. 23:856–863. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ye LH, Ma X and Xu SC: Expression and
clinical significance of serum MiR-370 and MiR-203 in patients with
acute myeloid leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi.
29:445–449. 2021.(In Chinese). PubMed/NCBI
|
|
114
|
Bautista-Sánchez D, Arriaga-Canon C,
Pedroza-Torres A, De La Rosa-Velázquez IA, González-Barrios R,
Contreras-Espinosa L, Montiel-Manríquez R, Castro-Hernández C,
Fragoso-Ontiveros V, Álvarez-Gómez RM and Herrera LA: The Promising
role of miR-21 as a cancer biomarker and its importance in
RNA-based therapeutics. Mol Ther Nucleic Acids. 20:409–420. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Pan XP, Huang LH and Wang X: MiR-370
functions as prognostic marker in patients with hepatocellular
carcinoma. Eur Rev Med Pharmacol Sci. 21:3581–3585. 2017.PubMed/NCBI
|