|
1
|
Xue C, Chu Q, Zheng Q, Jiang S, Bao Z, Su
Y, Lu J and Li L: Role of main RNA modifications in cancer:
N6-methyladenosine, 5-methylcytosine, and pseudouridine.
Signal Transduct Target Ther. 7:1422022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kocaturk NM, Akkoc Y, Kig C, Bayraktar O,
Gozuacik D and Kutlu O: Autophagy as a molecular target for cancer
treatment. Eur J Pharm Sci. 134:116–137. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Onorati AV, Dyczynski M, Ojha R and
Amaravadi RK: Targeting autophagy in cancer. Cancer. 124:3307–3318.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ferro F, Servais S, Besson P, Roger S,
Dumas JF and Brisson L: Autophagy and mitophagy in cancer metabolic
remodelling. Semin Cell Dev Biol. 98:129–138. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Amaravadi RK, Kimmelman AC and Debnath J:
Targeting autophagy in cancer: Recent advances and future
directions. Cancer Discov. 9:1167–1181. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lin PW, Chu ML and Liu HS: Autophagy and
metabolism. Kaohsiung J Med Sci. 37:12–19. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gómez-Virgilio L, Silva-Lucero MD,
Flores-Morelos DS, Gallardo-Nieto J, Lopez-Toledo G,
Abarca-Fernandez AM, Zacapala-Gómez AE, Luna-Muñoz J, Montiel-Sosa
F, Soto-Rojas LO, et al: Autophagy: A key regulator of homeostasis
and disease: An overview of molecular mechanisms and modulators.
Cells. 11:22622022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wen X, Yang Y and Klionsky DJ: Moments in
autophagy and disease: Past and present. Mol Aspects Med.
82:1009662021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Cao W, Li J, Yang K and Cao D: An overview
of autophagy: Mechanism, regulation and research progress. Bull
Cancer. 108:304–322. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Saha S, Panigrahi DP, Patil S and Bhutia
SK: Autophagy in health and disease: A comprehensive review. Biomed
Pharmacother. 104:485–495. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Klionsky DJ, Petroni G, Amaravadi RK,
Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K,
Cecconi F, Choi AMK, et al: Autophagy in major human diseases. EMBO
J. 40:e1088632021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Behera J, Ison J, Tyagi A, Mbalaviele G
and Tyagi N: Mechanisms of autophagy and mitophagy in skeletal
development, diseases and therapeutics. Life Sci. 301:1205952022.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Mameli E, Martello A and Caporali A:
Autophagy at the interface of endothelial cell homeostasis and
vascular disease. FEBS J. 289:2976–2991. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yu QY, Ye LQ and Li HL: Molecular
interaction of stress granules with Tau and autophagy in
Alzheimer's disease. Neurochem Int. 157:1053422022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Carinci M, Palumbo L, Pellielo G, Agyapong
ED, Morciano G, Patergnani S, Giorgi C, Pinton P and Rimessi A: The
multifaceted roles of autophagy in infectious, obstructive, and
malignant airway diseases. Biomedicines. 10:19442022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hernandez GA and Perera RM: Autophagy in
cancer cell remodeling and quality control. Mol Cell. 82:1514–1527.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Li X, He S and Ma B: Autophagy and
autophagy-related proteins in cancer. Mol Cancer. 19:122020.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Levine B and Kroemer G: Biological
functions of autophagy genes: A disease perspective. Cell.
176:11–42. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Song Q, Liu H, Zhen H and Zhao B:
Autophagy and its role in regeneration and remodeling within
invertebrate. Cell Biosci. 10:1112020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Pradel B, Robert-Hebmann V and Espert L:
Regulation of Innate Immune Responses by Autophagy: A Goldmine for
Viruses. Front Immunol. 11:5780382020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cao Y, Luo Y, Zou J, Ouyang J, Cai Z, Zeng
X, Ling H and Zeng T: Autophagy and its role in gastric cancer.
Clin Chim Acta. 489:10–20. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu
BW, Wang HS, Wang H and Jiang GM: Epigenetic and post-translational
modifications in autophagy: Biological functions and therapeutic
targets. Signal Transduct Target Ther. 8:322023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zheng W, Xie W, Yin D, Luo R, Liu M and
Guo F: ATG5 and ATG7 induced autophagy interplays with UPR via PERK
signaling. Cell Commun Signal. 17:422019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
He M, Li M, Guan Y, Wan Z, Tian J, Xu F,
Zhou H, Gao M, Bi H and Chong T: A New prognostic risk score: Based
on the analysis of autophagy-related genes and renal cell
carcinoma. Front Genet. 12:8201542021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yousefi S, Perozzo R, Schmid I, Ziemiecki
A, Schaffner T, Scapozza L, Brunner T and Simon HU:
Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis.
Nat Cell Biol. 8:1124–1132. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Matsushita M, Suzuki NN, Obara K, Fujioka
Y, Ohsumi Y and Inagaki F: Structure of Atg5.Atg16, a complex
essential for autophagy. J Biol Chem. 282:6763–6772. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Noda NN, Fujioka Y, Hanada T, Ohsumi Y and
Inagaki F: Structure of the Atg12-Atg5 conjugate reveals a platform
for stimulating Atg8-PE conjugation. EMBO Rep. 14:206–211. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Nikseresht M, Shahverdi M, Dehghani M,
Abidi H, Mahmoudi R, Ghalamfarsa G, Manzouri L and Ghavami S:
Association of single nucleotide autophagy-related protein 5 gene
polymorphism rs2245214 with susceptibility to non-small cell lung
cancer. J Cell Biochem. 120:1924–1931. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Li M, Shen Y, Xiong Y, Wang S, Li C, Bai J
and Zhang Y: Loss of SMARCB1 promotes autophagy and facilitates
tumour progression in chordoma by transcriptionally activating
ATG5. Cell Prolif. 54:e131362021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Frangež Ž, Gérard D, He Z, Gavriil M,
Fernández-Marrero Y, Seyed Jafari SM, Hunger RE, Lucarelli P,
Yousefi S, Sauter T, et al: ATG5 and ATG7 expression levels are
reduced in cutaneous melanoma and regulated by NRF1. Front Oncol.
11:7216242021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Park JW, Kim Y, Lee SB, Oh CW, Lee EJ, Ko
JY and Park JH: Autophagy inhibits cancer stemness in
triple-negative breast cancer via miR-181a-mediated regulation of
ATG5 and/or ATG2B. Mol Oncol. 16:1857–1875. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhang N, Li Z, Bai F and Zhang S:
PAX5-induced upregulation of IDH1-AS1 promotes tumor growth in
prostate cancer by regulating ATG5-mediated autophagy. Cell Death
Dis. 10:7342019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Feng X, Zhang H, Meng L, Song H, Zhou Q,
Qu C, Zhao P, Li Q, Zou C, Liu X and Zhang Z: Hypoxia-induced
acetylation of PAK1 enhances autophagy and promotes brain
tumorigenesis via phosphorylating ATG5. Autophagy. 17:723–742.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Xie X, Bi HL, Lai S, Zhang YL, Li N, Cao
HJ, Han L, Wang HX and Li HH: The immunoproteasome catalytic β5i
subunit regulates cardiac hypertrophy by targeting the autophagy
protein ATG5 for degradation. Sci Adv. 5:eaau04952019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Di Q, Zhao X, Tang H, Li X, Xiao Y, Wu H,
Wu Z, Quan J and Chen W: USP22 suppresses the NLRP3 inflammasome by
degrading NLRP3 via ATG5-dependent autophagy. Autophagy.
19:873–885. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chen L, Liu S and Tao Y: Regulating tumor
suppressor genes: Post-translational modifications. Signal
Transduct Target Ther. 5:902020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhou L, Ng DS, Yam JC, Tham CC, Pang CP
and Chu WK: Post-translational modifications on the retinoblastoma
protein. J Biomed Sci. 29:332022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yang J, Song C and Zhan X: The role of
protein acetylation in carcinogenesis and targeted drug discovery.
Front Endocrinol (Lausanne). 13:9723122022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wan W, You Z, Xu Y, Zhou L, Guan Z, Peng
C, Wong CCL, Su H, Zhou T, Xia H and Liu W: mTORC1 Phosphorylates
Acetyltransferase p300 to Regulate Autophagy and Lipogenesis. Mol
Cell. 68:323–335.e6. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Levy JMM, Towers CG and Thorburn A:
Targeting autophagy in cancer. Nat Rev Cancer. 17:528–542. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lin TY, Chan HH, Chen SH, Sarvagalla S,
Chen PS, Coumar MS, Cheng SM, Chang YC, Lin CH, Leung E and Cheung
CHA: BIRC5/Survivin is a novel ATG12-ATG5 conjugate interactor and
an autophagy-induced DNA damage suppressor in human cancer and
mouse embryonic fibroblast cells. Autophagy. 16:1296–1313. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Otto FB and Thumm M: Mechanistic
dissection of macro- and micronucleophagy. Autophagy. 17:626–639.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Cicchini M, Karantza V and Xia B:
Molecular pathways: Autophagy in cancer-a matter of timing and
context. Clin Cancer Res. 21:498–504. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Don Wai Luu L, Kaakoush NO and
Castaño-Rodríguez N: The role of ATG16L2 in autophagy and disease.
Autophagy. 18:2537–2546. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Changotra H, Kaur S, Yadav SS, Gupta GL,
Parkash J and Duseja A: ATG5: A central autophagy regulator
implicated in various human diseases. Cell Biochem Funct.
40:650–667. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lei Y, Xu X, Liu H, Chen L, Zhou H, Jiang
J, Yang Y and Wu B: HBx induces hepatocellular carcinogenesis
through ARRB1-mediated autophagy to drive the G1/S
cycle. Autophagy. 17:4423–4441. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang Y, Xiong H, Liu D, Hill C, Ertay A,
Li J, Zou Y, Miller P, White E, Downward J, et al: Autophagy
inhibition specifically promotes epithelial-mesenchymal transition
and invasion in RAS-mutated cancer cells. Autophagy. 15:886–899.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Liang Y, Pi H, Liao L, Tan M, Deng P, Yue
Y, Xi Y, Tian L, Xie J, Chen M, et al: Cadmium promotes breast
cancer cell proliferation, migration and invasion by inhibiting
ACSS2/ATG5-mediated autophagy. Environ Pollut. 273:1165042021.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
He L, Han J, Li B, Huang L, Ma K, Chen Q,
Liu X, Bao L and Liu H: Identification of a new cyathane diterpene
that induces mitochondrial and autophagy-dependent apoptosis and
shows a potent in vivo anti-colorectal cancer activity. Eur J Med
Chem. 111:183–192. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Xiong X, Lu B, Tian Q, Zhang H, Wu M, Guo
H, Zhang Q, Li X, Zhou T and Wang Y: Inhibition of autophagy
enhances cinobufagin-induced apoptosis in gastric cancer. Oncol
Rep. 41:492–500. 2019.PubMed/NCBI
|
|
51
|
Cao L and Lin F: TECPR1 Induces apoptosis
in non-small cell lung carcinoma via ATG5 Upregulation-Induced
autophagy promotion. Ann Clin Lab Sci. 52:580–592. 2022.PubMed/NCBI
|
|
52
|
Zheng Y, Tan K and Huang H: Long noncoding
RNA HAGLROS regulates apoptosis and autophagy in colorectal cancer
cells via sponging miR-100 to target ATG5 expression. J Cell
Biochem. 120:3922–3933. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li Y, Jiang Y, Cheng J, Ma J, Li Q and
Pang T: ATG5 regulates mesenchymal stem cells differentiation and
mediates chemosensitivity in acute myeloid leukemia. Biochem
Biophys Res Commun. 525:398–405. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Oh DS and Lee HK: Autophagy protein ATG5
regulates CD36 expression and anti-tumor MHC class II antigen
presentation in dendritic cells. Autophagy. 15:2091–2106. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Demirbag-Sarikaya S, Akkoc Y, Turgut S,
Erbil-Bilir S, Kocaturk NM, Dengjel J and Gozuacik D: A novel ATG5
interaction with Ku70 potentiates DNA repair upon genotoxic stress.
Sci Rep. 12:81342022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sun SY, Hu XT, Yu XF, Zhang YY, Liu XH,
Liu YH, Wu SH, Li YY, Cui SX and Qu XJ: Nuclear translocation of
ATG5 induces DNA mismatch repair deficiency (MMR-D)/microsatellite
instability (MSI) via interacting with Mis18α in colorectal cancer.
Br J Pharmacol. 178:2351–2369. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yu K, Xiang L, Li S, Wang S, Chen C and Mu
H: HIF1α promotes prostate cancer progression by increasing ATG5
expression. Anim Cells Syst (Seoul). 23:326–334. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wang H, Yin J, Huang J, Liu Z and Pei S:
miR-20a-enhanced cell migration and invasion via ATg5 in
osteosarcoma. Minerva Endocrinol. 44:415–417. 2019.PubMed/NCBI
|
|
59
|
Zhou S, Wang X, Ding J, Yang H and Xie Y:
Increased ATG5 expression predicts poor prognosis and promotes EMT
in cervical carcinoma. Front Cell Dev Biol. 9:7571842021.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang Q, Chen J, Zhang M, Wang H, Zeng Y,
Huang Y and Xu C: Autophagy induced by muscarinic acetylcholine
receptor 1 mediates migration and invasion targeting Atg5 via
AMPK/mTOR pathway in prostate cancer. J Oncol.
2022:65231952022.PubMed/NCBI
|
|
61
|
Qin Y, Sun W, Wang Z, Dong W, He L, Zhang
T, Lv C and Zhang H: RBM47/SNHG5/FOXO3 axis activates autophagy and
inhibits cell proliferation in papillary thyroid carcinoma. Cell
Death Dis. 13:2702022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhu JF, Huang W, Yi HM, Xiao T, Li JY,
Feng J, Yi H, Lu SS, Li XH, Lu RH, et al: Annexin A1-suppressed
autophagy promotes nasopharyngeal carcinoma cell invasion and
metastasis by PI3K/AKT signaling activation. Cell Death Dis.
9:11542018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
He J, Huang B, Zhang K, Liu M and Xu T:
Long non-coding RNA in cervical cancer: From biology to therapeutic
opportunity. Biomed Pharmacother. 127:1102092020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yan H and Bu P: Non-coding RNA in cancer.
Essays Biochem. 65:625–639. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wang L, Cho KB, Li Y, Tao G, Xie Z and Guo
B: Long Noncoding RNA (lncRNA)-mediated competing endogenous RNA
networks provide novel potential biomarkers and therapeutic targets
for colorectal cancer. Int J Mol Sci. 20:57582019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yang Q, Li F, He AT and Yang BB: Circular
RNAs: Expression, localization, and therapeutic potentials. Mol
Ther. 29:1683–1702. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Volovat SR, Volovat C, Hordila I, Hordila
DA, Mirestean CC, Miron OT, Lungulescu C, Scripcariu DV,
Stolniceanu CR, Konsoulova-Kirova AA, et al: MiRNA and LncRNA as
potential biomarkers in Triple-negative breast cancer: A review.
Front Oncol. 10:5268502020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhang H and Lu B: The roles of
ceRNAs-mediated autophagy in cancer chemoresistance and metastasis.
Cancers (Basel). 12:29262020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Huang J, Huang B, Kong Y, Yang Y, Tian C,
Chen L, Liao Y and Ma L: Polycystic ovary syndrome: Identification
of novel and hub biomarkers in the autophagy-associated
mRNA-miRNA-lncRNA network. Front Endocrinol (Lausanne).
13:10320642022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Fisher L: Retraction: Long non-coding RNA
XIST promotes proliferation, autophagy and inhibits apoptosis by
regulating microRNA-30c/ATG5 axis in gastric cancer. RSC Adv.
11:42332021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yang F, Peng ZX, Ji WD, Yu JD, Qian C, Liu
JD and Fang GE: LncRNA CCAT1 upregulates ATG5 to enhance autophagy
and promote gastric cancer development by absorbing miR-140-3p. Dig
Dis Sci. 67:3725–3741. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang J, Dong Z, Sheng Z and Cai Y:
Hypoxia-induced PVT1 promotes lung cancer chemoresistance to
cisplatin by autophagy via PVT1/miR-140-3p/ATG5 axis. Cell Death
Discov. 8:1042022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Qin Y, Sun W, Wang Z, Dong W, He L, Zhang
T, Shao L and Zhang H: ATF2-Induced lncRNA GAS8-AS1 promotes
autophagy of thyroid cancer cells by targeting the miR-187-3p/ATG5
and miR-1343-3p/ATG7 Axes. Mol Ther Nucleic Acids. 22:584–600.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wei H, Li L, Zhang H, Xu F, Chen L, Che G
and Wang Y: Circ-FOXM1 knockdown suppresses non-small cell lung
cancer development by regulating the miR-149-5p/ATG5 axis. Cell
Cycle. 20:166–178. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zheng S, Zhong YF, Tan DM, Xu Y, Chen HX
and Wang D: miR-183-5p enhances the radioresistance of colorectal
cancer by directly targeting ATG5. J Biosci. 44:922019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Che J, Wang W, Huang Y, Zhang L, Zhao J,
Zhang P and Yuan X: miR-20a inhibits hypoxia-induced autophagy by
targeting ATG5/FIP200 in colorectal cancer. Mol Carcinog.
58:1234–1247. 2019.PubMed/NCBI
|
|
77
|
Hwang TI, Chen PC, Tsai TF, Lin JF, Chou
KY, Ho CY, Chen HE and Chang AC: Hsa-miR-30a-3p overcomes the
acquired protective autophagy of bladder cancer in chemotherapy and
suppresses tumor growth and muscle invasion. Cell Death Dis.
13:3902022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Liang L, Yang Z, Deng Q, Jiang Y, Cheng Y,
Sun Y and Li LL: miR-30d-5p suppresses proliferation and autophagy
by targeting ATG5 in renal cell carcinoma. FEBS Open Bio.
11:529–540. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
White E: The role for autophagy in cancer.
J Clin Invest. 125:42–46. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Das S, Shukla N, Singh SS, Kushwaha S and
Shrivastava R: Mechanism of interaction between autophagy and
apoptosis in cancer. Apoptosis. 26:512–533. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Russo M and Russo GL: Autophagy inducers
in cancer. Biochem Pharmacol. 153:51–61. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Seo W, Silwal P, Song IC and Jo EK: The
dual role of autophagy in acute myeloid leukemia. J Hematol Oncol.
15:512022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Babaei G, Aziz SG and Jaghi NZZ: EMT,
cancer stem cells and autophagy; The three main axes of metastasis.
Biomed Pharmacother. 133:1109092021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yang PW, Hsieh MS, Chang YH, Huang PM and
Lee JM: Genetic polymorphisms of ATG5 predict survival and
recurrence in patients with early-stage esophageal squamous cell
carcinoma. Oncotarget. 8:91494–91504. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Cheng X, Xu Q, Zhang Y, Shen M, Zhang S,
Mao F, Li B, Yan X, Shi Z, Wang L, et al: miR-34a inhibits
progression of neuroblastoma by targeting autophagy-related gene 5.
Eur J Pharmacol. 850:53–63. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wang L, Yao L, Zheng YZ, Xu Q, Liu XP, Hu
X, Wang P and Shao ZM: Expression of autophagy-related proteins
ATG5 and FIP200 predicts favorable disease-free survival in
patients with breast cancer. Biochem Biophys Res Commun.
458:816–822. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhao GS, Gao ZR, Zhang Q, Tang XF, Lv YF,
Zhang ZS, Zhang Y, Tan QL, Peng DB, Jiang DM and Guo QN: TSSC3
promotes autophagy via inactivating the Src-mediated PI3K/Akt/mTOR
pathway to suppress tumorigenesis and metastasis in osteosarcoma,
and predicts a favorable prognosis. J Exp Clin Cancer Res.
37:1882018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Dong M, Ye T, Bi Y, Wang Q, Kuerban K, Li
J, Feng M, Wang K, Chen Y and Ye L: A novel hybrid of 3-benzyl
coumarin seco-B-ring derivative and phenylsulfonylfuroxan induces
apoptosis and autophagy in non-small-cell lung cancer.
Phytomedicine. 52:79–88. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Rong L, Li Z, Leng X, Li H, Ma Y, Chen Y
and Song F: Salidroside induces apoptosis and protective autophagy
in human gastric cancer AGS cells through the PI3K/Akt/mTOR
pathway. Biomed Pharmacother. 122:1097262020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Xu Q, Zhang H, Liu H, Han Y, Qiu W and Li
Z: Inhibiting autophagy flux and DNA repair of tumor cells to boost
radiotherapy of orthotopic glioblastoma. Biomaterials.
280:1212872022. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yang X, Zhao M, Wu Z, Chen C, Zhang Y,
Wang L, Guo Q, Wang Q, Liang S, Hu S, et al: Nano-ultrasonic
contrast agent for chemoimmunotherapy of breast cancer by immune
metabolism reprogramming and tumor autophagy. ACS Nano.
16:3417–3431. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Mi W, Wang C, Luo G, Li J, Zhang Y, Jiang
M, Zhang C, Liu N, Jiang X, Yang G, et al: Targeting ERK induced
cell death and p53/ROS-dependent protective autophagy in colorectal
cancer. Cell Death Discov. 7:3752021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Kinsey CG, Camolotto SA, Boespflug AM,
Guillen KP, Foth M, Truong A, Schuman SS, Shea JE, Seipp MT, Yap
JT, et al: Protective autophagy elicited by RAF→MEK→ERK inhibition
suggests a treatment strategy for RAS-driven cancers. Nat Med.
25:620–627. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Liu J, Liu Y, Li H, Wei C, Mao A, Liu W
and Pan G: Polyphyllin D induces apoptosis and protective autophagy
in breast cancer cells through JNK1-Bcl-2 pathway. J
Ethnopharmacol. 282:1145912022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Ho CY, Chang AC, Hsu CH, Tsai TF, Lin YC,
Chou KY, Chen HE, Lin JF, Chen PC and Hwang TI: Miconazole induces
protective autophagy in bladder cancer cells. Environ Toxicol.
36:185–193. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Chen J, Zhang L, Zhou H, Wang W, Luo Y,
Yang H and Yi H: Inhibition of autophagy promotes cisplatin-induced
apoptotic cell death through Atg5 and Beclin 1 in A549 human lung
cancer cells. Mol Med Rep. 17:6859–6865. 2018.PubMed/NCBI
|
|
97
|
Mo N, Lu YK, Xie WM, Liu Y, Zhou WX, Wang
HX, Nong L, Jia YX, Tan AH, Chen Y, et al: Inhibition of autophagy
enhances the radiosensitivity of nasopharyngeal carcinoma by
reducing Rad51 expression. Oncol Rep. 32:1905–1912. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Digomann D, Linge A and Dubrovska A:
SLC3A2/CD98hc, autophagy and tumor radioresistance: A link
confirmed. Autophagy. 15:1850–1851. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Pai Bellare G, Saha B and Patro BS:
Targeting autophagy reverses de novo resistance in homologous
recombination repair proficient breast cancers to PARP inhibition.
Br J Cancer. 124:1260–1274. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Han M, Hu J, Lu P, Cao H, Yu C, Li X, Qian
X, Yang X, Yang Y, Han N, et al: Exosome-transmitted miR-567
reverses trastuzumab resistance by inhibiting ATG5 in breast
cancer. Cell Death Dis. 11:432020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wang ZC, Huang FZ, Xu HB, Sun JC and Wang
CF: MicroRNA-137 inhibits autophagy and chemosensitizes pancreatic
cancer cells by targeting ATG5. Int J Biochem Cell Biol. 111:63–71.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Yu Q, Xu XP, Yin XM and Peng XQ:
miR-155-5p increases the sensitivity of liver cancer cells to
adriamycin by regulating ATG5-mediated autophagy. Neoplasma.
68:87–95. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhang W, Dong YZ, Du X, Peng XN and Shen
QM: MiRNA-153-3p promotes gefitinib-sensitivity in non-small cell
lung cancer by inhibiting ATG5 expression and autophagy. Eur Rev
Med Pharmacol Sci. 23:2444–2452. 2019.PubMed/NCBI
|
|
104
|
Han M, Qian X, Cao H, Wang F, Li X, Han N,
Yang X, Yang Y, Dou D, Hu J, et al: lncRNA ZNF649-AS1 induces
trastuzumab resistance by promoting ATG5 expression and autophagy.
Mol Ther. 28:2488–2502. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Shi Y, Wang Y, Qian J, Yan X, Han Y, Yao N
and Ma J: MGMT expression affects the gemcitabine resistance of
pancreatic cancer cells. Life Sci. 259:1181482020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Cheng X, Tan S, Duan F, Yuan Q, Li Q and
Deng G: Icariin induces apoptosis by suppressing autophagy in
tamoxifen-resistant breast cancer cell line MCF-7/TAM. Breast
Cancer. 26:766–775. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Li X, Chen Q, Ao J, Lin W, Qiu L and Cao
R: Synthesis of novel 4,7-disubstituted quinoline derivatives as
autophagy inducing agents via targeting stabilization of ATG5.
Bioorg Chem. 127:1059982022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Li Y, Lu X, Tian P, Wang K and Shi J:
Procyanidin B2 induces apoptosis and autophagy in gastric cancer
cells by inhibiting Akt/mTOR signaling pathway. BMC Complement Med
Ther. 21:762021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Kan Y, Song M, Cui X, Yang Q, Zang Y, Li
Q, Li Y, Cai W, Chen Y, Weng X, et al: Muyin extract inhibits
non-small-cell lung cancer growth by inducing autophagy and
apoptosis in vitro and in vivo. Phytomedicine. 96:1538342022.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Kim TW: Cinnamaldehyde induces
autophagy-mediated cell death through ER stress and epigenetic
modification in gastric cancer cells. Acta Pharmacol Sin.
43:712–723. 2022. View Article : Google Scholar : PubMed/NCBI
|