Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
September-2023 Volume 50 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2023 Volume 50 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Mutant p53 in head and neck squamous cell carcinoma: Molecular mechanism of gain‑of‑function and targeting therapy (Review)

  • Authors:
    • Minmin Li
    • Dongyuan Sun
    • Ning Song
    • Xi Chen
    • Xinyue Zhang
    • Wentian Zheng
    • Yang Yu
    • Chengbing Han
  • View Affiliations / Copyright

    Affiliations: School of Stomatology, Weifang Medical University, Weifang, Shandong 261000, P.R. China, Department of Stomatology, First Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 162
    |
    Published online on: July 11, 2023
       https://doi.org/10.3892/or.2023.8599
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Head and neck squamous cell carcinoma (HNSCC) is one of the most widespread malignancies worldwide. p53, as a transcription factor, can play its role in tumor suppression by activating the expression of numerous target genes. However, p53 is one of the most commonly mutated genes, which frequently harbors missense mutations. These missense mutations are nucleotide substitutions that result in the substitution of an amino acid in the DNA binding domain. Most p53 mutations in HNSCC are missense mutations and the mutation rate of p53 reaches 65‑85%. p53 mutation not only inhibits the tumor suppressive function of p53 but also provides novel functions to facilitate tumor recurrence, called gain‑of‑function (GOF). The present study focused on the prevalence and clinical relevance of p53 mutations in HNSCC, and further described how mutant p53 accumulates. Moreover, mutant p53 in HNSCC can interact with proteins, RNA, and exosomes to exert effects on proliferation, migration, invasion, immunosuppression, and metabolism. Finally, several treatment strategies have been proposed to abolish the tumor‑promoting function of mutant p53; these strategies include reactivation of mutant p53 into wild‑type p53, induction of mutant p53 degradation, enhancement of the synthetic lethality of mutant p53, and treatment with immunotherapy. Due to the high frequency of p53 mutations in HNSCC, a further understanding of the mechanism of mutant p53 may provide potential applications for targeted therapy in patients with HNSCC.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE and Grandis JR: Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 6:922020. View Article : Google Scholar : PubMed/NCBI

2 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Ford PJ and Rich AM: Tobacco use and oral health. Addiction. 116:3531–3540. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Auguste A, Joachim C, Deloumeaux J, Gaete S, Michineau L, Herrmann-Storck C, Duflo S and Luce D: Head and neck cancer risk factors in the French West Indies. BMC Cancer. 21:10712021. View Article : Google Scholar : PubMed/NCBI

6 

Hedberg ML, Goh G, Chiosea SI, Bauman JE, Freilino ML, Zeng Y, Wang L, Diergaarde BB, Gooding WE, Lui VW, et al: Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma. J Clin Invest. 126:16062016. View Article : Google Scholar : PubMed/NCBI

7 

Vousden KH and Lane DP: p53 in health and disease. Nat Rev Mol Cell Biol. 8:275–283. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Gleber-Netto FO, Zhao M, Trivedi S, Wang J, Jasser S, McDowell C, Kadara H, Zhang J, Wang J, William WN Jr, et al: Distinct pattern of TP53 mutations in human immunodeficiency virus-related head and neck squamous cell carcinoma. Cancer. 124:84–94. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al: Mutational landscape and significance across 12 major cancer types. Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Zhou G, Liu Z and Myers JN: TP53 mutations in head and neck squamous cell carcinoma and their impact on disease progression and treatment response. J Cell Biochem. 117:2682–2692. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Sabapathy K and Lane DP: Therapeutic targeting of p53: All mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol. 15:13–30. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Deneka AY, Baca Y, Serebriiskii IG, Nicolas E, Parker MI, Nguyen TT, Xiu J, Korn WM, Demeure MJ, Wise-Draper T, et al: Association of TP53 and CDKN2A mutation profile with tumor mutation burden in head and neck cancer. Clin Cancer Res. 28:1925–1937. 2022. View Article : Google Scholar : PubMed/NCBI

13 

Cancer Genome Atlas Network, . Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 517:576–582. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Ogmundsdóttir HM, Björnsson J and Holbrook WP: Role of TP53 in the progression of pre-malignant and malignant oral mucosal lesions. A follow-up study of 144 patients. J Oral Pathol Med. 38:565–671. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Saleem S, Abbasi ZA, Hameed A, Qureshi NR, Khan MA and Azhar A: Novel p53 codon 240 Ser > Thr coding region mutation in the patients of oral squamous cell carcinoma (OSCC). Tumour Biol. 35:7945–7950. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Nakazawa S, Sakata KI, Liang S, Yoshikawa K, Iizasa H, Tada M, Hamada JI, Kashiwazaki H, Kitagawa Y and Yamazaki Y: Dominant-negative p53 mutant R248Q increases the motile and invasive activities of oral squamous cell carcinoma cells. Biomed Res. 40:37–49. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Enaka M, Nakanishi M and Muragaki Y: The gain-of-function mutation p53R248W suppresses cell proliferation and invasion of oral squamous cell carcinoma through the down-regulation of keratin 17. Am J Pathol. 191:555–566. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Sano D, Xie TX, Ow TJ, Zhao M, Pickering CR, Zhou G, Sandulache VC, Wheeler DA, Gibbs RA, Caulin C and Myers JN: Disruptive TP53 mutation is associated with aggressive disease characteristics in an orthotopic murine model of oral tongue cancer. Clin Cancer Res. 17:6658–6670. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Wang J, Hu Y, Escamilla-Rivera V, Gonzalez CL, Tang L, Wang B, El-Naggar AK, Myers JN and Caulin C: Epithelial mutant p53 promotes resistance to anti-PD-1-mediated oral cancer immunoprevention in carcinogen-induced mouse models. Cancers (Basel). 13:14712021. View Article : Google Scholar : PubMed/NCBI

20 

Gleber-Netto FO, Neskey D, Costa AFM, Kataria P, Rao X, Wang J, Kowalski LP, Pickering CR, Dias-Neto E and Myers JN: Functionally impactful TP53 mutations are associated with increased risk of extranodal extension in clinically advanced oral squamous cell carcinoma. Cancer. 126:4498–4510. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Lee HJ, Kang YH, Lee JS, Byun JH, Kim UK, Jang SJ, Rho GJ and Park BW: Positive expression of NANOG, mutant p53, and CD44 is directly associated with clinicopathological features and poor prognosis of oral squamous cell carcinoma. BMC Oral Health. 15:1532015. View Article : Google Scholar : PubMed/NCBI

22 

Perrone F, Bossi P, Cortelazzi B, Locati L, Quattrone P, Pierotti MA, Pilotti S and Licitra L: TP53 mutations and pathologic complete response to neoadjuvant cisplatin and fluorouracil chemotherapy in resected oral cavity squamous cell carcinoma. J Clin Oncol. 28:761–766. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Gohara S, Yoshida R, Kawahara K, Sakata J, Arita H, Nakashima H, Kawaguchi S, Nagao Y, Yamana K, Nagata M, et al: Re-evaluating the clinical significance of serum p53 antibody levels in patients with oral cancer in Japanese clinical practice. Mol Clin Oncol. 15:2092021. View Article : Google Scholar : PubMed/NCBI

24 

Nannapaneni S, Griffith CC, Magliocca KR, Chen W, Lyu X, Chen Z, Wang D, Wang X, Shin DM, Chen ZG and Saba NF: Co-expression of fibroblast growth factor receptor 3 with mutant p53, and its association with worse outcome in oropharyngeal squamous cell carcinoma. PLoS One. 16:e02474982021. View Article : Google Scholar : PubMed/NCBI

25 

Yue X, Zhao Y, Xu Y, Zheng M, Feng Z and Hu W: Mutant p53 in cancer: Accumulation, gain-of-function, and therapy. J Mol Biol. 429:1595–1606. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Kakihara Y and Houry WA: The R2TP complex: Discovery and functions. Biochim Biophys Acta. 1823:101–107. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Mao YQ and Houry WA: The role of pontin and reptin in cellular physiology and cancer etiology. Front Mol Biosci. 4:582017. View Article : Google Scholar : PubMed/NCBI

28 

Kiguchi T, Kakihara Y, Yamazaki M, Katsura K, Izumi K, Tanuma JI, Saku T, Takagi R and Saeki M: Identification and characterization of R2TP in the development of oral squamous cell carcinoma. Biochem Biophys Res Commun. 548:161–166. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Parrales A, Ranjan A, Iyer SV, Padhye S, Weir SJ, Roy A and Iwakuma T: DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat Cell Biol. 18:1233–1243. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Zheng T, Wang J, Zhao Y, Zhang C, Lin M, Wang X, Yu H, Liu L, Feng Z and Hu W: Spliced MDM2 isoforms promote mutant p53 accumulation and gain-of-function in tumorigenesis. Nat Commun. 4:29962013. View Article : Google Scholar : PubMed/NCBI

31 

Li D, Marchenko ND, Schulz R, Fischer V, Velasco-Hernandez T, Talos F and Moll UM: Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol Cancer Res. 9:577–588. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Mantovani F, Collavin L and Del Sal G: Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 26:199–212. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Kaida A, Yamamoto S, Parrales A, Young ED, Ranjan A, Alalem MA, Morita KI, Oikawa Y, Harada H, Ikeda T, et al: DNAJA1 promotes cancer metastasis through interaction with mutant p53. Oncogene. 40:5013–5025. 2021. View Article : Google Scholar : PubMed/NCBI

34 

Parrales A, Thoenen E and Iwakuma T: The interplay between mutant p53 and the mevalonate pathway. Cell Death Differ. 25:460–470. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Levine AJ: The many faces of p53: Something for everyone. J Mol Cell Biol. 11:524–530. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Muller PA and Vousden KH: Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell. 25:304–317. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Poeta ML, Manola J, Goldwasser MA, Forastiere A, Benoit N, Califano JA, Ridge JA, Goodwin J, Kenady D, Saunders J, et al: TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 357:2552–2561. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Wolf ER, McAtarsney CP, Bredhold KE, Kline AM and Mayo LD: Mutant and wild-type p53 form complexes with p73 upon phosphorylation by the kinase JNK. Sci Signal. 11:eaao41702018. View Article : Google Scholar : PubMed/NCBI

39 

Jin S, Yang X, Li J, Yang W, Ma H and Zhang Z: p53-targeted lincRNA-p21 acts as a tumor suppressor by inhibiting JAK2/STAT3 signaling pathways in head and neck squamous cell carcinoma. Mol Cancer. 18:382019. View Article : Google Scholar : PubMed/NCBI

40 

Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A, Blandino G and Piaggio G: Gain of function of mutant p53: The mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell. 10:191–202. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Deyoung MP and Ellisen LW: p63 and p73 in human cancer: Defining the network. Oncogene. 26:5169–5183. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Lu H, Yang X, Duggal P, Allen CT, Yan B, Cohen J, Nottingham L, Romano RA, Sinha S, King KE, et al: TNF-α promotes c-REL/ΔNp63α interaction and TAp73 dissociation from key genes that mediate growth arrest and apoptosis in head and neck cancer. Cancer Res. 71:6867–6877. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Younes F, Quartey EL, Kiguwa S and Partridge M: Expression of TNF and the 55-kDa TNF receptor in epidermis, oral mucosa, lichen planus and squamous cell carcinoma. Oral Dis. 2:25–31. 1996. View Article : Google Scholar : PubMed/NCBI

44 

Osman AA, Neskey DM, Katsonis P, Patel AA, Ward AM, Hsu TK, Hicks SC, McDonald TO, Ow TJ, Alves MO, et al: Evolutionary action score of TP53 coding variants is predictive of platinum response in head and neck cancer patients. Cancer Res. 75:1205–1215. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Zhou G, Wang J, Zhao M, Xie TX, Tanaka N, Sano D, Patel AA, Ward AM, Sandulache VC, Jasser SA, et al: Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol Cell. 54:960–974. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Ganci F, Pulito C, Valsoni S, Sacconi A, Turco C, Vahabi M, Manciocco V, Mazza EMC, Meens J, Karamboulas C, et al: PI3K inhibitors curtail MYC-dependent mutant p53 gain-of-function in head and neck squamous cell carcinoma. Clin Cancer Res. 26:2956–2971. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Adduri RSR, George SA, Kavadipula P and Bashyam MD: SMARCD1 is a transcriptional target of specific non-hotspot mutant p53 forms. J Cell Physiol. 235:4559–4570. 2020. View Article : Google Scholar : PubMed/NCBI

48 

Berkers CR, Maddocks OD, Cheung EC, Mor I and Vousden KH: Metabolic regulation by p53 family members. Cell Metab. 18:617–633. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Goldstein I and Rotter V: Regulation of lipid metabolism by p53-fighting two villains with one sword. Trends Endocrinol Metab. 23:567–575. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Hardie DG, Ross FA and Hawley SA: AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 13:251–262. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Tanaka N, Zhao M, Tang L, Patel AA, Xi Q, Van HT, Takahashi H, Osman AA, Zhang J, Wang J, et al: Gain-of-function mutant p53 promotes the oncogenic potential of head and neck squamous cell carcinoma cells by targeting the transcription factors FOXO3a and FOXM1. Oncogene. 37:1279–1292. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Waitzberg AF, Nonogaki S, Nishimoto IN, Kowalski LP, Miguel RE, Brentani RR and Brentani MM: Clinical significance of c-myc and p53 expression in head and neck squamous cell carcinomas. Cancer Detect Prev. 28:178–186. 2004. View Article : Google Scholar : PubMed/NCBI

53 

Xu B, Liu P, Li J and Lu H: c-MYC depletion potentiates cisplatin-induced apoptosis in head and neck squamous cell carcinoma: Involvement of TSP-1 up-regulation. Ann Oncol. 21:670–672. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Di Agostino S, Valenti F, Sacconi A, Fontemaggi G, Pallocca M, Pulito C, Ganci F, Muti P, Strano S and Blandino G: Long non-coding MIR205HG depletes Hsa-miR-590-3p leading to unrestrained proliferation in head and neck squamous cell carcinoma. Theranostics. 8:1850–1868. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Chari NS, Ivan C, Le X, Li J, Mijiti A, Patel AA, Osman AA, Peterson CB, Williams MD, Pickering CR, et al: Disruption of TP63-miR-27a* feedback loop by mutant TP53 in head and neck cancer. J Natl Cancer Inst. 112:266–277. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Valenti F, Sacconi A, Ganci F, Grasso G, Strano S, Blandino G and Di Agostino S: The miR-205-5p/BRCA1/RAD17 axis promotes genomic instability in head and neck squamous cell carcinomas. Cancers (Basel). 11:13472019. View Article : Google Scholar : PubMed/NCBI

57 

Verduci L, Ferraiuolo M, Sacconi A, Ganci F, Vitale J, Colombo T, Paci P, Strano S, Macino G, Rajewsky N and Blandino G: The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex. Genome Biol. 18:2372017. View Article : Google Scholar : PubMed/NCBI

58 

Sargolzaei J, Etemadi T and Alyasin A: The P53/microRNA network: A potential tumor suppressor with a role in anticancer therapy. Pharmacol Res. 160:1051792020. View Article : Google Scholar : PubMed/NCBI

59 

Mercer TR, Dinger ME and Mattick JS: Long non-coding RNAs: Insights into functions. Nat Rev Genet. 10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Bridges MC, Daulagala AC and Kourtidis A: LNCcation: lncRNA localization and function. J Cell Biol. 220:e2020090452021. View Article : Google Scholar : PubMed/NCBI

61 

Guglas K, Bogaczyńska M, Kolenda T, Ryś M, Teresiak A, Bliźniak R, Łasińska I, Mackiewicz J and Lamperska K: lncRNA in HNSCC: Challenges and potential. Contemp Oncol (Pozn). 21:259–266. 2017.PubMed/NCBI

62 

Liao JM, Cao B, Zhou X and Lu H: New insights into p53 functions through its target microRNAs. J Mol Cell Biol. 6:206–213. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Masciarelli S, Fontemaggi G, Di Agostino S, Donzelli S, Carcarino E, Strano S and Blandino G: Gain-of-function mutant p53 downregulates miR-223 contributing to chemoresistance of cultured tumor cells. Oncogene. 33:1601–1608. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Donzelli S, Fontemaggi G, Fazi F, Di Agostino S, Padula F, Biagioni F, Muti P, Strano S and Blandino G: MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function. Cell Death Differ. 19:1038–1048. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Ganci F, Sacconi A, Bossel Ben-Moshe N, Manciocco V, Sperduti I, Strigari L, Covello R, Benevolo M, Pescarmona E, Domany E, et al: Expression of TP53 mutation-associated microRNAs predicts clinical outcome in head and neck squamous cell carcinoma patients. Ann Oncol. 24:3082–3088. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Jeck WR and Sharpless NE: Detecting and characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Hsu MT and Coca-Prados M: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 280:339–340. 1979. View Article : Google Scholar : PubMed/NCBI

68 

Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL and Yang L: Complementary sequence-mediated exon circularization. Cell. 159:134–147. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Novo D, Heath N, Mitchell L, Caligiuri G, MacFarlane A, Reijmer D, Charlton L, Knight J, Calka M, McGhee E, et al: Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels. Nat Commun. 9:50692018. View Article : Google Scholar : PubMed/NCBI

71 

Azmi AS, Bao B and Sarkar FH: Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review. Cancer Metastasis Rev. 32:623–642. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Bhatta B, Luz I, Krueger C, Teo FX, Lane DP, Sabapathy K and Cooks T: Cancer cells shuttle extracellular vesicles containing oncogenic mutant p53 proteins to the tumor microenvironment. Cancers (Basel). 13:29852021. View Article : Google Scholar : PubMed/NCBI

73 

Cooks T, Pateras IS, Jenkins LM, Patel KM, Robles AI, Morris J, Forshew T, Appella E, Gorgoulis VG and Harris CC: Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat Commun. 9:7712018. View Article : Google Scholar : PubMed/NCBI

74 

Burtness B, Harrington KJ, Greil R, Soulières D, Tahara M, de Castro G Jr, Psyrri A, Basté N, Neupane P, Bratland Å, et al: Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet. 394:1915–1928. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Soussi T and Wiman KG: Shaping genetic alterations in human cancer: The p53 mutation paradigm. Cancer Cell. 12:303–312. 2007. View Article : Google Scholar : PubMed/NCBI

76 

Kravchenko JE, Ilyinskaya GV, Komarov PG, Agapova LS, Kochetkov DV, Strom E, Frolova EI, Kovriga I, Gudkov AV, Feinstein E and Chumakov PM: Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc Natl Acad Sci USA. 105:6302–6307. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Cai BH, Bai ZY, Lien CF, Yu SJ, Lu RY, Wu MH, Wu WC, Chen CC and Hsu YC: NAMPT inhibitor and P73 activator represses P53 R175H mutated HNSCC cell proliferation in a synergistic manner. Biomolecules. 12:4382022. View Article : Google Scholar : PubMed/NCBI

78 

Bykov VJ, Zhang Q, Zhang M, Ceder S, Abrahmsen L and Wiman KG: Targeting of mutant p53 and the cellular redox balance by APR-246 as a strategy for efficient cancer therapy. Front Oncol. 6:212016. View Article : Google Scholar : PubMed/NCBI

79 

Puca R, Nardinocchi L, Porru M, Simon AJ, Rechavi G, Leonetti C, Givol D and D'Orazi G: Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs. Cell Cycle. 10:1679–1689. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Roh JL, Kang SK, Minn I, Califano JA, Sidransky D and Koch WM: p53-reactivating small molecules induce apoptosis and enhance chemotherapeutic cytotoxicity in head and neck squamous cell carcinoma. Oral Oncol. 47:8–15. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Hainaut P and Milner J: A structural role for metal ions in the ‘wild-type’ conformation of the tumor suppressor protein p53. Cancer Res. 53:1739–1742. 1993.PubMed/NCBI

82 

Butler JS and Loh SN: Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain. Biochemistry. 42:2396–2403. 2003. View Article : Google Scholar : PubMed/NCBI

83 

Maleki Vareki S, Salim KY, Danter WR and Koropatnick J: Novel anti-cancer drug COTI-2 synergizes with therapeutic agents and does not induce resistance or exhibit cross-resistance in human cancer cell lines. PLoS One. 13:e01917662018. View Article : Google Scholar : PubMed/NCBI

84 

Salim KY, Maleki Vareki S, Danter WR and Koropatnick J: COTI-2, a novel small molecule that is active against multiple human cancer cell lines in vitro and in vivo. Oncotarget. 7:41363–41379. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Alexandrova EM, Yallowitz AR, Li D, Xu S, Schulz R, Proia DA, Lozano G, Dobbelstein M and Moll UM: Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature. 523:352–356. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Hsiue EH, Wright KM, Douglass J, Hwang MS, Mog BJ, Pearlman AH, Paul S, DiNapoli SR, Konig MF, Wang Q, et al: Targeting a neoantigen derived from a common TP53 mutation. Science. 371:eabc86972021. View Article : Google Scholar : PubMed/NCBI

87 

Khan AS, Ahmad S, Ullah Z, Haq M, Farooq MU and Khan M: Serum p53 antibodies detection in oral squamous cell carcinoma, oral potentially malignant disorders and healthy individuals: A multicentre study. J Pak Med Assoc. 71:2364–2368. 2021.PubMed/NCBI

88 

Wang Q, Fan S, Eastman A, Worland PJ, Sausville EA and O'Connor PM: UCN-01: A potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst. 88:956–965. 1996. View Article : Google Scholar : PubMed/NCBI

89 

Suganuma M, Kawabe T, Hori H, Funabiki T and Okamoto T: Sensitization of cancer cells to DNA damage-induced cell death by specific cell cycle G2 checkpoint abrogation. Cancer Res. 59:5887–5891. 1999.PubMed/NCBI

90 

Leijen S, Beijnen JH and Schellens JHM: Abrogation of the G2 checkpoint by inhibition of Wee-1 kinase results in sensitization of p53-deficient tumor cells to DNA-damaging agents. Curr Clin Pharmacol. 5:186–191. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Osman AA, Monroe MM, Ortega Alves MV, Patel AA, Katsonis P, Fitzgerald AL, Neskey DM, Frederick MJ, Woo SH, Caulin C, et al: Wee-1 kinase inhibition overcomes cisplatin resistance associated with high-risk TP53 mutations in head and neck cancer through mitotic arrest followed by senescence. Mol Cancer Ther. 14:608–619. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Gadhikar MA, Sciuto MR, Alves MV, Pickering CR, Osman AA, Neskey DM, Zhao M, Fitzgerald AL, Myers JN and Frederick MJ: Chk1/2 inhibition overcomes the cisplatin resistance of head and neck cancer cells secondary to the loss of functional p53. Mol Cancer Ther. 12:1860–1873. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Bridges KA, Hirai H, Buser CA, Brooks C, Liu H, Buchholz TA, Molkentine JM, Mason KA and Meyn RE: MK-1775, a novel Wee1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Clin Cancer Res. 17:5638–5648. 2011. View Article : Google Scholar : PubMed/NCBI

94 

Méndez E, Rodriguez CP, Kao MC, Raju S, Diab A, Harbison RA, Konnick EQ, Mugundu GM, Santana-Davila R, Martins R, et al: A phase I clinical trial of AZD1775 in combination with neoadjuvant weekly docetaxel and cisplatin before definitive therapy in head and neck squamous cell carcinoma. Clin Cancer Res. 24:2740–2748. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li M, Sun D, Song N, Chen X, Zhang X, Zheng W, Yu Y and Han C: Mutant p53 in head and neck squamous cell carcinoma: Molecular mechanism of gain‑of‑function and targeting therapy (Review). Oncol Rep 50: 162, 2023.
APA
Li, M., Sun, D., Song, N., Chen, X., Zhang, X., Zheng, W. ... Han, C. (2023). Mutant p53 in head and neck squamous cell carcinoma: Molecular mechanism of gain‑of‑function and targeting therapy (Review). Oncology Reports, 50, 162. https://doi.org/10.3892/or.2023.8599
MLA
Li, M., Sun, D., Song, N., Chen, X., Zhang, X., Zheng, W., Yu, Y., Han, C."Mutant p53 in head and neck squamous cell carcinoma: Molecular mechanism of gain‑of‑function and targeting therapy (Review)". Oncology Reports 50.3 (2023): 162.
Chicago
Li, M., Sun, D., Song, N., Chen, X., Zhang, X., Zheng, W., Yu, Y., Han, C."Mutant p53 in head and neck squamous cell carcinoma: Molecular mechanism of gain‑of‑function and targeting therapy (Review)". Oncology Reports 50, no. 3 (2023): 162. https://doi.org/10.3892/or.2023.8599
Copy and paste a formatted citation
x
Spandidos Publications style
Li M, Sun D, Song N, Chen X, Zhang X, Zheng W, Yu Y and Han C: Mutant p53 in head and neck squamous cell carcinoma: Molecular mechanism of gain‑of‑function and targeting therapy (Review). Oncol Rep 50: 162, 2023.
APA
Li, M., Sun, D., Song, N., Chen, X., Zhang, X., Zheng, W. ... Han, C. (2023). Mutant p53 in head and neck squamous cell carcinoma: Molecular mechanism of gain‑of‑function and targeting therapy (Review). Oncology Reports, 50, 162. https://doi.org/10.3892/or.2023.8599
MLA
Li, M., Sun, D., Song, N., Chen, X., Zhang, X., Zheng, W., Yu, Y., Han, C."Mutant p53 in head and neck squamous cell carcinoma: Molecular mechanism of gain‑of‑function and targeting therapy (Review)". Oncology Reports 50.3 (2023): 162.
Chicago
Li, M., Sun, D., Song, N., Chen, X., Zhang, X., Zheng, W., Yu, Y., Han, C."Mutant p53 in head and neck squamous cell carcinoma: Molecular mechanism of gain‑of‑function and targeting therapy (Review)". Oncology Reports 50, no. 3 (2023): 162. https://doi.org/10.3892/or.2023.8599
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team