|
1
|
Johnson DE, Burtness B, Leemans CR, Lui
VWY, Bauman JE and Grandis JR: Head and neck squamous cell
carcinoma. Nat Rev Dis Primers. 6:922020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ford PJ and Rich AM: Tobacco use and oral
health. Addiction. 116:3531–3540. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Auguste A, Joachim C, Deloumeaux J, Gaete
S, Michineau L, Herrmann-Storck C, Duflo S and Luce D: Head and
neck cancer risk factors in the French West Indies. BMC Cancer.
21:10712021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hedberg ML, Goh G, Chiosea SI, Bauman JE,
Freilino ML, Zeng Y, Wang L, Diergaarde BB, Gooding WE, Lui VW, et
al: Genetic landscape of metastatic and recurrent head and neck
squamous cell carcinoma. J Clin Invest. 126:16062016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Vousden KH and Lane DP: p53 in health and
disease. Nat Rev Mol Cell Biol. 8:275–283. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gleber-Netto FO, Zhao M, Trivedi S, Wang
J, Jasser S, McDowell C, Kadara H, Zhang J, Wang J, William WN Jr,
et al: Distinct pattern of TP53 mutations in human immunodeficiency
virus-related head and neck squamous cell carcinoma. Cancer.
124:84–94. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kandoth C, McLellan MD, Vandin F, Ye K,
Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al:
Mutational landscape and significance across 12 major cancer types.
Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhou G, Liu Z and Myers JN: TP53 mutations
in head and neck squamous cell carcinoma and their impact on
disease progression and treatment response. J Cell Biochem.
117:2682–2692. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Sabapathy K and Lane DP: Therapeutic
targeting of p53: All mutants are equal, but some mutants are more
equal than others. Nat Rev Clin Oncol. 15:13–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Deneka AY, Baca Y, Serebriiskii IG,
Nicolas E, Parker MI, Nguyen TT, Xiu J, Korn WM, Demeure MJ,
Wise-Draper T, et al: Association of TP53 and CDKN2A mutation
profile with tumor mutation burden in head and neck cancer. Clin
Cancer Res. 28:1925–1937. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cancer Genome Atlas Network, .
Comprehensive genomic characterization of head and neck squamous
cell carcinomas. Nature. 517:576–582. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ogmundsdóttir HM, Björnsson J and Holbrook
WP: Role of TP53 in the progression of pre-malignant and malignant
oral mucosal lesions. A follow-up study of 144 patients. J Oral
Pathol Med. 38:565–671. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Saleem S, Abbasi ZA, Hameed A, Qureshi NR,
Khan MA and Azhar A: Novel p53 codon 240 Ser > Thr coding region
mutation in the patients of oral squamous cell carcinoma (OSCC).
Tumour Biol. 35:7945–7950. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Nakazawa S, Sakata KI, Liang S, Yoshikawa
K, Iizasa H, Tada M, Hamada JI, Kashiwazaki H, Kitagawa Y and
Yamazaki Y: Dominant-negative p53 mutant R248Q increases the motile
and invasive activities of oral squamous cell carcinoma cells.
Biomed Res. 40:37–49. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Enaka M, Nakanishi M and Muragaki Y: The
gain-of-function mutation p53R248W suppresses cell proliferation
and invasion of oral squamous cell carcinoma through the
down-regulation of keratin 17. Am J Pathol. 191:555–566. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Sano D, Xie TX, Ow TJ, Zhao M, Pickering
CR, Zhou G, Sandulache VC, Wheeler DA, Gibbs RA, Caulin C and Myers
JN: Disruptive TP53 mutation is associated with aggressive disease
characteristics in an orthotopic murine model of oral tongue
cancer. Clin Cancer Res. 17:6658–6670. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang J, Hu Y, Escamilla-Rivera V, Gonzalez
CL, Tang L, Wang B, El-Naggar AK, Myers JN and Caulin C: Epithelial
mutant p53 promotes resistance to anti-PD-1-mediated oral cancer
immunoprevention in carcinogen-induced mouse models. Cancers
(Basel). 13:14712021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gleber-Netto FO, Neskey D, Costa AFM,
Kataria P, Rao X, Wang J, Kowalski LP, Pickering CR, Dias-Neto E
and Myers JN: Functionally impactful TP53 mutations are associated
with increased risk of extranodal extension in clinically advanced
oral squamous cell carcinoma. Cancer. 126:4498–4510. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lee HJ, Kang YH, Lee JS, Byun JH, Kim UK,
Jang SJ, Rho GJ and Park BW: Positive expression of NANOG, mutant
p53, and CD44 is directly associated with clinicopathological
features and poor prognosis of oral squamous cell carcinoma. BMC
Oral Health. 15:1532015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Perrone F, Bossi P, Cortelazzi B, Locati
L, Quattrone P, Pierotti MA, Pilotti S and Licitra L: TP53
mutations and pathologic complete response to neoadjuvant cisplatin
and fluorouracil chemotherapy in resected oral cavity squamous cell
carcinoma. J Clin Oncol. 28:761–766. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gohara S, Yoshida R, Kawahara K, Sakata J,
Arita H, Nakashima H, Kawaguchi S, Nagao Y, Yamana K, Nagata M, et
al: Re-evaluating the clinical significance of serum p53 antibody
levels in patients with oral cancer in Japanese clinical practice.
Mol Clin Oncol. 15:2092021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Nannapaneni S, Griffith CC, Magliocca KR,
Chen W, Lyu X, Chen Z, Wang D, Wang X, Shin DM, Chen ZG and Saba
NF: Co-expression of fibroblast growth factor receptor 3 with
mutant p53, and its association with worse outcome in oropharyngeal
squamous cell carcinoma. PLoS One. 16:e02474982021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yue X, Zhao Y, Xu Y, Zheng M, Feng Z and
Hu W: Mutant p53 in cancer: Accumulation, gain-of-function, and
therapy. J Mol Biol. 429:1595–1606. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kakihara Y and Houry WA: The R2TP complex:
Discovery and functions. Biochim Biophys Acta. 1823:101–107. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Mao YQ and Houry WA: The role of pontin
and reptin in cellular physiology and cancer etiology. Front Mol
Biosci. 4:582017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kiguchi T, Kakihara Y, Yamazaki M, Katsura
K, Izumi K, Tanuma JI, Saku T, Takagi R and Saeki M: Identification
and characterization of R2TP in the development of oral squamous
cell carcinoma. Biochem Biophys Res Commun. 548:161–166. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Parrales A, Ranjan A, Iyer SV, Padhye S,
Weir SJ, Roy A and Iwakuma T: DNAJA1 controls the fate of misfolded
mutant p53 through the mevalonate pathway. Nat Cell Biol.
18:1233–1243. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zheng T, Wang J, Zhao Y, Zhang C, Lin M,
Wang X, Yu H, Liu L, Feng Z and Hu W: Spliced MDM2 isoforms promote
mutant p53 accumulation and gain-of-function in tumorigenesis. Nat
Commun. 4:29962013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li D, Marchenko ND, Schulz R, Fischer V,
Velasco-Hernandez T, Talos F and Moll UM: Functional inactivation
of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization
of mutant p53 in human cancer cells. Mol Cancer Res. 9:577–588.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Mantovani F, Collavin L and Del Sal G:
Mutant p53 as a guardian of the cancer cell. Cell Death Differ.
26:199–212. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kaida A, Yamamoto S, Parrales A, Young ED,
Ranjan A, Alalem MA, Morita KI, Oikawa Y, Harada H, Ikeda T, et al:
DNAJA1 promotes cancer metastasis through interaction with mutant
p53. Oncogene. 40:5013–5025. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Parrales A, Thoenen E and Iwakuma T: The
interplay between mutant p53 and the mevalonate pathway. Cell Death
Differ. 25:460–470. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Levine AJ: The many faces of p53:
Something for everyone. J Mol Cell Biol. 11:524–530. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Muller PA and Vousden KH: Mutant p53 in
cancer: New functions and therapeutic opportunities. Cancer Cell.
25:304–317. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Poeta ML, Manola J, Goldwasser MA,
Forastiere A, Benoit N, Califano JA, Ridge JA, Goodwin J, Kenady D,
Saunders J, et al: TP53 mutations and survival in squamous-cell
carcinoma of the head and neck. N Engl J Med. 357:2552–2561. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wolf ER, McAtarsney CP, Bredhold KE, Kline
AM and Mayo LD: Mutant and wild-type p53 form complexes with p73
upon phosphorylation by the kinase JNK. Sci Signal.
11:eaao41702018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Jin S, Yang X, Li J, Yang W, Ma H and
Zhang Z: p53-targeted lincRNA-p21 acts as a tumor suppressor by
inhibiting JAK2/STAT3 signaling pathways in head and neck squamous
cell carcinoma. Mol Cancer. 18:382019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Di Agostino S, Strano S, Emiliozzi V,
Zerbini V, Mottolese M, Sacchi A, Blandino G and Piaggio G: Gain of
function of mutant p53: The mutant p53/NF-Y protein complex reveals
an aberrant transcriptional mechanism of cell cycle regulation.
Cancer Cell. 10:191–202. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Deyoung MP and Ellisen LW: p63 and p73 in
human cancer: Defining the network. Oncogene. 26:5169–5183. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lu H, Yang X, Duggal P, Allen CT, Yan B,
Cohen J, Nottingham L, Romano RA, Sinha S, King KE, et al: TNF-α
promotes c-REL/ΔNp63α interaction and TAp73 dissociation from key
genes that mediate growth arrest and apoptosis in head and neck
cancer. Cancer Res. 71:6867–6877. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Younes F, Quartey EL, Kiguwa S and
Partridge M: Expression of TNF and the 55-kDa TNF receptor in
epidermis, oral mucosa, lichen planus and squamous cell carcinoma.
Oral Dis. 2:25–31. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Osman AA, Neskey DM, Katsonis P, Patel AA,
Ward AM, Hsu TK, Hicks SC, McDonald TO, Ow TJ, Alves MO, et al:
Evolutionary action score of TP53 coding variants is predictive of
platinum response in head and neck cancer patients. Cancer Res.
75:1205–1215. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhou G, Wang J, Zhao M, Xie TX, Tanaka N,
Sano D, Patel AA, Ward AM, Sandulache VC, Jasser SA, et al:
Gain-of-function mutant p53 promotes cell growth and cancer cell
metabolism via inhibition of AMPK activation. Mol Cell. 54:960–974.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ganci F, Pulito C, Valsoni S, Sacconi A,
Turco C, Vahabi M, Manciocco V, Mazza EMC, Meens J, Karamboulas C,
et al: PI3K inhibitors curtail MYC-dependent mutant p53
gain-of-function in head and neck squamous cell carcinoma. Clin
Cancer Res. 26:2956–2971. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Adduri RSR, George SA, Kavadipula P and
Bashyam MD: SMARCD1 is a transcriptional target of specific
non-hotspot mutant p53 forms. J Cell Physiol. 235:4559–4570. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Berkers CR, Maddocks OD, Cheung EC, Mor I
and Vousden KH: Metabolic regulation by p53 family members. Cell
Metab. 18:617–633. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Goldstein I and Rotter V: Regulation of
lipid metabolism by p53-fighting two villains with one sword.
Trends Endocrinol Metab. 23:567–575. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hardie DG, Ross FA and Hawley SA: AMPK: A
nutrient and energy sensor that maintains energy homeostasis. Nat
Rev Mol Cell Biol. 13:251–262. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Tanaka N, Zhao M, Tang L, Patel AA, Xi Q,
Van HT, Takahashi H, Osman AA, Zhang J, Wang J, et al:
Gain-of-function mutant p53 promotes the oncogenic potential of
head and neck squamous cell carcinoma cells by targeting the
transcription factors FOXO3a and FOXM1. Oncogene. 37:1279–1292.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Waitzberg AF, Nonogaki S, Nishimoto IN,
Kowalski LP, Miguel RE, Brentani RR and Brentani MM: Clinical
significance of c-myc and p53 expression in head and neck squamous
cell carcinomas. Cancer Detect Prev. 28:178–186. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Xu B, Liu P, Li J and Lu H: c-MYC
depletion potentiates cisplatin-induced apoptosis in head and neck
squamous cell carcinoma: Involvement of TSP-1 up-regulation. Ann
Oncol. 21:670–672. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Di Agostino S, Valenti F, Sacconi A,
Fontemaggi G, Pallocca M, Pulito C, Ganci F, Muti P, Strano S and
Blandino G: Long non-coding MIR205HG depletes Hsa-miR-590-3p
leading to unrestrained proliferation in head and neck squamous
cell carcinoma. Theranostics. 8:1850–1868. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chari NS, Ivan C, Le X, Li J, Mijiti A,
Patel AA, Osman AA, Peterson CB, Williams MD, Pickering CR, et al:
Disruption of TP63-miR-27a* feedback loop by mutant TP53 in head
and neck cancer. J Natl Cancer Inst. 112:266–277. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Valenti F, Sacconi A, Ganci F, Grasso G,
Strano S, Blandino G and Di Agostino S: The miR-205-5p/BRCA1/RAD17
axis promotes genomic instability in head and neck squamous cell
carcinomas. Cancers (Basel). 11:13472019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Verduci L, Ferraiuolo M, Sacconi A, Ganci
F, Vitale J, Colombo T, Paci P, Strano S, Macino G, Rajewsky N and
Blandino G: The oncogenic role of circPVT1 in head and neck
squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD
transcription-competent complex. Genome Biol. 18:2372017.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sargolzaei J, Etemadi T and Alyasin A: The
P53/microRNA network: A potential tumor suppressor with a role in
anticancer therapy. Pharmacol Res. 160:1051792020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Mercer TR, Dinger ME and Mattick JS: Long
non-coding RNAs: Insights into functions. Nat Rev Genet.
10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bridges MC, Daulagala AC and Kourtidis A:
LNCcation: lncRNA localization and function. J Cell Biol.
220:e2020090452021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Guglas K, Bogaczyńska M, Kolenda T, Ryś M,
Teresiak A, Bliźniak R, Łasińska I, Mackiewicz J and Lamperska K:
lncRNA in HNSCC: Challenges and potential. Contemp Oncol (Pozn).
21:259–266. 2017.PubMed/NCBI
|
|
62
|
Liao JM, Cao B, Zhou X and Lu H: New
insights into p53 functions through its target microRNAs. J Mol
Cell Biol. 6:206–213. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Masciarelli S, Fontemaggi G, Di Agostino
S, Donzelli S, Carcarino E, Strano S and Blandino G:
Gain-of-function mutant p53 downregulates miR-223 contributing to
chemoresistance of cultured tumor cells. Oncogene. 33:1601–1608.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Donzelli S, Fontemaggi G, Fazi F, Di
Agostino S, Padula F, Biagioni F, Muti P, Strano S and Blandino G:
MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing
mutant p53 gain of function. Cell Death Differ. 19:1038–1048. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ganci F, Sacconi A, Bossel Ben-Moshe N,
Manciocco V, Sperduti I, Strigari L, Covello R, Benevolo M,
Pescarmona E, Domany E, et al: Expression of TP53
mutation-associated microRNAs predicts clinical outcome in head and
neck squamous cell carcinoma patients. Ann Oncol. 24:3082–3088.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Jeck WR and Sharpless NE: Detecting and
characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hsu MT and Coca-Prados M: Electron
microscopic evidence for the circular form of RNA in the cytoplasm
of eukaryotic cells. Nature. 280:339–340. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ashwal-Fluss R, Meyer M, Pamudurti NR,
Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and
Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol
Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL
and Yang L: Complementary sequence-mediated exon circularization.
Cell. 159:134–147. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Novo D, Heath N, Mitchell L, Caligiuri G,
MacFarlane A, Reijmer D, Charlton L, Knight J, Calka M, McGhee E,
et al: Mutant p53s generate pro-invasive niches by influencing
exosome podocalyxin levels. Nat Commun. 9:50692018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Azmi AS, Bao B and Sarkar FH: Exosomes in
cancer development, metastasis, and drug resistance: A
comprehensive review. Cancer Metastasis Rev. 32:623–642. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bhatta B, Luz I, Krueger C, Teo FX, Lane
DP, Sabapathy K and Cooks T: Cancer cells shuttle extracellular
vesicles containing oncogenic mutant p53 proteins to the tumor
microenvironment. Cancers (Basel). 13:29852021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Cooks T, Pateras IS, Jenkins LM, Patel KM,
Robles AI, Morris J, Forshew T, Appella E, Gorgoulis VG and Harris
CC: Mutant p53 cancers reprogram macrophages to tumor supporting
macrophages via exosomal miR-1246. Nat Commun. 9:7712018.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Burtness B, Harrington KJ, Greil R,
Soulières D, Tahara M, de Castro G Jr, Psyrri A, Basté N, Neupane
P, Bratland Å, et al: Pembrolizumab alone or with chemotherapy
versus cetuximab with chemotherapy for recurrent or metastatic
squamous cell carcinoma of the head and neck (KEYNOTE-048): A
randomised, open-label, phase 3 study. Lancet. 394:1915–1928. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Soussi T and Wiman KG: Shaping genetic
alterations in human cancer: The p53 mutation paradigm. Cancer
Cell. 12:303–312. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kravchenko JE, Ilyinskaya GV, Komarov PG,
Agapova LS, Kochetkov DV, Strom E, Frolova EI, Kovriga I, Gudkov
AV, Feinstein E and Chumakov PM: Small-molecule RETRA suppresses
mutant p53-bearing cancer cells through a p73-dependent salvage
pathway. Proc Natl Acad Sci USA. 105:6302–6307. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Cai BH, Bai ZY, Lien CF, Yu SJ, Lu RY, Wu
MH, Wu WC, Chen CC and Hsu YC: NAMPT inhibitor and P73 activator
represses P53 R175H mutated HNSCC cell proliferation in a
synergistic manner. Biomolecules. 12:4382022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Bykov VJ, Zhang Q, Zhang M, Ceder S,
Abrahmsen L and Wiman KG: Targeting of mutant p53 and the cellular
redox balance by APR-246 as a strategy for efficient cancer
therapy. Front Oncol. 6:212016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Puca R, Nardinocchi L, Porru M, Simon AJ,
Rechavi G, Leonetti C, Givol D and D'Orazi G: Restoring p53 active
conformation by zinc increases the response of mutant p53 tumor
cells to anticancer drugs. Cell Cycle. 10:1679–1689. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Roh JL, Kang SK, Minn I, Califano JA,
Sidransky D and Koch WM: p53-reactivating small molecules induce
apoptosis and enhance chemotherapeutic cytotoxicity in head and
neck squamous cell carcinoma. Oral Oncol. 47:8–15. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hainaut P and Milner J: A structural role
for metal ions in the ‘wild-type’ conformation of the tumor
suppressor protein p53. Cancer Res. 53:1739–1742. 1993.PubMed/NCBI
|
|
82
|
Butler JS and Loh SN: Structure, function,
and aggregation of the zinc-free form of the p53 DNA binding
domain. Biochemistry. 42:2396–2403. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Maleki Vareki S, Salim KY, Danter WR and
Koropatnick J: Novel anti-cancer drug COTI-2 synergizes with
therapeutic agents and does not induce resistance or exhibit
cross-resistance in human cancer cell lines. PLoS One.
13:e01917662018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Salim KY, Maleki Vareki S, Danter WR and
Koropatnick J: COTI-2, a novel small molecule that is active
against multiple human cancer cell lines in vitro and in vivo.
Oncotarget. 7:41363–41379. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Alexandrova EM, Yallowitz AR, Li D, Xu S,
Schulz R, Proia DA, Lozano G, Dobbelstein M and Moll UM: Improving
survival by exploiting tumour dependence on stabilized mutant p53
for treatment. Nature. 523:352–356. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hsiue EH, Wright KM, Douglass J, Hwang MS,
Mog BJ, Pearlman AH, Paul S, DiNapoli SR, Konig MF, Wang Q, et al:
Targeting a neoantigen derived from a common TP53 mutation.
Science. 371:eabc86972021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Khan AS, Ahmad S, Ullah Z, Haq M, Farooq
MU and Khan M: Serum p53 antibodies detection in oral squamous cell
carcinoma, oral potentially malignant disorders and healthy
individuals: A multicentre study. J Pak Med Assoc. 71:2364–2368.
2021.PubMed/NCBI
|
|
88
|
Wang Q, Fan S, Eastman A, Worland PJ,
Sausville EA and O'Connor PM: UCN-01: A potent abrogator of G2
checkpoint function in cancer cells with disrupted p53. J Natl
Cancer Inst. 88:956–965. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Suganuma M, Kawabe T, Hori H, Funabiki T
and Okamoto T: Sensitization of cancer cells to DNA damage-induced
cell death by specific cell cycle G2 checkpoint abrogation. Cancer
Res. 59:5887–5891. 1999.PubMed/NCBI
|
|
90
|
Leijen S, Beijnen JH and Schellens JHM:
Abrogation of the G2 checkpoint by inhibition of Wee-1 kinase
results in sensitization of p53-deficient tumor cells to
DNA-damaging agents. Curr Clin Pharmacol. 5:186–191. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Osman AA, Monroe MM, Ortega Alves MV,
Patel AA, Katsonis P, Fitzgerald AL, Neskey DM, Frederick MJ, Woo
SH, Caulin C, et al: Wee-1 kinase inhibition overcomes cisplatin
resistance associated with high-risk TP53 mutations in head and
neck cancer through mitotic arrest followed by senescence. Mol
Cancer Ther. 14:608–619. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Gadhikar MA, Sciuto MR, Alves MV,
Pickering CR, Osman AA, Neskey DM, Zhao M, Fitzgerald AL, Myers JN
and Frederick MJ: Chk1/2 inhibition overcomes the cisplatin
resistance of head and neck cancer cells secondary to the loss of
functional p53. Mol Cancer Ther. 12:1860–1873. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Bridges KA, Hirai H, Buser CA, Brooks C,
Liu H, Buchholz TA, Molkentine JM, Mason KA and Meyn RE: MK-1775, a
novel Wee1 kinase inhibitor, radiosensitizes p53-defective human
tumor cells. Clin Cancer Res. 17:5638–5648. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Méndez E, Rodriguez CP, Kao MC, Raju S,
Diab A, Harbison RA, Konnick EQ, Mugundu GM, Santana-Davila R,
Martins R, et al: A phase I clinical trial of AZD1775 in
combination with neoadjuvant weekly docetaxel and cisplatin before
definitive therapy in head and neck squamous cell carcinoma. Clin
Cancer Res. 24:2740–2748. 2018. View Article : Google Scholar : PubMed/NCBI
|