Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
October-2023 Volume 50 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2023 Volume 50 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Targeting the deubiquitinase USP2 for malignant tumor therapy (Review)

  • Authors:
    • Shilong Zhang
    • Yi Guo
    • Shenjie Zhang
    • Zhi Wang
    • Yewei Zhang
    • Shi Zuo
  • View Affiliations / Copyright

    Affiliations: Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 176
    |
    Published online on: August 7, 2023
       https://doi.org/10.3892/or.2023.8613
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The ubiquitin‑proteasome system is a major degradation pathway for >80% of proteins in vivo. Deubiquitylases, which remove ubiquitinated tags to stabilize substrate proteins, are important components involved in regulating the degradation of ubiquitinated proteins. In addition, they serve multiple roles in tumor development by participating in physiological processes such as protein metabolism, cell cycle regulation, DNA damage repair and gene transcription. The present review systematically summarized the role of ubiquitin‑specific protease 2 (USP2) in malignant tumors and the specific molecular mechanisms underlying the involvement of USP2 in tumor‑associated pathways. USP2 reverses ubiquitin‑mediated degradation of proteins and is involved in aberrant proliferation, migration, invasion, apoptosis and drug resistance of tumors. Additionally, the present review summarized studies reporting on the use of USP2 as a therapeutic target for malignancies such as breast, liver, ovarian, colorectal, bladder and prostate cancers and glioblastoma and highlights the current status of pharmacological research on USP2. The clinical significance of USP2 as a therapeutic target for malignant tumors warrants further investigation.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Ding Y, Xing D, Fei Y and Lu B: Emerging degrader technologies engaging lysosomal pathways. Chem Soc Rev. 51:8832–8876. 2022. View Article : Google Scholar : PubMed/NCBI

2 

Jiang TY, Shi YY, Cui XW, Pan YF, Lin YK, Feng XF, Ding ZW, Yang C, Tan YX, Dong LW and Wang HY: PTEN deficiency facilitates exosome secretion and metastasis in cholangiocarcinoma by impairing TFEB-mediated lysosome biogenesis. Gastroenterology. 164:424–438. 2023. View Article : Google Scholar : PubMed/NCBI

3 

Karbowski M, Oshima Y and Verhoeven N: Mitochondrial proteotoxicity: implications and ubiquitin-dependent quality control mechanisms. Cell Mol Life Sci. 79:5742022. View Article : Google Scholar : PubMed/NCBI

4 

Sinam IS, Chanda D, Thoudam T, Kim MJ, Kim BG, Kang HJ, Lee JY, Baek SH, Kim SY, Shim BJ, et al: Pyruvate dehydrogenase kinase 4 promotes ubiquitin-proteasome system-dependent muscle atrophy. J Cachexia Sarcopenia Muscle. 13:3122–3136. 2022. View Article : Google Scholar : PubMed/NCBI

5 

O'Brien S, Kelso S, Steinhart Z, Orlicky S, Mis M, Kim Y, Lin S, Sicheri F and Angers S: SCF FBXW7 regulates G2-M progression through control of CCNL1 ubiquitination. EMBO Rep. 23:e550442022. View Article : Google Scholar : PubMed/NCBI

6 

Capecchi MR and Pozner A: ASPM regulates symmetric stem cell division by tuning Cyclin E ubiquitination. Nat Commun. 6:87632015. View Article : Google Scholar : PubMed/NCBI

7 

Zhang L, Li Q, Yang J, Xu P, Xuan Z, Xu J and Xu Z: Cytosolic TGM2 promotes malignant progression in gastric cancer by suppressing the TRIM21-mediated ubiquitination/degradation of STAT1 in a GTP binding-dependent modality. Cancer Commun (Lond). 43:123–149. 2023. View Article : Google Scholar : PubMed/NCBI

8 

Feng X, Jia Y, Zhang Y, Ma F, Zhu Y, Hong X, Zhou Q, He R, Zhang H, Jin J, et al: Ubiquitination of UVRAG by SMURF1 promotes autophagosome maturation and inhibits hepatocellular carcinoma growth. Autophagy. 15:1130–1149. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Li H, Wang N, Jiang Y, Wang H, Xin Z, An H, Pan H, Ma W, Zhang T, Wang X and Lin W: E3 ubiquitin ligase NEDD4L negatively regulates inflammation by promoting ubiquitination of MEKK2. EMBO Rep. 23:e546032022. View Article : Google Scholar : PubMed/NCBI

10 

Nan Y, Luo Q, Wu X, Chang W, Zhao P, Liu S and Liu Z: HCP5 prevents ubiquitination-mediated UTP3 degradation to inhibit apoptosis by activating c-Myc transcriptional activity. Mol Ther. 31:552–568. 2023. View Article : Google Scholar : PubMed/NCBI

11 

Cao HJ, Jiang H, Ding K, Qiu XS, Ma N, Zhang FK, Wang YK, Zheng QW, Xia J, Ni QZ, et al: ARID2 mitigates hepatic steatosis via promoting the ubiquitination of JAK2. Cell Death Differ. 30:383–396. 2023. View Article : Google Scholar : PubMed/NCBI

12 

Mattiroli F and Penengo L: Histone ubiquitination: An integrative signaling platform in genome stability. Trends Genet. 37:566–581. 2021. View Article : Google Scholar : PubMed/NCBI

13 

Roberts JZ, Crawford N and Longley DB: The role of ubiquitination in apoptosis and necroptosis. Cell Death Differ. 29:272–284. 2022. View Article : Google Scholar : PubMed/NCBI

14 

Wang K, Liu J, Li YL, Li JP and Zhang R: Ubiquitination/de-ubiquitination: A promising therapeutic target for PTEN reactivation in cancer. Biochim Biophys Acta Rev Cancer. 1877:1887232022. View Article : Google Scholar : PubMed/NCBI

15 

Liu J, Wei L, Hu N, Wang D, Ni J, Zhang S, Liu H, Lv T, Yin J, Ye M and Song Y: FBW7-mediated ubiquitination and destruction of PD-1 protein primes sensitivity to anti-PD-1 immunotherapy in non-small cell lung cancer. J Immunother Cancer. 10:e0051162022. View Article : Google Scholar : PubMed/NCBI

16 

Liu Z, Wang T, She Y, Wu K, Gu S, Li L, Dong C, Chen C and Zhou Y: N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 20:1052021. View Article : Google Scholar : PubMed/NCBI

17 

Wu L, Zhao N, Zhou Z, Chen J, Han S, Zhang X, Bao H, Yuan W and Shu X: PLAGL2 promotes the proliferation and migration of gastric cancer cells via USP37-mediated deubiquitination of Snail1. Theranostics. 11:700–714. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Xie H, Zhou J, Liu X, Xu Y, Hepperla AJ, Simon JM, Wang T, Yao H, Liao C, Baldwin AS, et al: USP13 promotes deubiquitination of ZHX2 and tumorigenesis in kidney cancer. Proc Natl Acad Sci USA. 119:e21198541192022. View Article : Google Scholar : PubMed/NCBI

19 

Rasaei R, Sarodaya N, Kim KS, Ramakrishna S and Hong SH: Importance of deubiquitination in macrophage-mediated viral response and inflammation. Int J Mol Sci. 21:80902020. View Article : Google Scholar : PubMed/NCBI

20 

Sun T, Liu Z and Yang Q: The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer. 19:1462020. View Article : Google Scholar : PubMed/NCBI

21 

Cai J, Culley MK, Zhao Y and Zhao J: The role of ubiquitination and deubiquitination in the regulation of cell junctions. Protein Cell. 9:754–769. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Zhou Y, Park SH and Chua NH: UBP12/UBP13-mediated deubiquitination of salicylic acid receptor NPR3 suppresses plant immunity. Mol Plant. 16:232–244. 2023. View Article : Google Scholar : PubMed/NCBI

23 

Chen S, Liu Y and Zhou H: Advances in the development ubiquitin-specific peptidase (USP) inhibitors. Int J Mol Sci. 22:45462021. View Article : Google Scholar : PubMed/NCBI

24 

Sato Y, Goto E, Shibata Y, Kubota Y, Yamagata A, Goto-Ito S, Kubota K, Inoue J, Takekawa M, Tokunaga F and Fukai S: Structures of CYLD USP with Met1- or Lys63-linked diubiquitin reveal mechanisms for dual specificity. Nat Struct Mol Biol. 22:222–229. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Maertens GN, El Messaoudi-Aubert S, Elderkin S, Hiom K and Peters G: Ubiquitin-specific proteases 7 and 11 modulate Polycomb regulation of the INK4a tumour suppressor. EMBO J. 29:2553–2565. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Cruz L, Soares P and Correia M: Ubiquitin-Specific proteases: Players in cancer cellular processes. Pharmaceuticals (Basel). 14:8482021. View Article : Google Scholar : PubMed/NCBI

27 

Mansilla A, Martin FA, Martin D and Ferrus A: Ligand-independent requirements of steroid receptors EcR and USP for cell survival. Cell Death Differ. 23:405–416. 2016. View Article : Google Scholar : PubMed/NCBI

28 

An Z, Liu Y, Ou Y, Li J, Zhang B, Sun D, Sun Y and Tang W: Regulation of the stability of RGF1 receptor by the ubiquitin-specific proteases UBP12/UBP13 is critical for root meristem maintenance. Proc Natl Acad Sci USA. 115:1123–1128. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Lim JH, Jono H, Komatsu K, Woo CH, Lee J, Miyata M, Matsuno T, Xu X, Huang Y, Zhang W, et al: CYLD negatively regulates transforming growth factor-β-signalling via deubiquitinating Akt. Nat Commun. 3:7712012. View Article : Google Scholar : PubMed/NCBI

30 

Bonacci T and Emanuele MJ: Dissenting degradation: Deubiquitinases in cell cycle and cancer. Semin Cancer Biol. 67((Pt 2)): 145–158. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Wang X, Xia S, Li H, Wang X, Li C, Chao Y, Zhang L and Han C: The deubiquitinase USP10 regulates KLF4 stability and suppresses lung tumorigenesis. Cell Death Differ. 27:1747–1764. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Baek SH, Choi KS, Yoo YJ, Cho JM, Baker RT, Tanaka K and Chung CH: Molecular cloning of a novel ubiquitin-specific protease, UBP41, with isopeptidase activity in chick skeletal muscle. J Biol Chem. 272:25560–25565. 1997. View Article : Google Scholar : PubMed/NCBI

33 

Gousseva N and Baker RT: Gene structure, alternate splicing, tissue distribution, cellular localization, and developmental expression pattern of mouse deubiquitinating enzyme isoforms Usp2-45 and Usp2-69. Gene Expr. 11:163–179. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Moremen KW, Touster O and Robbins PW: Novel purification of the catalytic domain of Golgi alpha-mannosidase II. Characterization and comparison with the intact enzyme. J Biol Chem. 266:16876–16885. 1991. View Article : Google Scholar : PubMed/NCBI

35 

Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, et al: The status, quality, and expansion of the NIH full-length cDNA project: The Mammalian Gene Collection (MGC). Genome Res. 14((10B)): 2121–2127. 2004.PubMed/NCBI

36 

Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, et al: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 36:40–45. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Luo H, Ji Y, Gao X, Liu X and Wu Y and Wu Y: Ubiquitin specific protease 2: Structure, isoforms, cellular function, relateddiseases and its inhibitors. Oncologie. 24:85–99. 2022. View Article : Google Scholar

38 

Zhu HQ and Gao FH: The molecular mechanisms of regulation on USP2′s alternative splicing and the significance of its products. Int J Biol Sci. 13:1489–1496. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Pouly D, Chenaux S, Martin V, Babis M, Koch R, Nagoshi E, Katanaev VL, Gachon F and Staub O: USP2-45 is a circadian clock output effector regulating calcium absorption at the post-translational level. PLoS One. 11:e01451552016. View Article : Google Scholar : PubMed/NCBI

40 

Tong X, Buelow K, Guha A, Rausch R and Yin L: USP2a protein deubiquitinates and stabilizes the circadian protein CRY1 in response to inflammatory signals. J Biol Chem. 287:25280–25291. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Molusky MM, Li S, Ma D, Yu L and Lin JD: Ubiquitin-specific protease 2 regulates hepatic gluconeogenesis and diurnal glucose metabolism through 11β-hydroxysteroid dehydrogenase 1. Diabetes. 61:1025–1035. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Kitamura H, Kimura S, Shimamoto Y, Okabe J, Ito M, Miyamoto T, Naoe Y, Kikuguchi C, Meek B, Toda C, et al: Ubiquitin-specific protease 2–69 in macrophages potentially modulates metainflammation. FASEB J. 27:4940–4953. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Wang S, Wu H, Liu Y, Sun J, Zhao Z, Chen Q, Guo M, Ma D and Zhang Z: Expression of USP2-69 in mesangial cells in vivo and in vitro. Pathol Int. 60:184–192. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Haimerl F, Erhardt A, Sass G and Tiegs G: Down-regulation of the de-ubiquitinating enzyme ubiquitin-specific protease 2 contributes to tumor necrosis factor-alpha-induced hepatocyte survival. J Biol Chem. 284:495–504. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Li Y, Kim BG, Qian S, Letterio JJ, Fung JJ, Lu L and Lin F: Hepatic stellate cells inhibit T cells through active TGF-β1 from a cell surface-bound latent TGF-β1/GARP complex. J Immunol. 195:2648–2656. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Mao X, Luo W, Sun J, Yang N, Zhang LW, Zhao Z, Zhang Z and Wu H: Usp2-69 overexpression slows down the progression of rat anti-Thy1.1 nephritis. Exp Mol Pathol. 101:249–258. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Kitamura H, Ishino T, Shimamoto Y, Okabe J, Miyamoto T, Takahashi E and Miyoshi I: Ubiquitin-Specific protease 2 modulates the lipopolysaccharide-elicited expression of proinflammatory cytokines in macrophage-like HL-60 cells. Mediators Inflamm. 2017:69094152017. View Article : Google Scholar : PubMed/NCBI

48 

Mahul-Mellier AL, Datler C, Pazarentzos E, Lin B, Chaisaklert W, Abuali G and Grimm S: De-ubiquitinating proteases USP2a and USP2c cause apoptosis by stabilising RIP1. Biochim Biophys Acta. 1823:1353–1365. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Davis MI, Pragani R, Fox JT, Shen M, Parmar K, Gaudiano EF, Liu L, Tanega C, McGee L, Hall MD, et al: Small molecule inhibition of the ubiquitin-specific protease USP2 Accelerates cyclin D1 degradation and leads to cell cycle arrest in colorectal cancer and mantle cell lymphoma models. J Biol Chem. 291:24628–24640. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Bedard N, Yang Y, Gregory M, Cyr DG, Suzuki J, Yu X, Chian RC, Hermo L, O'Flaherty C, Smith CE, et al: Mice lacking the USP2 deubiquitinating enzyme have severe male subfertility associated with defects in fertilization and sperm motility. Biol Reprod. 85:594–604. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Xu Q, Liu M, Zhang F, Liu X, Ling S, Chen X, Gu J, Ou W, Liu S and Liu N: Ubiquitin-specific protease 2 regulates Ang II-induced cardiac fibroblasts activation by up-regulating cyclin D1 and stabilizing β-catenin in vitro. J Cell Mol Med. 25:1001–1011. 2021. View Article : Google Scholar : PubMed/NCBI

52 

Hashimoto M, Fujimoto M, Konno K, Lee ML, Yamada Y, Yamashita K, Toda C, Tomura M, Watanabe M, Inanami O and Kitamura H: Ubiquitin-Specific protease 2 in the ventromedial hypothalamus modifies blood glucose levels by controlling sympathetic nervous activation. J Neurosci. 42:4607–4618. 2022. View Article : Google Scholar : PubMed/NCBI

53 

Liu XQ, Shao XR, Liu Y, Dong ZX, Chan SH, Shi YY, Chen SN, Qi L, Zhong L, Yu Y, et al: Tight junction protein 1 promotes vasculature remodeling via regulating USP2/TWIST1 in bladder cancer. Oncogene. 41:502–514. 2022. View Article : Google Scholar : PubMed/NCBI

54 

Tu Y, Xu L, Xu J, Bao Z, Tian W, Ye Y, Sun G, Miao Z, Chao H, You Y, et al: Loss of deubiquitylase USP2 triggers development of glioblastoma via TGF-β signaling. Oncogene. 41:2597–2608. 2022. View Article : Google Scholar : PubMed/NCBI

55 

Nadolny C, Zhang X, Chen Q, Hashmi SF, Ali W, Hemme C, Ahsan N, Chen Y and Deng R: Dysregulation and activities of ubiquitin specific peptidase 2b in the pathogenesis of hepatocellular carcinoma. Am J Cancer Res. 11:4746–4767. 2021.PubMed/NCBI

56 

Zhang J, Liu S, Li Q, Shi Y, Wu Y, Liu F, Wang S, Zaky MY, Yousuf W, Sun Q, et al: The deubiquitylase USP2 maintains ErbB2 abundance via counteracting endocytic degradation and represents a therapeutic target in ErbB2-positive breast cancer. Cell Death Differ. 27:2710–2725. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Qu Q, Mao Y, Xiao G, Fei X, Wang J, Zhang Y, Liu J, Cheng G, Chen X, Wang J and Shen K: USP2 promotes cell migration and invasion in triple negative breast cancer cell lines. Tumour Biol. 36:5415–5423. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Liang XR, Liu YF, Chen F, Zhou ZX, Zhang LJ and Lin ZJ: Cell Cycle-Related lncRNAs as innovative targets to advance cancer management. Cancer Manag Res. 15:547–561. 2023. View Article : Google Scholar : PubMed/NCBI

59 

Xiao W, Wang J, Wang X, Cai S, Guo Y, Ye L, Li D, Hu A, Jin S, Yuan B, et al: Therapeutic targeting of the USP2-E2F4 axis inhibits autophagic machinery essential for zinc homeostasis in cancer progression. Autophagy. 18:2615–2635. 2022. View Article : Google Scholar : PubMed/NCBI

60 

Zhu M, Wang H, Ding Y, Yang Y, Xu Z, Shi L and Zhang N: Ribonucleotide reductase holoenzyme inhibitor COH29 interacts with deubiquitinase ubiquitin-specific protease 2 and downregulates its substrate protein cyclin D1. FASEB J. 36:e223292022. View Article : Google Scholar : PubMed/NCBI

61 

Shan J, Zhao W and Gu W: Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol Cell. 36:469–476. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Magiera K, Tomala M, Kubica K, De Cesare V, Trost M, Zieba BJ, Kachamakova-Trojanowska N, Les M, Dubin G, Holak TA and Skalniak L: Lithocholic acid hydroxyamide destabilizes cyclin D1 and Induces G (0)/G (1) arrest by inhibiting deubiquitinase USP2a. Cell Chem Biol. 24:458–470. e182017. View Article : Google Scholar : PubMed/NCBI

63 

Nepal S, Shrestha A and Park PH: Ubiquitin specific protease 2 acts as a key modulator for the regulation of cell cycle by adiponectin and leptin in cancer cells. Mol Cell Endocrinol. 412:44–55. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Tomala MD, Magiera-Mularz K, Kubica K, Krzanik S, Zieba B, Musielak B, Pustula M, Popowicz GM, Sattler M, Dubin G, et al: Identification of small-molecule inhibitors of USP2a. Eur J Med Chem. 150:261–267. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Kim J, Kim WJ, Liu Z, Loda M and Freeman MR: The ubiquitin-specific protease USP2a enhances tumor progression by targeting cyclin A1 in bladder cancer. Cell Cycle. 11:1123–1130. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Gabay M, Li Y and Felsher DW: MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med. 4:a0142412014. View Article : Google Scholar : PubMed/NCBI

67 

Stine ZE, Walton ZE, Altman BJ, Hsieh AL and Dang CV: MYC, Metabolism, and Cancer. Cancer Discov. 5:1024–1039. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Wu CH, van Riggelen J, Yetil A, Fan AC, Bachireddy P and Felsher DW: Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci USA. 104:13028–13033. 2007. View Article : Google Scholar : PubMed/NCBI

69 

Zhuang D, Mannava S, Grachtchouk V, Tang WH, Patil S, Wawrzyniak JA, Berman AE, Giordano TJ, Prochownik EV, Soengas MS and Nikiforov MA: C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene. 27:6623–6634. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Li B, Zhang G, Wang Z, Yang Y, Wang C, Fang D, Liu K, Wang F and Mei Y: c-Myc-activated USP2-AS1 suppresses senescence and promotes tumor progression via stabilization of E2F1 mRNA. Cell Death Dis. 12:10062021. View Article : Google Scholar : PubMed/NCBI

71 

Iemura K, Natsume T, Maehara K, Kanemaki MT and Tanaka K: Chromosome oscillation promotes Aurora A-dependent Hec1 phosphorylation and mitotic fidelity. J Cell Biol. 220:e2020061162021. View Article : Google Scholar : PubMed/NCBI

72 

Li P, Chen T, Kuang P, Liu F, Li Z, Liu F, Wang Y, Zhang W and Cai X: Aurora-A/FOXO3A/SKP2 axis promotes tumor progression in clear cell renal cell carcinoma and dual-targeting Aurora-A/SKP2 shows synthetic lethality. Cell Death Dis. 13:6062022. View Article : Google Scholar : PubMed/NCBI

73 

Shi Y, Solomon LR, Pereda-Lopez A, Giranda VL, Luo Y, Johnson EF, Shoemaker AR, Leverson J and Liu X: Ubiquitin-specific cysteine protease 2a (USP2a) regulates the stability of Aurora-A. J Biol Chem. 286:38960–38968. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Gu Y, Zhang Z, Camps MGM, Ossendorp F, Wijdeven RH and Ten Dijke P: Genome-wide CRISPR screens define determinants of epithelial-mesenchymal transition mediated immune evasion by pancreatic cancer cells. Sci Adv. 9:eadf99152023. View Article : Google Scholar : PubMed/NCBI

75 

Chen J, Ding ZY, Li S, Liu S, Xiao C, Li Z, Zhang BX, Chen XP and Yang X: Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics. 11:1345–1363. 2021. View Article : Google Scholar : PubMed/NCBI

76 

He Q, Cao H, Zhao Y, Chen P, Wang N, Li W, Cui R, Hou P, Zhang X and Ji M: Dipeptidyl Peptidase-4 Stabilizes Integrin alpha4β1 complex to promote thyroid cancer cell metastasis by activating transforming growth factor-beta signaling pathway. Thyroid. 32:1411–1422. 2022. View Article : Google Scholar : PubMed/NCBI

77 

Tuersuntuoheti A, Li Q, Teng Y, Li X, Huang R, Lu Y, Li K, Liang J, Miao S, Wu W and Song W: YWK-II/APLP2 inhibits TGF-β signaling by interfering with the TGFBR2-Hsp90 interaction. Biochim Biophys Acta Mol Cell Res. Jul 19–2023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

78 

Miyazawa K and Miyazono K: Regulation of TGF-β family signaling by inhibitory smads. Cold Spring Harb Perspect Biol. 9:a0220952017. View Article : Google Scholar : PubMed/NCBI

79 

Zhao Y, Wang X, Wang Q, Deng Y, Li K, Zhang M, Zhang Q, Zhou J, Wang HY, Bai P, et al: USP2a supports metastasis by tuning TGF-β signaling. Cell Rep. 22:2442–2454. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Blenman KRM, Marczyk M, Karn T, Qing T, Li X, Gunasekharan V, Yaghoobi V, Bai Y, Ibrahim EY, Park T, et al: Predictive markers of response to neoadjuvant durvalumab with nab-paclitaxel and dose-dense doxorubicin/cyclophosphamide in basal-like triple-negative breast cancer. Clin Cancer Res. 28:2587–2597. 2022. View Article : Google Scholar : PubMed/NCBI

81 

Cui Y, Zhao M, Yang Y, Xu R, Tong L, Liang J, Zhang X, Sun Y and Fan Y: Reversal of epithelial-mesenchymal transition and inhibition of tumor stemness of breast cancer cells through advanced combined chemotherapy. Acta Biomater. 152:380–392. 2022. View Article : Google Scholar : PubMed/NCBI

82 

Ahangari F, Becker C, Foster DG, Chioccioli M, Nelson M, Beke K, Wang X, Justet A, Adams T, Readhead B, et al: Saracatinib, a selective src kinase inhibitor, blocks fibrotic responses in preclinical models of pulmonary fibrosis. Am J Respir Crit Care Med. 206:1463–1479. 2022. View Article : Google Scholar : PubMed/NCBI

83 

van der Wal T and van Amerongen R: Walking the tight wire between cell adhesion and WNT signalling: A balancing act for beta-catenin. Open Biol. 10:2002672020. View Article : Google Scholar : PubMed/NCBI

84 

Kim J, Alavi Naini F, Sun Y and Ma L: Ubiquitin-specific peptidase 2a (USP2a) deubiquitinates and stabilizes β-catenin. Am J Cancer Res. 8:1823–1836, eCollection 2018. 2018.PubMed/NCBI

85 

Pichiorri F, Suh SS, Rocci A, De Luca L, Taccioli C, Santhanam R, Zhou W, Benson DM Jr, Hofmainster C, Alder H, et al: Retraction notice to: Downregulation of p53-inducible microRNAs 192, 194, and 215 Impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell. 40:14412022. View Article : Google Scholar : PubMed/NCBI

86 

Wu B and Ellisen LW: Loss of p53 and genetic evolution in pancreatic cancer: Ordered chaos after the guardian is gone. Cancer Cell. 40:1276–1278. 2022. View Article : Google Scholar : PubMed/NCBI

87 

Hassin O and Oren M: Drugging p53 in cancer: One protein, many targets. Nat Rev Drug Discov. 22:127–144. 2023. View Article : Google Scholar : PubMed/NCBI

88 

Dobbelstein M and Levine AJ: Mdm2: Open questions. Cancer Sci. 111:2203–2211. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP and Saville MK: The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J. 26:976–986. 2007. View Article : Google Scholar : PubMed/NCBI

90 

Wei T, Biskup E, Gjerdrum LM, Niazi O, Odum N and Gniadecki R: Ubiquitin-specific protease 2 decreases p53-dependent apoptosis in cutaneous T-cell lymphoma. Oncotarget. 7:48391–48400. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Wang CL, Wang JY, Liu ZY, Ma XM, Wang XW, Jin H, Zhang XP, Fu D, Hou LJ and Lu YC: Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis. 35:1500–1509. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Shrestha M and Park PH: p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells. Korean J Physiol Pharmacol. 20:487–498. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Chen W, Shi K, Liu J, Yang P, Han R, Pan M, Yuan L, Fang C, Yu Y and Qian Z: Sustained co-delivery of 5-fluorouracil and cis-platinum via biodegradable thermo-sensitive hydrogel for intraoperative synergistic combination chemotherapy of gastric cancer. Bioact Mater. 23:1–15. 2023. View Article : Google Scholar : PubMed/NCBI

94 

Wang J, Zhang Y, Zhang G, Xiang L, Pang H, Xiong K, Lu Y, Li J, Dai J, Lin S and Fu S: Radiotherapy-induced enrichment of EGF-modified doxorubicin nanoparticles enhances the therapeutic outcome of lung cancer. Drug Deliv. 29:588–599. 2022. View Article : Google Scholar : PubMed/NCBI

95 

Smith ER, Wang JQ, Yang DH and Xu XX: Paclitaxel resistance related to nuclear envelope structural sturdiness. Drug Resist Updat. 65:1008812022. View Article : Google Scholar : PubMed/NCBI

96 

Jang JH, Lee TJ, Sung EG, Song IH and Kim JY: Dapagliflozin induces apoptosis by downregulating cFILPL and increasing cFILPS instability in Caki-1 cells. Oncol Lett. 24:4012022. View Article : Google Scholar : PubMed/NCBI

97 

Poukkula M, Kaunisto A, Hietakangas V, Denessiouk K, Katajamaki T, Johnson MS, Sistonen L and Eriksson JE: Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J Biol Chem. 280:27345–27355. 2005. View Article : Google Scholar : PubMed/NCBI

98 

Liu D, Fan Y, Li J, Cheng B, Lin W, Li X, Du J and Ling C: Inhibition of cFLIP overcomes acquired resistance to sorafenib via reducing ER stress-related autophagy in hepatocellular carcinoma. Oncol Rep. 40:2206–2214. 2018.PubMed/NCBI

99 

Iyer AK, Azad N, Talbot S, Stehlik C, Lu B, Wang L and Rojanasakul Y: Antioxidant c-FLIP inhibits Fas ligand-induced NF-kappaB activation in a phosphatidylinositol 3-kinase/Akt-dependent manner. J Immunol. 187:3256–3266. 2011. View Article : Google Scholar : PubMed/NCBI

100 

Quintavalle C, Incoronato M, Puca L, Acunzo M, Zanca C, Romano G, Garofalo M, Iaboni M, Croce CM and Condorelli G: c-FLIPL enhances anti-apoptotic Akt functions by modulation of Gsk3β activity. Cell Death Differ. 24:11342017. View Article : Google Scholar : PubMed/NCBI

101 

Xiao Z, Liu Y, Li Q, Liu Q, Liu Y, Luo Y and Wei S: EVs delivery of miR-1915-3p improves the chemotherapeutic efficacy of oxaliplatin in colorectal cancer. Cancer Chemother Pharmacol. 88:1021–1031. 2021. View Article : Google Scholar : PubMed/NCBI

102 

He J, Lee HJ, Saha S, Ruan D, Guo H and Chan CH: Inhibition of USP2 eliminates cancer stem cells and enhances TNBC responsiveness to chemotherapy. Cell Death Dis. 10:2852019. View Article : Google Scholar : PubMed/NCBI

103 

Min HY and Lee HY: Molecular targeted therapy for anticancer treatment. Exp Mol Med. 54:1670–1694. 2022. View Article : Google Scholar : PubMed/NCBI

104 

Assoun S, Lemiale V and Azoulay E: Molecular targeted therapy-related life-threatening toxicity in patients with malignancies. A systematic review of published cases. Intensive Care Med. 45:988–997. 2019. View Article : Google Scholar : PubMed/NCBI

105 

Rosenberg T, Yeo KK, Mauguen A, Alexandrescu S, Prabhu SP, Tsai JW, Malinowski S, Joshirao M, Parikh K, Farouk Sait S, et al: Upfront molecular targeted therapy for the treatment of BRAF-mutant pediatric high-grade glioma. Neuro Oncol. 24:1964–1975. 2022. View Article : Google Scholar : PubMed/NCBI

106 

Harakandi C, Nininahazwe L, Xu H, Liu B, He C, Zheng YC and Zhang H: Recent advances on the intervention sites targeting USP7-MDM2-p53 in cancer therapy. Bioorg Chem. 116:1052732021. View Article : Google Scholar : PubMed/NCBI

107 

Huang YT, Cheng AC, Tang HC, Huang GC, Cai L, Lin TH, Wu KJ, Tseng PH, Wang GG and Chen WY: USP7 facilitates SMAD3 autoregulation to repress cancer progression in p53-deficient lung cancer. Cell Death Dis. 12:8802021. View Article : Google Scholar : PubMed/NCBI

108 

Park SH, Fong KW, Kim J, Wang F, Lu X, Lee Y, Brea LT, Wadosky K, Guo C, Abdulkadir SA, et al: Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. Sci Adv. 7:eabe22612021. View Article : Google Scholar : PubMed/NCBI

109 

Su D, Wang W, Hou Y, Wang L, Yi X, Cao C, Wang Y, Gao H, Wang Y, Yang C, et al: Bimodal regulation of the PRC2 complex by USP7 underlies tumorigenesis. Nucleic Acids Res. 49:4421–4440. 2021. View Article : Google Scholar : PubMed/NCBI

110 

Zhang L, Wang H, Tian L and Li H: Expression of USP7 and MARCH7 is correlated with poor prognosis in epithelial ovarian cancer. Tohoku J Exp Med. 239:165–175. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Liu M, Zhang Y, Wu Y, Jin J, Cao Y, Fang Z, Geng L, Yang L, Yu M, Bu Z, et al: IKZF1 selectively enhances homologous recombination repair by interacting with CtIP and USP7 in multiple myeloma. Int J Biol Sci. 18:2515–2526. 2022. View Article : Google Scholar : PubMed/NCBI

112 

Zhu Y, Gu L, Lin X, Cui K, Liu C, Lu B, Zhou F, Zhao Q, Shen H and Li Y: LINC00265 promotes colorectal tumorigenesis via ZMIZ2 and USP7-mediated stabilization of β-catenin. Cell Death Differ. 27:1316–1327. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Ullah S, Junaid M, Liu Y, Chen S, Zhao Y and Wadood A: Validation of catalytic site residues of Ubiquitin Specific Protease 2 (USP2) by molecular dynamic simulation and novel kinetics assay for rational drug design. Mol Divers. 27:1323–1332. 2023. View Article : Google Scholar : PubMed/NCBI

114 

Metzig M, Nickles D, Falschlehner C, Lehmann-Koch J, Straub BK, Roth W and Boutros M: An RNAi screen identifies USP2 as a factor required for TNF-α-induced NF-κB signaling. Int J Cancer. 129:607–618. 2011. View Article : Google Scholar : PubMed/NCBI

115 

Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang Q, Lin Y, Li J, Kang T, Tao M, et al: Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell. 25:210–225. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Peinado H and Cano A: A hypoxic twist in metastasis. Nat Cell Biol. 10:253–254. 2008. View Article : Google Scholar : PubMed/NCBI

117 

Mladinich M, Ruan D and Chan CH: Tackling cancer stem cells via inhibition of EMT transcription factors. Stem Cells Int. 2016:52858922016. View Article : Google Scholar : PubMed/NCBI

118 

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI

119 

Kim JY, Cho TM, Park JM, Park S, Park M, Nam KD, Ko D, Seo J, Kim S, Jung E, et al: A novel HSP90 inhibitor SL-145 suppresses metastatic triple-negative breast cancer without triggering the heat shock response. Oncogene. 41:3289–3297. 2022. View Article : Google Scholar : PubMed/NCBI

120 

Shih YY, Lin HY, Jan HM, Chen YJ, Ong LL, Yu AL and Lin CH: S-glutathionylation of Hsp90 enhances its degradation and correlates with favorable prognosis of breast cancer. Redox Biol. 57:1025012022. View Article : Google Scholar : PubMed/NCBI

121 

Leow CC, Chesebrough J, Coffman KT, Fazenbaker CA, Gooya J, Weng D, Coats S, Jackson D, Jallal B and Chang Y: Antitumor efficacy of IPI-504, a selective heat shock protein 90 inhibitor against human epidermal growth factor receptor 2-positive human xenograft models as a single agent and in combination with trastuzumab or lapatinib. Mol Cancer Ther. 8:2131–2141. 2009. View Article : Google Scholar : PubMed/NCBI

122 

Workman P, Burrows F, Neckers L and Rosen N: Drugging the cancer chaperone HSP90: Combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci. 1113:202–216. 2007. View Article : Google Scholar : PubMed/NCBI

123 

Modi S, Stopeck A, Linden H, Solit D, Chandarlapaty S, Rosen N, D'Andrea G, Dickler M, Moynahan ME, Sugarman S, et al: HSP90 inhibition is effective in breast cancer: A phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res. 17:5132–5139. 2011. View Article : Google Scholar : PubMed/NCBI

124 

Sesto N, Wurtzel O, Archambaud C, Sorek R and Cossart P: The excludon: A new concept in bacterial antisense RNA-mediated gene regulation. Nat Rev Microbiol. 11:75–82. 2013. View Article : Google Scholar : PubMed/NCBI

125 

Qu X, Alsager S, Zhuo Y and Shan B: HOX transcript antisense RNA (HOTAIR) in cancer. Cancer Lett. 454:90–97. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Chen SP, Zhu GQ, Xing XX, Wan JL, Cai JL, Du JX, Song LN, Dai Z and Zhou J: LncRNA USP2-AS1 promotes hepatocellular carcinoma growth by enhancing YBX1-Mediated HIF1α protein translation under hypoxia. Front Oncol. 12:8823722022. View Article : Google Scholar : PubMed/NCBI

127 

Pirnia F, Schneider E, Betticher DC and Borner MM: Mitomycin C induces apoptosis and caspase-8 and −9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ. 9:905–914. 2002. View Article : Google Scholar : PubMed/NCBI

128 

Wang WD, Shang Y, Wang C, Ni J, Wang AM, Li GJ, Su L and Chen SZ: c-FLIP promotes drug resistance in non-small-cell lung cancer cells via upregulating FoxM1 expression. Acta Pharmacol Sin. 43:2956–2966. 2022. View Article : Google Scholar : PubMed/NCBI

129 

Yang Y, Hou JQ, Qu LY, Wang GQ, Ju HW, Zhao ZW, Yu ZH and Yang HJ: Differential expression of USP2, USP14 and UBE4A between ovarian serous cystadenocarcinoma and adjacent normal tissues. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 23:504–506. 2007.(In Chinese). PubMed/NCBI

130 

Guo B, Yu L, Sun Y, Yao N and Ma L: Long Non-Coding RNA USP2-AS1 accelerates cell proliferation and migration in ovarian cancer by sponging miR-520d-3p and Up-Regulating KIAA1522. Cancer Manag Res. 12:10541–10550. 2020. View Article : Google Scholar : PubMed/NCBI

131 

Li D, Bao J, Yao J and Li J: lncRNA USP2-AS1 promotes colon cancer progression by modulating Hippo/YAP1 signaling. Am J Transl Res. 12:5670–5682, eCollection 2020. 2020.PubMed/NCBI

132 

Tatari N, Khan S, Livingstone J, Zhai K, McKenna D, Ignatchenko V, Chokshi C, Gwynne WD, Singh M, Revill S, et al: The proteomic landscape of glioblastoma recurrence reveals novel and targetable immunoregulatory drivers. Acta Neuropathol. 144:1127–1142. 2022. View Article : Google Scholar : PubMed/NCBI

133 

Ji YR, Cheng CC, Lee AL, Shieh JC, Wu HJ, Huang AP, Hsu YH and Young TH: Poly (allylguanidine)-coated surfaces regulate TGF-β in glioblastoma cells to induce apoptosis via NF-κB Pathway Activation. ACS Appl Mater Interfaces. 13:59400–59410. 2021. View Article : Google Scholar : PubMed/NCBI

134 

Joseph JV, Magaut CR, Storevik S, Geraldo LH, Mathivet T, Latif MA, Rudewicz J, Guyon J, Gambaretti M, Haukas F, et al: TGF-β promotes microtube formation in glioblastoma through thrombospondin 1. Neuro Oncol. 24:541–553. 2022. View Article : Google Scholar : PubMed/NCBI

135 

Yan X, Liao H, Cheng M, Shi X, Lin X, Feng XH and Chen YG: Smad7 protein interacts with receptor-regulated smads (R-Smads) to inhibit transforming growth factor-β (TGF-β)/smad signaling. J Biol Chem. 291:382–392. 2016. View Article : Google Scholar : PubMed/NCBI

136 

Girish V, Lakhani AA, Thompson SL, Scaduto CM, Brown LM, Hagenson RA, Sausville EL, Mendelson BE, Kandikuppa PK, Lukow DA, et al: Oncogene-like addiction to aneuploidy in human cancers. Science. Jul 6–2023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

137 

Mejia-Hernandez JO, Raghu D, Caramia F, Clemons N, Fujihara K, Riseborough T, Teunisse A, Jochemsen AG, Abrahmsén L, Blandino G, et al: Targeting MDM4 as a novel therapeutic approach in prostate cancer independent of p53 status. Cancers (Basel). 14:39472022. View Article : Google Scholar : PubMed/NCBI

138 

Tsai KW, Kuo WT and Jeng SY: Tight junction protein 1 dysfunction contributes to cell motility in bladder cancer. Anticancer Res. 38:4607–4615. 2018. View Article : Google Scholar : PubMed/NCBI

139 

Chuang SJ, Cheng SC, Tang HC, Sun CY and Chou CY: 6-Thioguanine is a noncompetitive and slow binding inhibitor of human deubiquitinating protease USP2. Sci Rep. 8:31022018. View Article : Google Scholar : PubMed/NCBI

140 

Renatus M, Parrado SG, D'Arcy A, Eidhoff U, Gerhartz B, Hassiepen U, Pierrat B, Riedl R, Vinzenz D, Worpenberg S and Kroemer M: Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure. 14:1293–1302. 2006. View Article : Google Scholar : PubMed/NCBI

141 

Kitamura H and Hashimoto M: USP2-Related cellular signaling and consequent pathophysiological outcomes. Int J Mol Sci. 22:12092021. View Article : Google Scholar : PubMed/NCBI

142 

Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ, Lechpammer M, Huesken D, Zimmermann J, Signoretti S and Loda M: The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell. 5:253–261. 2004. View Article : Google Scholar : PubMed/NCBI

143 

Cheng JC, Bai A, Beckham TH, Marrison ST, Yount CL, Young K, Lu P, Bartlett AM, Wu BX, Keane BJ, et al: Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse. J Clin Invest. 123:4344–4358. 2013. View Article : Google Scholar : PubMed/NCBI

144 

Mizutani N, Inoue M, Omori Y, Ito H, Tamiya-Koizumi K, Takagi A, Kojima T, Nakamura M, Iwaki S, Nakatochi M, et al: Increased acid ceramidase expression depends on upregulation of androgen-dependent deubiquitinases, USP2, in a human prostate cancer cell line, LNCaP. J Biochem. 158:309–319. 2015. View Article : Google Scholar : PubMed/NCBI

145 

Vieyra-Garcia PA and Wolf P: A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther. 222:1077842021. View Article : Google Scholar : PubMed/NCBI

146 

Nakahashi K, Nihira K, Suzuki M, Ishii T, Masuda K and Mori K: A novel mouse model of cutaneous T-cell lymphoma revealed the combined effect of mogamulizumab with psoralen and ultraviolet a therapy. Exp Dermatol. 31:1693–1698. 2022. View Article : Google Scholar : PubMed/NCBI

147 

Hsu J and Sage J: Novel functions for the transcription factor E2F4 in development and disease. Cell Cycle. 15:3183–3190. 2016. View Article : Google Scholar : PubMed/NCBI

148 

Moghadami AA, Aboutalebi Vand Beilankouhi E, Kalantary-Charvadeh A, Hamzavi M, Mosayyebi B, Sedghi H, Ghorbani Haghjo A and Nazari Soltan Ahmad S: Inhibition of USP14 induces ER stress-mediated autophagy without apoptosis in lung cancer cell line A549. Cell Stress Chaperones. 25:909–917. 2020. View Article : Google Scholar : PubMed/NCBI

149 

Liu C, Chen Z, Ding X, Qiao Y and Li B: Ubiquitin-specific protease 35 (USP35) mediates cisplatin-induced apoptosis by stabilizing BIRC3 in non-small cell lung cancer. Lab Invest. 102:524–533. 2022. View Article : Google Scholar : PubMed/NCBI

150 

Chen J, Dexheimer TS, Ai Y, Liang Q, Villamil MA, Inglese J, Maloney DJ, Jadhav A, Simeonov A and Zhuang Z: Selective and cell-active inhibitors of the USP1/UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem Biol. 18:1390–1400. 2011. View Article : Google Scholar : PubMed/NCBI

151 

Zhou F, Du C, Xu D, Lu J, Zhou L, Wu C, Wu B and Huang J: Knockdown of ubiquitin-specific protease 51 attenuates cisplatin resistance in lung cancer through ubiquitination of zinc-finger E-box binding homeobox 1. Mol Med Rep. 22:1382–1390. 2020. View Article : Google Scholar : PubMed/NCBI

152 

Zhang L, Xu B, Qiang Y, Huang H, Wang C, Li D and Qian J: Overexpression of deubiquitinating enzyme USP28 promoted non-small cell lung cancer growth. J Cell Mol Med. 19:799–805. 2015. View Article : Google Scholar : PubMed/NCBI

153 

Zhang Z, Cui Z, Xie Z, Li C, Xu C, Guo X, Yu J, Chen T, Facchinetti F, Bohnenberger H, et al: Deubiquitinase USP5 promotes non-small cell lung cancer cell proliferation by stabilizing cyclin D1. Transl Lung Cancer Res. 10:3995–4011. 2021. View Article : Google Scholar : PubMed/NCBI

154 

Zhu M, Zhang H, Lu F, Wang Z, Wu Y, Chen H, Fan X, Yin Z and Liang F: USP52 inhibits cell proliferation by stabilizing PTEN protein in non-small cell lung cancer. Biosci Rep. 41:BSR202104862021. View Article : Google Scholar : PubMed/NCBI

155 

Zhang F, Zhao Y and Sun Y: USP2 is an SKP2 deubiquitylase that stabilizes both SKP2 and its substrates. J Biol Chem. 297:1011092021. View Article : Google Scholar : PubMed/NCBI

156 

Zhou J, Wang T, Qiu T, Chen Z, Ma X, Zhang L and Zou J: Ubiquitin-specific protease-44 inhibits the proliferation and migration of cells via inhibition of JNK pathway in clear cell renal cell carcinoma. BMC Cancer. 20:2142020. View Article : Google Scholar : PubMed/NCBI

157 

Hu W, Su Y, Fei X, Wang X, Zhang G, Su C, Du T, Yang T, Wang G, Tang Z and Zhang J: Ubiquitin specific peptidase 19 is a prognostic biomarker and affect the proliferation and migration of clear cell renal cell carcinoma. Oncol Rep. 43:1964–1974. 2020.PubMed/NCBI

158 

Meng X, Xiong Z, Xiao W, Yuan C, Wang C, Huang Y, Tong J, Shi J, Chen Z, Liu C, et al: Downregulation of ubiquitin-specific protease 2 possesses prognostic and diagnostic value and promotes the clear cell renal cell carcinoma progression. Ann Transl Med. 8:3192020. View Article : Google Scholar : PubMed/NCBI

159 

Yi J, Tavana O, Li H, Wang D, Baer RJ and Gu W: Targeting USP2 regulation of VPRBP-mediated degradation of p53 and PD-L1 for cancer therapy. Nat Commun. 14:19412023. View Article : Google Scholar : PubMed/NCBI

160 

Zhu L, Chen Z, Guo T, Chen W, Zhao L, Guo L and Pan X: USP2 inhibits lung cancer pathogenesis by reducing ARID2 protein degradation via ubiquitination. Biomed Res Int. 2022:15252162022. View Article : Google Scholar : PubMed/NCBI

161 

Estlin EJ: Continuing therapy for childhood acute lymphoblastic leukaemia: Clinical and cellular pharmacology of methotrexate, 6-mercaptopurine and 6-thioguanine. Cancer Treat Rev. 27:351–363. 2001. View Article : Google Scholar : PubMed/NCBI

162 

Vora A, Mitchell CD, Lennard L, Eden TO, Kinsey SE, Lilleyman J and Richards SM; Medical Research Council; National Cancer Research Network Childhood Leukaemia Working Party, : Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: A randomised trial. Lancet. 368:1339–1348. 2006. View Article : Google Scholar : PubMed/NCBI

163 

Lin HC, Kuan Y, Chu HF, Cheng SC, Pan HC, Chen WY, Sun CY and Lin TH: Disulfiram and 6-Thioguanine synergistically inhibit the enzymatic activities of USP2 and USP21. Int J Biol Macromol. 176:490–497. 2021. View Article : Google Scholar : PubMed/NCBI

164 

Tsai HK, Gibson CJ, Murdock HM, Davineni P, Harris MH, Wang ES, Gondek LP, Kim AS, Nardi V and Lindsley RC: Allelic complexity of KMT2A partial tandem duplications in acute myeloid leukemia and myelodysplastic syndromes. Blood Adv. 6:4236–4240. 2022. View Article : Google Scholar : PubMed/NCBI

165 

Zhou X, Zhang P, Aryal S, Zhang L and Lu R: UTX loss alters therapeutic responses in KMT2A-rearranged acute myeloid leukemia. Leukemia. 37:226–230. 2023. View Article : Google Scholar : PubMed/NCBI

166 

Ikeda J, Shiba N, Tsujimoto SI, Yoshida M, Nakabayashi K, Ogata-Kawata H, Okamura K, Takeuchi M, Osumi T, Tomizawa D, et al: Whole transcriptome sequencing reveals a KMT2A-USP2 fusion in infant acute myeloid leukemia. Genes Chromosomes Cancer. 58:669–672. 2019.PubMed/NCBI

167 

Lopes BA, Poubel CP, Teixeira CE, Caye-Eude A, Cave H, Meyer C, Marschalek R, Boroni M and Emerenciano M: Novel Diagnostic and therapeutic options for KMT2A-Rearranged acute leukemias. Front Pharmacol. 13:7494722022. View Article : Google Scholar : PubMed/NCBI

168 

Blackburn PR, Smadbeck JB, Znoyko I, Webley MR, Pitel BA, Vasmatzis G, Xu X, Greipp PT, Hoppman NL, Ketterling RP, et al: Cryptic and atypical KMT2A-USP2 and KMT2A-USP8 rearrangements identified by mate pair sequencing in infant and childhood leukemia. Genes Chromosomes Cancer. 59:422–427. 2020. View Article : Google Scholar : PubMed/NCBI

169 

Meyer C, Lopes BA, Caye-Eude A, Cave H, Arfeuille C, Cuccuini W, Sutton R, Venn NC, Oh SH, Tsaur G, et al: Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL-USP2 fusions. Leukemia. 33:2306–2340. 2019. View Article : Google Scholar : PubMed/NCBI

170 

Liu J, Cheng Y, Zheng M, Yuan B, Wang Z, Li X, Yin J, Ye M and Song Y: Targeting the ubiquitination/deubiquitination process to regulate immune checkpoint pathways. Signal Transduct Target Ther. 6:282021. View Article : Google Scholar : PubMed/NCBI

171 

Savage RE, Tyler AN, Miao XS and Chan TC: Identification of a novel glucosylsulfate conjugate as a metabolite of 3,4-dihydro-2,2-dimethyl-2H-naphtho[1,2-b]pyran-5,6-dione (ARQ 501, beta-lapachone) in mammals. Drug Metab Dispos. 36:753–758. 2008. View Article : Google Scholar : PubMed/NCBI

172 

Ohayon S, Refua M, Hendler A, Aharoni A and Brik A: Harnessing the oxidation susceptibility of deubiquitinases for inhibition with small molecules. Angew Chem Int Ed Engl. 54:599–603. 2015.PubMed/NCBI

173 

Nguyen TT, Ung TT, Li S, Sah DK, Park SY, Lian S and Jung YD: Lithocholic Acid Induces miR21, Promoting PTEN Inhibition via STAT3 and ERK-1/2 signaling in colorectal cancer cells. Int J Mol Sci. 22:102092021. View Article : Google Scholar : PubMed/NCBI

174 

Li W, Wang Z, Lin R, Huang S, Miao H, Zou L, Liu K, Cui X, Wang Z, Zhang Y, et al: Lithocholic acid inhibits gallbladder cancer proliferation through interfering glutaminase-mediated glutamine metabolism. Biochem Pharmacol. 205:1152532022. View Article : Google Scholar : PubMed/NCBI

175 

Altun M, Kramer HB, Willems LI, McDermott JL, Leach CA, Goldenberg SJ, Kumar KG, Konietzny R, Fischer R, Kogan E, et al: Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem Biol. 18:1401–1412. 2011. View Article : Google Scholar : PubMed/NCBI

176 

Gupta SC, Kim JH, Prasad S and Aggarwal BB: Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 29:405–434. 2010. View Article : Google Scholar : PubMed/NCBI

177 

Yang H, Landis-Piwowar KR, Chen D, Milacic V and Dou QP: Natural compounds with proteasome inhibitory activity for cancer prevention and treatment. Curr Protein Pept Sci. 9:227–239. 2008. View Article : Google Scholar : PubMed/NCBI

178 

Issaenko OA and Amerik AY: Chalcone-based small-molecule inhibitors attenuate malignant phenotype via targeting deubiquitinating enzymes. Cell Cycle. 11:1804–1817. 2012. View Article : Google Scholar : PubMed/NCBI

179 

Aleo E, Henderson CJ, Fontanini A, Solazzo B and Brancolini C: Identification of new compounds that trigger apoptosome-independent caspase activation and apoptosis. Cancer Res. 66:9235–9244. 2006. View Article : Google Scholar : PubMed/NCBI

180 

Nicholson B, Leach CA, Goldenberg SJ, Francis DM, Kodrasov MP, Tian X, Shanks J, Sterner DE, Bernal A, Mattern MR, et al: Characterization of ubiquitin and ubiquitin-like-protein isopeptidase activities. Protein Sci. 17:1035–1043. 2008. View Article : Google Scholar : PubMed/NCBI

181 

Vamisetti GB, Meledin R, Gopinath P and Brik A: Halogen Substituents in the Isoquinoline Scaffold Switches the Selectivity of Inhibition between USP2 and USP7. Chembiochem. 20:282–286. 2019.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang S, Guo Y, Zhang S, Wang Z, Zhang Y and Zuo S: Targeting the deubiquitinase <em>USP2</em> for malignant tumor therapy (Review). Oncol Rep 50: 176, 2023.
APA
Zhang, S., Guo, Y., Zhang, S., Wang, Z., Zhang, Y., & Zuo, S. (2023). Targeting the deubiquitinase <em>USP2</em> for malignant tumor therapy (Review). Oncology Reports, 50, 176. https://doi.org/10.3892/or.2023.8613
MLA
Zhang, S., Guo, Y., Zhang, S., Wang, Z., Zhang, Y., Zuo, S."Targeting the deubiquitinase <em>USP2</em> for malignant tumor therapy (Review)". Oncology Reports 50.4 (2023): 176.
Chicago
Zhang, S., Guo, Y., Zhang, S., Wang, Z., Zhang, Y., Zuo, S."Targeting the deubiquitinase <em>USP2</em> for malignant tumor therapy (Review)". Oncology Reports 50, no. 4 (2023): 176. https://doi.org/10.3892/or.2023.8613
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang S, Guo Y, Zhang S, Wang Z, Zhang Y and Zuo S: Targeting the deubiquitinase <em>USP2</em> for malignant tumor therapy (Review). Oncol Rep 50: 176, 2023.
APA
Zhang, S., Guo, Y., Zhang, S., Wang, Z., Zhang, Y., & Zuo, S. (2023). Targeting the deubiquitinase <em>USP2</em> for malignant tumor therapy (Review). Oncology Reports, 50, 176. https://doi.org/10.3892/or.2023.8613
MLA
Zhang, S., Guo, Y., Zhang, S., Wang, Z., Zhang, Y., Zuo, S."Targeting the deubiquitinase <em>USP2</em> for malignant tumor therapy (Review)". Oncology Reports 50.4 (2023): 176.
Chicago
Zhang, S., Guo, Y., Zhang, S., Wang, Z., Zhang, Y., Zuo, S."Targeting the deubiquitinase <em>USP2</em> for malignant tumor therapy (Review)". Oncology Reports 50, no. 4 (2023): 176. https://doi.org/10.3892/or.2023.8613
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team