You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Ding Y, Xing D, Fei Y and Lu B: Emerging degrader technologies engaging lysosomal pathways. Chem Soc Rev. 51:8832–8876. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang TY, Shi YY, Cui XW, Pan YF, Lin YK, Feng XF, Ding ZW, Yang C, Tan YX, Dong LW and Wang HY: PTEN deficiency facilitates exosome secretion and metastasis in cholangiocarcinoma by impairing TFEB-mediated lysosome biogenesis. Gastroenterology. 164:424–438. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Karbowski M, Oshima Y and Verhoeven N: Mitochondrial proteotoxicity: implications and ubiquitin-dependent quality control mechanisms. Cell Mol Life Sci. 79:5742022. View Article : Google Scholar : PubMed/NCBI | |
|
Sinam IS, Chanda D, Thoudam T, Kim MJ, Kim BG, Kang HJ, Lee JY, Baek SH, Kim SY, Shim BJ, et al: Pyruvate dehydrogenase kinase 4 promotes ubiquitin-proteasome system-dependent muscle atrophy. J Cachexia Sarcopenia Muscle. 13:3122–3136. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
O'Brien S, Kelso S, Steinhart Z, Orlicky S, Mis M, Kim Y, Lin S, Sicheri F and Angers S: SCF FBXW7 regulates G2-M progression through control of CCNL1 ubiquitination. EMBO Rep. 23:e550442022. View Article : Google Scholar : PubMed/NCBI | |
|
Capecchi MR and Pozner A: ASPM regulates symmetric stem cell division by tuning Cyclin E ubiquitination. Nat Commun. 6:87632015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Li Q, Yang J, Xu P, Xuan Z, Xu J and Xu Z: Cytosolic TGM2 promotes malignant progression in gastric cancer by suppressing the TRIM21-mediated ubiquitination/degradation of STAT1 in a GTP binding-dependent modality. Cancer Commun (Lond). 43:123–149. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Feng X, Jia Y, Zhang Y, Ma F, Zhu Y, Hong X, Zhou Q, He R, Zhang H, Jin J, et al: Ubiquitination of UVRAG by SMURF1 promotes autophagosome maturation and inhibits hepatocellular carcinoma growth. Autophagy. 15:1130–1149. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Wang N, Jiang Y, Wang H, Xin Z, An H, Pan H, Ma W, Zhang T, Wang X and Lin W: E3 ubiquitin ligase NEDD4L negatively regulates inflammation by promoting ubiquitination of MEKK2. EMBO Rep. 23:e546032022. View Article : Google Scholar : PubMed/NCBI | |
|
Nan Y, Luo Q, Wu X, Chang W, Zhao P, Liu S and Liu Z: HCP5 prevents ubiquitination-mediated UTP3 degradation to inhibit apoptosis by activating c-Myc transcriptional activity. Mol Ther. 31:552–568. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cao HJ, Jiang H, Ding K, Qiu XS, Ma N, Zhang FK, Wang YK, Zheng QW, Xia J, Ni QZ, et al: ARID2 mitigates hepatic steatosis via promoting the ubiquitination of JAK2. Cell Death Differ. 30:383–396. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Mattiroli F and Penengo L: Histone ubiquitination: An integrative signaling platform in genome stability. Trends Genet. 37:566–581. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Roberts JZ, Crawford N and Longley DB: The role of ubiquitination in apoptosis and necroptosis. Cell Death Differ. 29:272–284. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang K, Liu J, Li YL, Li JP and Zhang R: Ubiquitination/de-ubiquitination: A promising therapeutic target for PTEN reactivation in cancer. Biochim Biophys Acta Rev Cancer. 1877:1887232022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Wei L, Hu N, Wang D, Ni J, Zhang S, Liu H, Lv T, Yin J, Ye M and Song Y: FBW7-mediated ubiquitination and destruction of PD-1 protein primes sensitivity to anti-PD-1 immunotherapy in non-small cell lung cancer. J Immunother Cancer. 10:e0051162022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Wang T, She Y, Wu K, Gu S, Li L, Dong C, Chen C and Zhou Y: N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 20:1052021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu L, Zhao N, Zhou Z, Chen J, Han S, Zhang X, Bao H, Yuan W and Shu X: PLAGL2 promotes the proliferation and migration of gastric cancer cells via USP37-mediated deubiquitination of Snail1. Theranostics. 11:700–714. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xie H, Zhou J, Liu X, Xu Y, Hepperla AJ, Simon JM, Wang T, Yao H, Liao C, Baldwin AS, et al: USP13 promotes deubiquitination of ZHX2 and tumorigenesis in kidney cancer. Proc Natl Acad Sci USA. 119:e21198541192022. View Article : Google Scholar : PubMed/NCBI | |
|
Rasaei R, Sarodaya N, Kim KS, Ramakrishna S and Hong SH: Importance of deubiquitination in macrophage-mediated viral response and inflammation. Int J Mol Sci. 21:80902020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun T, Liu Z and Yang Q: The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer. 19:1462020. View Article : Google Scholar : PubMed/NCBI | |
|
Cai J, Culley MK, Zhao Y and Zhao J: The role of ubiquitination and deubiquitination in the regulation of cell junctions. Protein Cell. 9:754–769. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Park SH and Chua NH: UBP12/UBP13-mediated deubiquitination of salicylic acid receptor NPR3 suppresses plant immunity. Mol Plant. 16:232–244. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Liu Y and Zhou H: Advances in the development ubiquitin-specific peptidase (USP) inhibitors. Int J Mol Sci. 22:45462021. View Article : Google Scholar : PubMed/NCBI | |
|
Sato Y, Goto E, Shibata Y, Kubota Y, Yamagata A, Goto-Ito S, Kubota K, Inoue J, Takekawa M, Tokunaga F and Fukai S: Structures of CYLD USP with Met1- or Lys63-linked diubiquitin reveal mechanisms for dual specificity. Nat Struct Mol Biol. 22:222–229. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Maertens GN, El Messaoudi-Aubert S, Elderkin S, Hiom K and Peters G: Ubiquitin-specific proteases 7 and 11 modulate Polycomb regulation of the INK4a tumour suppressor. EMBO J. 29:2553–2565. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Cruz L, Soares P and Correia M: Ubiquitin-Specific proteases: Players in cancer cellular processes. Pharmaceuticals (Basel). 14:8482021. View Article : Google Scholar : PubMed/NCBI | |
|
Mansilla A, Martin FA, Martin D and Ferrus A: Ligand-independent requirements of steroid receptors EcR and USP for cell survival. Cell Death Differ. 23:405–416. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
An Z, Liu Y, Ou Y, Li J, Zhang B, Sun D, Sun Y and Tang W: Regulation of the stability of RGF1 receptor by the ubiquitin-specific proteases UBP12/UBP13 is critical for root meristem maintenance. Proc Natl Acad Sci USA. 115:1123–1128. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lim JH, Jono H, Komatsu K, Woo CH, Lee J, Miyata M, Matsuno T, Xu X, Huang Y, Zhang W, et al: CYLD negatively regulates transforming growth factor-β-signalling via deubiquitinating Akt. Nat Commun. 3:7712012. View Article : Google Scholar : PubMed/NCBI | |
|
Bonacci T and Emanuele MJ: Dissenting degradation: Deubiquitinases in cell cycle and cancer. Semin Cancer Biol. 67((Pt 2)): 145–158. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Xia S, Li H, Wang X, Li C, Chao Y, Zhang L and Han C: The deubiquitinase USP10 regulates KLF4 stability and suppresses lung tumorigenesis. Cell Death Differ. 27:1747–1764. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Baek SH, Choi KS, Yoo YJ, Cho JM, Baker RT, Tanaka K and Chung CH: Molecular cloning of a novel ubiquitin-specific protease, UBP41, with isopeptidase activity in chick skeletal muscle. J Biol Chem. 272:25560–25565. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Gousseva N and Baker RT: Gene structure, alternate splicing, tissue distribution, cellular localization, and developmental expression pattern of mouse deubiquitinating enzyme isoforms Usp2-45 and Usp2-69. Gene Expr. 11:163–179. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Moremen KW, Touster O and Robbins PW: Novel purification of the catalytic domain of Golgi alpha-mannosidase II. Characterization and comparison with the intact enzyme. J Biol Chem. 266:16876–16885. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, et al: The status, quality, and expansion of the NIH full-length cDNA project: The Mammalian Gene Collection (MGC). Genome Res. 14((10B)): 2121–2127. 2004.PubMed/NCBI | |
|
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, et al: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 36:40–45. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Luo H, Ji Y, Gao X, Liu X and Wu Y and Wu Y: Ubiquitin specific protease 2: Structure, isoforms, cellular function, relateddiseases and its inhibitors. Oncologie. 24:85–99. 2022. View Article : Google Scholar | |
|
Zhu HQ and Gao FH: The molecular mechanisms of regulation on USP2′s alternative splicing and the significance of its products. Int J Biol Sci. 13:1489–1496. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pouly D, Chenaux S, Martin V, Babis M, Koch R, Nagoshi E, Katanaev VL, Gachon F and Staub O: USP2-45 is a circadian clock output effector regulating calcium absorption at the post-translational level. PLoS One. 11:e01451552016. View Article : Google Scholar : PubMed/NCBI | |
|
Tong X, Buelow K, Guha A, Rausch R and Yin L: USP2a protein deubiquitinates and stabilizes the circadian protein CRY1 in response to inflammatory signals. J Biol Chem. 287:25280–25291. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Molusky MM, Li S, Ma D, Yu L and Lin JD: Ubiquitin-specific protease 2 regulates hepatic gluconeogenesis and diurnal glucose metabolism through 11β-hydroxysteroid dehydrogenase 1. Diabetes. 61:1025–1035. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kitamura H, Kimura S, Shimamoto Y, Okabe J, Ito M, Miyamoto T, Naoe Y, Kikuguchi C, Meek B, Toda C, et al: Ubiquitin-specific protease 2–69 in macrophages potentially modulates metainflammation. FASEB J. 27:4940–4953. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Wu H, Liu Y, Sun J, Zhao Z, Chen Q, Guo M, Ma D and Zhang Z: Expression of USP2-69 in mesangial cells in vivo and in vitro. Pathol Int. 60:184–192. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Haimerl F, Erhardt A, Sass G and Tiegs G: Down-regulation of the de-ubiquitinating enzyme ubiquitin-specific protease 2 contributes to tumor necrosis factor-alpha-induced hepatocyte survival. J Biol Chem. 284:495–504. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Kim BG, Qian S, Letterio JJ, Fung JJ, Lu L and Lin F: Hepatic stellate cells inhibit T cells through active TGF-β1 from a cell surface-bound latent TGF-β1/GARP complex. J Immunol. 195:2648–2656. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mao X, Luo W, Sun J, Yang N, Zhang LW, Zhao Z, Zhang Z and Wu H: Usp2-69 overexpression slows down the progression of rat anti-Thy1.1 nephritis. Exp Mol Pathol. 101:249–258. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kitamura H, Ishino T, Shimamoto Y, Okabe J, Miyamoto T, Takahashi E and Miyoshi I: Ubiquitin-Specific protease 2 modulates the lipopolysaccharide-elicited expression of proinflammatory cytokines in macrophage-like HL-60 cells. Mediators Inflamm. 2017:69094152017. View Article : Google Scholar : PubMed/NCBI | |
|
Mahul-Mellier AL, Datler C, Pazarentzos E, Lin B, Chaisaklert W, Abuali G and Grimm S: De-ubiquitinating proteases USP2a and USP2c cause apoptosis by stabilising RIP1. Biochim Biophys Acta. 1823:1353–1365. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Davis MI, Pragani R, Fox JT, Shen M, Parmar K, Gaudiano EF, Liu L, Tanega C, McGee L, Hall MD, et al: Small molecule inhibition of the ubiquitin-specific protease USP2 Accelerates cyclin D1 degradation and leads to cell cycle arrest in colorectal cancer and mantle cell lymphoma models. J Biol Chem. 291:24628–24640. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bedard N, Yang Y, Gregory M, Cyr DG, Suzuki J, Yu X, Chian RC, Hermo L, O'Flaherty C, Smith CE, et al: Mice lacking the USP2 deubiquitinating enzyme have severe male subfertility associated with defects in fertilization and sperm motility. Biol Reprod. 85:594–604. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Q, Liu M, Zhang F, Liu X, Ling S, Chen X, Gu J, Ou W, Liu S and Liu N: Ubiquitin-specific protease 2 regulates Ang II-induced cardiac fibroblasts activation by up-regulating cyclin D1 and stabilizing β-catenin in vitro. J Cell Mol Med. 25:1001–1011. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hashimoto M, Fujimoto M, Konno K, Lee ML, Yamada Y, Yamashita K, Toda C, Tomura M, Watanabe M, Inanami O and Kitamura H: Ubiquitin-Specific protease 2 in the ventromedial hypothalamus modifies blood glucose levels by controlling sympathetic nervous activation. J Neurosci. 42:4607–4618. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu XQ, Shao XR, Liu Y, Dong ZX, Chan SH, Shi YY, Chen SN, Qi L, Zhong L, Yu Y, et al: Tight junction protein 1 promotes vasculature remodeling via regulating USP2/TWIST1 in bladder cancer. Oncogene. 41:502–514. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tu Y, Xu L, Xu J, Bao Z, Tian W, Ye Y, Sun G, Miao Z, Chao H, You Y, et al: Loss of deubiquitylase USP2 triggers development of glioblastoma via TGF-β signaling. Oncogene. 41:2597–2608. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Nadolny C, Zhang X, Chen Q, Hashmi SF, Ali W, Hemme C, Ahsan N, Chen Y and Deng R: Dysregulation and activities of ubiquitin specific peptidase 2b in the pathogenesis of hepatocellular carcinoma. Am J Cancer Res. 11:4746–4767. 2021.PubMed/NCBI | |
|
Zhang J, Liu S, Li Q, Shi Y, Wu Y, Liu F, Wang S, Zaky MY, Yousuf W, Sun Q, et al: The deubiquitylase USP2 maintains ErbB2 abundance via counteracting endocytic degradation and represents a therapeutic target in ErbB2-positive breast cancer. Cell Death Differ. 27:2710–2725. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Qu Q, Mao Y, Xiao G, Fei X, Wang J, Zhang Y, Liu J, Cheng G, Chen X, Wang J and Shen K: USP2 promotes cell migration and invasion in triple negative breast cancer cell lines. Tumour Biol. 36:5415–5423. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liang XR, Liu YF, Chen F, Zhou ZX, Zhang LJ and Lin ZJ: Cell Cycle-Related lncRNAs as innovative targets to advance cancer management. Cancer Manag Res. 15:547–561. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao W, Wang J, Wang X, Cai S, Guo Y, Ye L, Li D, Hu A, Jin S, Yuan B, et al: Therapeutic targeting of the USP2-E2F4 axis inhibits autophagic machinery essential for zinc homeostasis in cancer progression. Autophagy. 18:2615–2635. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu M, Wang H, Ding Y, Yang Y, Xu Z, Shi L and Zhang N: Ribonucleotide reductase holoenzyme inhibitor COH29 interacts with deubiquitinase ubiquitin-specific protease 2 and downregulates its substrate protein cyclin D1. FASEB J. 36:e223292022. View Article : Google Scholar : PubMed/NCBI | |
|
Shan J, Zhao W and Gu W: Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol Cell. 36:469–476. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Magiera K, Tomala M, Kubica K, De Cesare V, Trost M, Zieba BJ, Kachamakova-Trojanowska N, Les M, Dubin G, Holak TA and Skalniak L: Lithocholic acid hydroxyamide destabilizes cyclin D1 and Induces G (0)/G (1) arrest by inhibiting deubiquitinase USP2a. Cell Chem Biol. 24:458–470. e182017. View Article : Google Scholar : PubMed/NCBI | |
|
Nepal S, Shrestha A and Park PH: Ubiquitin specific protease 2 acts as a key modulator for the regulation of cell cycle by adiponectin and leptin in cancer cells. Mol Cell Endocrinol. 412:44–55. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tomala MD, Magiera-Mularz K, Kubica K, Krzanik S, Zieba B, Musielak B, Pustula M, Popowicz GM, Sattler M, Dubin G, et al: Identification of small-molecule inhibitors of USP2a. Eur J Med Chem. 150:261–267. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J, Kim WJ, Liu Z, Loda M and Freeman MR: The ubiquitin-specific protease USP2a enhances tumor progression by targeting cyclin A1 in bladder cancer. Cell Cycle. 11:1123–1130. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Gabay M, Li Y and Felsher DW: MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med. 4:a0142412014. View Article : Google Scholar : PubMed/NCBI | |
|
Stine ZE, Walton ZE, Altman BJ, Hsieh AL and Dang CV: MYC, Metabolism, and Cancer. Cancer Discov. 5:1024–1039. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wu CH, van Riggelen J, Yetil A, Fan AC, Bachireddy P and Felsher DW: Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci USA. 104:13028–13033. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Zhuang D, Mannava S, Grachtchouk V, Tang WH, Patil S, Wawrzyniak JA, Berman AE, Giordano TJ, Prochownik EV, Soengas MS and Nikiforov MA: C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene. 27:6623–6634. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Li B, Zhang G, Wang Z, Yang Y, Wang C, Fang D, Liu K, Wang F and Mei Y: c-Myc-activated USP2-AS1 suppresses senescence and promotes tumor progression via stabilization of E2F1 mRNA. Cell Death Dis. 12:10062021. View Article : Google Scholar : PubMed/NCBI | |
|
Iemura K, Natsume T, Maehara K, Kanemaki MT and Tanaka K: Chromosome oscillation promotes Aurora A-dependent Hec1 phosphorylation and mitotic fidelity. J Cell Biol. 220:e2020061162021. View Article : Google Scholar : PubMed/NCBI | |
|
Li P, Chen T, Kuang P, Liu F, Li Z, Liu F, Wang Y, Zhang W and Cai X: Aurora-A/FOXO3A/SKP2 axis promotes tumor progression in clear cell renal cell carcinoma and dual-targeting Aurora-A/SKP2 shows synthetic lethality. Cell Death Dis. 13:6062022. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Y, Solomon LR, Pereda-Lopez A, Giranda VL, Luo Y, Johnson EF, Shoemaker AR, Leverson J and Liu X: Ubiquitin-specific cysteine protease 2a (USP2a) regulates the stability of Aurora-A. J Biol Chem. 286:38960–38968. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Gu Y, Zhang Z, Camps MGM, Ossendorp F, Wijdeven RH and Ten Dijke P: Genome-wide CRISPR screens define determinants of epithelial-mesenchymal transition mediated immune evasion by pancreatic cancer cells. Sci Adv. 9:eadf99152023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Ding ZY, Li S, Liu S, Xiao C, Li Z, Zhang BX, Chen XP and Yang X: Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics. 11:1345–1363. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
He Q, Cao H, Zhao Y, Chen P, Wang N, Li W, Cui R, Hou P, Zhang X and Ji M: Dipeptidyl Peptidase-4 Stabilizes Integrin alpha4β1 complex to promote thyroid cancer cell metastasis by activating transforming growth factor-beta signaling pathway. Thyroid. 32:1411–1422. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tuersuntuoheti A, Li Q, Teng Y, Li X, Huang R, Lu Y, Li K, Liang J, Miao S, Wu W and Song W: YWK-II/APLP2 inhibits TGF-β signaling by interfering with the TGFBR2-Hsp90 interaction. Biochim Biophys Acta Mol Cell Res. Jul 19–2023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Miyazawa K and Miyazono K: Regulation of TGF-β family signaling by inhibitory smads. Cold Spring Harb Perspect Biol. 9:a0220952017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Wang X, Wang Q, Deng Y, Li K, Zhang M, Zhang Q, Zhou J, Wang HY, Bai P, et al: USP2a supports metastasis by tuning TGF-β signaling. Cell Rep. 22:2442–2454. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Blenman KRM, Marczyk M, Karn T, Qing T, Li X, Gunasekharan V, Yaghoobi V, Bai Y, Ibrahim EY, Park T, et al: Predictive markers of response to neoadjuvant durvalumab with nab-paclitaxel and dose-dense doxorubicin/cyclophosphamide in basal-like triple-negative breast cancer. Clin Cancer Res. 28:2587–2597. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Cui Y, Zhao M, Yang Y, Xu R, Tong L, Liang J, Zhang X, Sun Y and Fan Y: Reversal of epithelial-mesenchymal transition and inhibition of tumor stemness of breast cancer cells through advanced combined chemotherapy. Acta Biomater. 152:380–392. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ahangari F, Becker C, Foster DG, Chioccioli M, Nelson M, Beke K, Wang X, Justet A, Adams T, Readhead B, et al: Saracatinib, a selective src kinase inhibitor, blocks fibrotic responses in preclinical models of pulmonary fibrosis. Am J Respir Crit Care Med. 206:1463–1479. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
van der Wal T and van Amerongen R: Walking the tight wire between cell adhesion and WNT signalling: A balancing act for beta-catenin. Open Biol. 10:2002672020. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J, Alavi Naini F, Sun Y and Ma L: Ubiquitin-specific peptidase 2a (USP2a) deubiquitinates and stabilizes β-catenin. Am J Cancer Res. 8:1823–1836, eCollection 2018. 2018.PubMed/NCBI | |
|
Pichiorri F, Suh SS, Rocci A, De Luca L, Taccioli C, Santhanam R, Zhou W, Benson DM Jr, Hofmainster C, Alder H, et al: Retraction notice to: Downregulation of p53-inducible microRNAs 192, 194, and 215 Impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell. 40:14412022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu B and Ellisen LW: Loss of p53 and genetic evolution in pancreatic cancer: Ordered chaos after the guardian is gone. Cancer Cell. 40:1276–1278. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hassin O and Oren M: Drugging p53 in cancer: One protein, many targets. Nat Rev Drug Discov. 22:127–144. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Dobbelstein M and Levine AJ: Mdm2: Open questions. Cancer Sci. 111:2203–2211. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP and Saville MK: The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J. 26:976–986. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wei T, Biskup E, Gjerdrum LM, Niazi O, Odum N and Gniadecki R: Ubiquitin-specific protease 2 decreases p53-dependent apoptosis in cutaneous T-cell lymphoma. Oncotarget. 7:48391–48400. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang CL, Wang JY, Liu ZY, Ma XM, Wang XW, Jin H, Zhang XP, Fu D, Hou LJ and Lu YC: Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis. 35:1500–1509. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Shrestha M and Park PH: p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells. Korean J Physiol Pharmacol. 20:487–498. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Shi K, Liu J, Yang P, Han R, Pan M, Yuan L, Fang C, Yu Y and Qian Z: Sustained co-delivery of 5-fluorouracil and cis-platinum via biodegradable thermo-sensitive hydrogel for intraoperative synergistic combination chemotherapy of gastric cancer. Bioact Mater. 23:1–15. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Zhang Y, Zhang G, Xiang L, Pang H, Xiong K, Lu Y, Li J, Dai J, Lin S and Fu S: Radiotherapy-induced enrichment of EGF-modified doxorubicin nanoparticles enhances the therapeutic outcome of lung cancer. Drug Deliv. 29:588–599. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Smith ER, Wang JQ, Yang DH and Xu XX: Paclitaxel resistance related to nuclear envelope structural sturdiness. Drug Resist Updat. 65:1008812022. View Article : Google Scholar : PubMed/NCBI | |
|
Jang JH, Lee TJ, Sung EG, Song IH and Kim JY: Dapagliflozin induces apoptosis by downregulating cFILPL and increasing cFILPS instability in Caki-1 cells. Oncol Lett. 24:4012022. View Article : Google Scholar : PubMed/NCBI | |
|
Poukkula M, Kaunisto A, Hietakangas V, Denessiouk K, Katajamaki T, Johnson MS, Sistonen L and Eriksson JE: Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J Biol Chem. 280:27345–27355. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Liu D, Fan Y, Li J, Cheng B, Lin W, Li X, Du J and Ling C: Inhibition of cFLIP overcomes acquired resistance to sorafenib via reducing ER stress-related autophagy in hepatocellular carcinoma. Oncol Rep. 40:2206–2214. 2018.PubMed/NCBI | |
|
Iyer AK, Azad N, Talbot S, Stehlik C, Lu B, Wang L and Rojanasakul Y: Antioxidant c-FLIP inhibits Fas ligand-induced NF-kappaB activation in a phosphatidylinositol 3-kinase/Akt-dependent manner. J Immunol. 187:3256–3266. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Quintavalle C, Incoronato M, Puca L, Acunzo M, Zanca C, Romano G, Garofalo M, Iaboni M, Croce CM and Condorelli G: c-FLIPL enhances anti-apoptotic Akt functions by modulation of Gsk3β activity. Cell Death Differ. 24:11342017. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao Z, Liu Y, Li Q, Liu Q, Liu Y, Luo Y and Wei S: EVs delivery of miR-1915-3p improves the chemotherapeutic efficacy of oxaliplatin in colorectal cancer. Cancer Chemother Pharmacol. 88:1021–1031. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
He J, Lee HJ, Saha S, Ruan D, Guo H and Chan CH: Inhibition of USP2 eliminates cancer stem cells and enhances TNBC responsiveness to chemotherapy. Cell Death Dis. 10:2852019. View Article : Google Scholar : PubMed/NCBI | |
|
Min HY and Lee HY: Molecular targeted therapy for anticancer treatment. Exp Mol Med. 54:1670–1694. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Assoun S, Lemiale V and Azoulay E: Molecular targeted therapy-related life-threatening toxicity in patients with malignancies. A systematic review of published cases. Intensive Care Med. 45:988–997. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Rosenberg T, Yeo KK, Mauguen A, Alexandrescu S, Prabhu SP, Tsai JW, Malinowski S, Joshirao M, Parikh K, Farouk Sait S, et al: Upfront molecular targeted therapy for the treatment of BRAF-mutant pediatric high-grade glioma. Neuro Oncol. 24:1964–1975. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Harakandi C, Nininahazwe L, Xu H, Liu B, He C, Zheng YC and Zhang H: Recent advances on the intervention sites targeting USP7-MDM2-p53 in cancer therapy. Bioorg Chem. 116:1052732021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang YT, Cheng AC, Tang HC, Huang GC, Cai L, Lin TH, Wu KJ, Tseng PH, Wang GG and Chen WY: USP7 facilitates SMAD3 autoregulation to repress cancer progression in p53-deficient lung cancer. Cell Death Dis. 12:8802021. View Article : Google Scholar : PubMed/NCBI | |
|
Park SH, Fong KW, Kim J, Wang F, Lu X, Lee Y, Brea LT, Wadosky K, Guo C, Abdulkadir SA, et al: Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. Sci Adv. 7:eabe22612021. View Article : Google Scholar : PubMed/NCBI | |
|
Su D, Wang W, Hou Y, Wang L, Yi X, Cao C, Wang Y, Gao H, Wang Y, Yang C, et al: Bimodal regulation of the PRC2 complex by USP7 underlies tumorigenesis. Nucleic Acids Res. 49:4421–4440. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Wang H, Tian L and Li H: Expression of USP7 and MARCH7 is correlated with poor prognosis in epithelial ovarian cancer. Tohoku J Exp Med. 239:165–175. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu M, Zhang Y, Wu Y, Jin J, Cao Y, Fang Z, Geng L, Yang L, Yu M, Bu Z, et al: IKZF1 selectively enhances homologous recombination repair by interacting with CtIP and USP7 in multiple myeloma. Int J Biol Sci. 18:2515–2526. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Gu L, Lin X, Cui K, Liu C, Lu B, Zhou F, Zhao Q, Shen H and Li Y: LINC00265 promotes colorectal tumorigenesis via ZMIZ2 and USP7-mediated stabilization of β-catenin. Cell Death Differ. 27:1316–1327. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ullah S, Junaid M, Liu Y, Chen S, Zhao Y and Wadood A: Validation of catalytic site residues of Ubiquitin Specific Protease 2 (USP2) by molecular dynamic simulation and novel kinetics assay for rational drug design. Mol Divers. 27:1323–1332. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Metzig M, Nickles D, Falschlehner C, Lehmann-Koch J, Straub BK, Roth W and Boutros M: An RNAi screen identifies USP2 as a factor required for TNF-α-induced NF-κB signaling. Int J Cancer. 129:607–618. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang Q, Lin Y, Li J, Kang T, Tao M, et al: Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell. 25:210–225. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Peinado H and Cano A: A hypoxic twist in metastasis. Nat Cell Biol. 10:253–254. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Mladinich M, Ruan D and Chan CH: Tackling cancer stem cells via inhibition of EMT transcription factors. Stem Cells Int. 2016:52858922016. View Article : Google Scholar : PubMed/NCBI | |
|
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JY, Cho TM, Park JM, Park S, Park M, Nam KD, Ko D, Seo J, Kim S, Jung E, et al: A novel HSP90 inhibitor SL-145 suppresses metastatic triple-negative breast cancer without triggering the heat shock response. Oncogene. 41:3289–3297. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Shih YY, Lin HY, Jan HM, Chen YJ, Ong LL, Yu AL and Lin CH: S-glutathionylation of Hsp90 enhances its degradation and correlates with favorable prognosis of breast cancer. Redox Biol. 57:1025012022. View Article : Google Scholar : PubMed/NCBI | |
|
Leow CC, Chesebrough J, Coffman KT, Fazenbaker CA, Gooya J, Weng D, Coats S, Jackson D, Jallal B and Chang Y: Antitumor efficacy of IPI-504, a selective heat shock protein 90 inhibitor against human epidermal growth factor receptor 2-positive human xenograft models as a single agent and in combination with trastuzumab or lapatinib. Mol Cancer Ther. 8:2131–2141. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Workman P, Burrows F, Neckers L and Rosen N: Drugging the cancer chaperone HSP90: Combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci. 1113:202–216. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Modi S, Stopeck A, Linden H, Solit D, Chandarlapaty S, Rosen N, D'Andrea G, Dickler M, Moynahan ME, Sugarman S, et al: HSP90 inhibition is effective in breast cancer: A phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res. 17:5132–5139. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Sesto N, Wurtzel O, Archambaud C, Sorek R and Cossart P: The excludon: A new concept in bacterial antisense RNA-mediated gene regulation. Nat Rev Microbiol. 11:75–82. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Qu X, Alsager S, Zhuo Y and Shan B: HOX transcript antisense RNA (HOTAIR) in cancer. Cancer Lett. 454:90–97. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen SP, Zhu GQ, Xing XX, Wan JL, Cai JL, Du JX, Song LN, Dai Z and Zhou J: LncRNA USP2-AS1 promotes hepatocellular carcinoma growth by enhancing YBX1-Mediated HIF1α protein translation under hypoxia. Front Oncol. 12:8823722022. View Article : Google Scholar : PubMed/NCBI | |
|
Pirnia F, Schneider E, Betticher DC and Borner MM: Mitomycin C induces apoptosis and caspase-8 and −9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ. 9:905–914. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Wang WD, Shang Y, Wang C, Ni J, Wang AM, Li GJ, Su L and Chen SZ: c-FLIP promotes drug resistance in non-small-cell lung cancer cells via upregulating FoxM1 expression. Acta Pharmacol Sin. 43:2956–2966. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Hou JQ, Qu LY, Wang GQ, Ju HW, Zhao ZW, Yu ZH and Yang HJ: Differential expression of USP2, USP14 and UBE4A between ovarian serous cystadenocarcinoma and adjacent normal tissues. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 23:504–506. 2007.(In Chinese). PubMed/NCBI | |
|
Guo B, Yu L, Sun Y, Yao N and Ma L: Long Non-Coding RNA USP2-AS1 accelerates cell proliferation and migration in ovarian cancer by sponging miR-520d-3p and Up-Regulating KIAA1522. Cancer Manag Res. 12:10541–10550. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Bao J, Yao J and Li J: lncRNA USP2-AS1 promotes colon cancer progression by modulating Hippo/YAP1 signaling. Am J Transl Res. 12:5670–5682, eCollection 2020. 2020.PubMed/NCBI | |
|
Tatari N, Khan S, Livingstone J, Zhai K, McKenna D, Ignatchenko V, Chokshi C, Gwynne WD, Singh M, Revill S, et al: The proteomic landscape of glioblastoma recurrence reveals novel and targetable immunoregulatory drivers. Acta Neuropathol. 144:1127–1142. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ji YR, Cheng CC, Lee AL, Shieh JC, Wu HJ, Huang AP, Hsu YH and Young TH: Poly (allylguanidine)-coated surfaces regulate TGF-β in glioblastoma cells to induce apoptosis via NF-κB Pathway Activation. ACS Appl Mater Interfaces. 13:59400–59410. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Joseph JV, Magaut CR, Storevik S, Geraldo LH, Mathivet T, Latif MA, Rudewicz J, Guyon J, Gambaretti M, Haukas F, et al: TGF-β promotes microtube formation in glioblastoma through thrombospondin 1. Neuro Oncol. 24:541–553. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yan X, Liao H, Cheng M, Shi X, Lin X, Feng XH and Chen YG: Smad7 protein interacts with receptor-regulated smads (R-Smads) to inhibit transforming growth factor-β (TGF-β)/smad signaling. J Biol Chem. 291:382–392. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Girish V, Lakhani AA, Thompson SL, Scaduto CM, Brown LM, Hagenson RA, Sausville EL, Mendelson BE, Kandikuppa PK, Lukow DA, et al: Oncogene-like addiction to aneuploidy in human cancers. Science. Jul 6–2023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Mejia-Hernandez JO, Raghu D, Caramia F, Clemons N, Fujihara K, Riseborough T, Teunisse A, Jochemsen AG, Abrahmsén L, Blandino G, et al: Targeting MDM4 as a novel therapeutic approach in prostate cancer independent of p53 status. Cancers (Basel). 14:39472022. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai KW, Kuo WT and Jeng SY: Tight junction protein 1 dysfunction contributes to cell motility in bladder cancer. Anticancer Res. 38:4607–4615. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chuang SJ, Cheng SC, Tang HC, Sun CY and Chou CY: 6-Thioguanine is a noncompetitive and slow binding inhibitor of human deubiquitinating protease USP2. Sci Rep. 8:31022018. View Article : Google Scholar : PubMed/NCBI | |
|
Renatus M, Parrado SG, D'Arcy A, Eidhoff U, Gerhartz B, Hassiepen U, Pierrat B, Riedl R, Vinzenz D, Worpenberg S and Kroemer M: Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure. 14:1293–1302. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kitamura H and Hashimoto M: USP2-Related cellular signaling and consequent pathophysiological outcomes. Int J Mol Sci. 22:12092021. View Article : Google Scholar : PubMed/NCBI | |
|
Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ, Lechpammer M, Huesken D, Zimmermann J, Signoretti S and Loda M: The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell. 5:253–261. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng JC, Bai A, Beckham TH, Marrison ST, Yount CL, Young K, Lu P, Bartlett AM, Wu BX, Keane BJ, et al: Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse. J Clin Invest. 123:4344–4358. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Mizutani N, Inoue M, Omori Y, Ito H, Tamiya-Koizumi K, Takagi A, Kojima T, Nakamura M, Iwaki S, Nakatochi M, et al: Increased acid ceramidase expression depends on upregulation of androgen-dependent deubiquitinases, USP2, in a human prostate cancer cell line, LNCaP. J Biochem. 158:309–319. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Vieyra-Garcia PA and Wolf P: A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther. 222:1077842021. View Article : Google Scholar : PubMed/NCBI | |
|
Nakahashi K, Nihira K, Suzuki M, Ishii T, Masuda K and Mori K: A novel mouse model of cutaneous T-cell lymphoma revealed the combined effect of mogamulizumab with psoralen and ultraviolet a therapy. Exp Dermatol. 31:1693–1698. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu J and Sage J: Novel functions for the transcription factor E2F4 in development and disease. Cell Cycle. 15:3183–3190. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Moghadami AA, Aboutalebi Vand Beilankouhi E, Kalantary-Charvadeh A, Hamzavi M, Mosayyebi B, Sedghi H, Ghorbani Haghjo A and Nazari Soltan Ahmad S: Inhibition of USP14 induces ER stress-mediated autophagy without apoptosis in lung cancer cell line A549. Cell Stress Chaperones. 25:909–917. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Chen Z, Ding X, Qiao Y and Li B: Ubiquitin-specific protease 35 (USP35) mediates cisplatin-induced apoptosis by stabilizing BIRC3 in non-small cell lung cancer. Lab Invest. 102:524–533. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Dexheimer TS, Ai Y, Liang Q, Villamil MA, Inglese J, Maloney DJ, Jadhav A, Simeonov A and Zhuang Z: Selective and cell-active inhibitors of the USP1/UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem Biol. 18:1390–1400. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou F, Du C, Xu D, Lu J, Zhou L, Wu C, Wu B and Huang J: Knockdown of ubiquitin-specific protease 51 attenuates cisplatin resistance in lung cancer through ubiquitination of zinc-finger E-box binding homeobox 1. Mol Med Rep. 22:1382–1390. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Xu B, Qiang Y, Huang H, Wang C, Li D and Qian J: Overexpression of deubiquitinating enzyme USP28 promoted non-small cell lung cancer growth. J Cell Mol Med. 19:799–805. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Cui Z, Xie Z, Li C, Xu C, Guo X, Yu J, Chen T, Facchinetti F, Bohnenberger H, et al: Deubiquitinase USP5 promotes non-small cell lung cancer cell proliferation by stabilizing cyclin D1. Transl Lung Cancer Res. 10:3995–4011. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu M, Zhang H, Lu F, Wang Z, Wu Y, Chen H, Fan X, Yin Z and Liang F: USP52 inhibits cell proliferation by stabilizing PTEN protein in non-small cell lung cancer. Biosci Rep. 41:BSR202104862021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang F, Zhao Y and Sun Y: USP2 is an SKP2 deubiquitylase that stabilizes both SKP2 and its substrates. J Biol Chem. 297:1011092021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Wang T, Qiu T, Chen Z, Ma X, Zhang L and Zou J: Ubiquitin-specific protease-44 inhibits the proliferation and migration of cells via inhibition of JNK pathway in clear cell renal cell carcinoma. BMC Cancer. 20:2142020. View Article : Google Scholar : PubMed/NCBI | |
|
Hu W, Su Y, Fei X, Wang X, Zhang G, Su C, Du T, Yang T, Wang G, Tang Z and Zhang J: Ubiquitin specific peptidase 19 is a prognostic biomarker and affect the proliferation and migration of clear cell renal cell carcinoma. Oncol Rep. 43:1964–1974. 2020.PubMed/NCBI | |
|
Meng X, Xiong Z, Xiao W, Yuan C, Wang C, Huang Y, Tong J, Shi J, Chen Z, Liu C, et al: Downregulation of ubiquitin-specific protease 2 possesses prognostic and diagnostic value and promotes the clear cell renal cell carcinoma progression. Ann Transl Med. 8:3192020. View Article : Google Scholar : PubMed/NCBI | |
|
Yi J, Tavana O, Li H, Wang D, Baer RJ and Gu W: Targeting USP2 regulation of VPRBP-mediated degradation of p53 and PD-L1 for cancer therapy. Nat Commun. 14:19412023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu L, Chen Z, Guo T, Chen W, Zhao L, Guo L and Pan X: USP2 inhibits lung cancer pathogenesis by reducing ARID2 protein degradation via ubiquitination. Biomed Res Int. 2022:15252162022. View Article : Google Scholar : PubMed/NCBI | |
|
Estlin EJ: Continuing therapy for childhood acute lymphoblastic leukaemia: Clinical and cellular pharmacology of methotrexate, 6-mercaptopurine and 6-thioguanine. Cancer Treat Rev. 27:351–363. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Vora A, Mitchell CD, Lennard L, Eden TO, Kinsey SE, Lilleyman J and Richards SM; Medical Research Council; National Cancer Research Network Childhood Leukaemia Working Party, : Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: A randomised trial. Lancet. 368:1339–1348. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Lin HC, Kuan Y, Chu HF, Cheng SC, Pan HC, Chen WY, Sun CY and Lin TH: Disulfiram and 6-Thioguanine synergistically inhibit the enzymatic activities of USP2 and USP21. Int J Biol Macromol. 176:490–497. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai HK, Gibson CJ, Murdock HM, Davineni P, Harris MH, Wang ES, Gondek LP, Kim AS, Nardi V and Lindsley RC: Allelic complexity of KMT2A partial tandem duplications in acute myeloid leukemia and myelodysplastic syndromes. Blood Adv. 6:4236–4240. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou X, Zhang P, Aryal S, Zhang L and Lu R: UTX loss alters therapeutic responses in KMT2A-rearranged acute myeloid leukemia. Leukemia. 37:226–230. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ikeda J, Shiba N, Tsujimoto SI, Yoshida M, Nakabayashi K, Ogata-Kawata H, Okamura K, Takeuchi M, Osumi T, Tomizawa D, et al: Whole transcriptome sequencing reveals a KMT2A-USP2 fusion in infant acute myeloid leukemia. Genes Chromosomes Cancer. 58:669–672. 2019.PubMed/NCBI | |
|
Lopes BA, Poubel CP, Teixeira CE, Caye-Eude A, Cave H, Meyer C, Marschalek R, Boroni M and Emerenciano M: Novel Diagnostic and therapeutic options for KMT2A-Rearranged acute leukemias. Front Pharmacol. 13:7494722022. View Article : Google Scholar : PubMed/NCBI | |
|
Blackburn PR, Smadbeck JB, Znoyko I, Webley MR, Pitel BA, Vasmatzis G, Xu X, Greipp PT, Hoppman NL, Ketterling RP, et al: Cryptic and atypical KMT2A-USP2 and KMT2A-USP8 rearrangements identified by mate pair sequencing in infant and childhood leukemia. Genes Chromosomes Cancer. 59:422–427. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Meyer C, Lopes BA, Caye-Eude A, Cave H, Arfeuille C, Cuccuini W, Sutton R, Venn NC, Oh SH, Tsaur G, et al: Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL-USP2 fusions. Leukemia. 33:2306–2340. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Cheng Y, Zheng M, Yuan B, Wang Z, Li X, Yin J, Ye M and Song Y: Targeting the ubiquitination/deubiquitination process to regulate immune checkpoint pathways. Signal Transduct Target Ther. 6:282021. View Article : Google Scholar : PubMed/NCBI | |
|
Savage RE, Tyler AN, Miao XS and Chan TC: Identification of a novel glucosylsulfate conjugate as a metabolite of 3,4-dihydro-2,2-dimethyl-2H-naphtho[1,2-b]pyran-5,6-dione (ARQ 501, beta-lapachone) in mammals. Drug Metab Dispos. 36:753–758. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ohayon S, Refua M, Hendler A, Aharoni A and Brik A: Harnessing the oxidation susceptibility of deubiquitinases for inhibition with small molecules. Angew Chem Int Ed Engl. 54:599–603. 2015.PubMed/NCBI | |
|
Nguyen TT, Ung TT, Li S, Sah DK, Park SY, Lian S and Jung YD: Lithocholic Acid Induces miR21, Promoting PTEN Inhibition via STAT3 and ERK-1/2 signaling in colorectal cancer cells. Int J Mol Sci. 22:102092021. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Wang Z, Lin R, Huang S, Miao H, Zou L, Liu K, Cui X, Wang Z, Zhang Y, et al: Lithocholic acid inhibits gallbladder cancer proliferation through interfering glutaminase-mediated glutamine metabolism. Biochem Pharmacol. 205:1152532022. View Article : Google Scholar : PubMed/NCBI | |
|
Altun M, Kramer HB, Willems LI, McDermott JL, Leach CA, Goldenberg SJ, Kumar KG, Konietzny R, Fischer R, Kogan E, et al: Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem Biol. 18:1401–1412. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Gupta SC, Kim JH, Prasad S and Aggarwal BB: Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 29:405–434. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Yang H, Landis-Piwowar KR, Chen D, Milacic V and Dou QP: Natural compounds with proteasome inhibitory activity for cancer prevention and treatment. Curr Protein Pept Sci. 9:227–239. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Issaenko OA and Amerik AY: Chalcone-based small-molecule inhibitors attenuate malignant phenotype via targeting deubiquitinating enzymes. Cell Cycle. 11:1804–1817. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Aleo E, Henderson CJ, Fontanini A, Solazzo B and Brancolini C: Identification of new compounds that trigger apoptosome-independent caspase activation and apoptosis. Cancer Res. 66:9235–9244. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Nicholson B, Leach CA, Goldenberg SJ, Francis DM, Kodrasov MP, Tian X, Shanks J, Sterner DE, Bernal A, Mattern MR, et al: Characterization of ubiquitin and ubiquitin-like-protein isopeptidase activities. Protein Sci. 17:1035–1043. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Vamisetti GB, Meledin R, Gopinath P and Brik A: Halogen Substituents in the Isoquinoline Scaffold Switches the Selectivity of Inhibition between USP2 and USP7. Chembiochem. 20:282–286. 2019.PubMed/NCBI |