|
1
|
Peng-Xu W, Xin-Ru D, Chen-Hong Z and
Hui-Juan Y: Gut microbiota and metabolic syndrome. Chin Med J.
133:808–816. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Freeman JW: Structural biology of the
tumor microenvironment. Adv Exp Med Biol. 1350:91–100. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wong-Rolle A, Wei HK, Zhao C and Jin C:
Unexpected guests in the tumor microenvironment: Microbiome in
cancer. Protein Cell. 12:426–435. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gacesa R, Kurilshikov A, Vich Vila A,
Sinha T, Klaassen MAY, Bolte LA, Andreu-Sánchez S, Chen L, Collij
V, Hu S, et al: Environmental factors shaping the gut microbiome in
a Dutch population. Nature. 604:732–739. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Sebastián Domingo JJ and Sánchez Sánchez
C: From the intestinal flora to the microbiome. Rev Esp Enferm Dig.
110:51–56. 2018.PubMed/NCBI
|
|
6
|
Lucas C, Barnich N and Nguyen HTT:
Microbiota, inflammation and colorectal cancer. Int J Mol Sci.
18:13102017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ma C, Han M, Heinrich B, Fu Q, Zhang Q,
Sandhu M, Agdashian D, Terabe M, Berzofsky JA, Fako V, et al: Gut
microbiome-mediated bile acid metabolism regulates liver cancer via
NKT cells. Science. 360:eaan59312018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Rabelo-Gonçalves EM, Roesler BM and
Zeitune JM: Extragastric manifestations of Helicobacter pylori
infection: Possible role of bacterium in liver and pancreas
diseases. World J Hepatol. 7:2968–2979. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Knezevic J, Starchl C, Tmava Berisha A and
Amrein K: Thyroid-gut-axis: How does the microbiota influence
thyroid function? Nutrients. 12:17692020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zheng Y, Fang Z, Xue Y, Zhang J, Zhu J,
Gao R, Yao S, Ye Y, Wang S, Lin C, et al: Specific gut microbiome
signature predicts the early-stage lung cancer. Gut Microbes.
11:1030–1042. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Gao X, Miao R, Zhu Y, Lin C, Yang X, Jia
R, Linghan K, Wan C and Deng J: A new insight into acute
lymphoblastic leukemia in children: Influences of changed
intestinal microfloras. BMC Pediatr. 20:2902020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Westfall S, Caracci F, Estill M, Frolinger
T, Shen L and Pasinetti GM: Chronic Stress-induced depression and
anxiety priming modulated by Gut-brain-axis immunity. Front
Immunol. 12:6705002021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Angelucci F, Cechova K, Amlerova J and
Hort J: Antibiotics, gut microbiota, and Alzheimer's disease. J
Neuroinflammation. 16:1082019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ma Q, Li Y, Li P, Wang M, Wang J, Tang Z,
Wang T, Luo L, Wang C, Wang T and Zhao B: Research progress in the
relationship between type 2 diabetes mellitus and intestinal flora.
Biomed Pharmacother. 117:1091382019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Dodiya HB, Forsyth CB, Voigt RM, Engen PA,
Patel J, Shaikh M, Green SJ, Naqib A, Roy A, Kordower JH, et al:
Chronic stress-induced gut dysfunction exacerbates Parkinson's
disease phenotype and pathology in a rotenone-induced mouse model
of Parkinson's disease. Neurobiol Dis. 135:1043522020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li Z, Lai J, Zhang P, Ding J, Jiang J, Liu
C, Huang H, Zhen H, Xi C, Sun Y, et al: Multi-omics analyses of
serum metabolome, gut microbiome and brain function reveal
dysregulated microbiota-gut-brain axis in bipolar depression. Mol
Psychiatry. 27:4123–4135. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Paget S: The distribution of secondary
growths in cancer of the breast 1889. Cancer Metastasis Rev.
8:98–101. 1989.PubMed/NCBI
|
|
18
|
Arneth B: Tumor microenvironment. Medicina
(Kaunas). 56:152019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li Y, Zhao L and Li XF: Hypoxia and the
tumor microenvironment. Technol Cancer Res Treat.
20:153303382110363042021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Meng X, Xu Y and Ning X: Tumor
microenvironment acidity modulates ROR1 to promote
epithelial-mesenchymal transition and hepatocarcinoma metastasis. J
Cell Sci. 134:jcs2553492021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Greenwood E: A perfect mismatch. Nat Rev
Cancer. 2:76–77. 2002. View
Article : Google Scholar
|
|
22
|
Denton AE, Roberts EW and Fearon DT:
Stromal cells in the tumor microenvironment. Adv Exp Med Biol.
1060:99–114. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Russo M and Nastasi C: Targeting the tumor
microenvironment: A close up of tumor-associated macrophages and
neutrophils. Front Oncol. 12:8715132022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ngambenjawong C, Gustafson HH and Pun SH:
Progress in tumor-associated macrophage (TAM)-targeted
therapeutics. Adv Drug Deliv Rev. 114:206–221. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yin Z, Li C, Wang J and Xue L:
Myeloid-derived suppressor cells: Roles in the tumor
microenvironment and tumor radiotherapy. Int J Cancer. 144:933–946.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Patente TA, Pinho MP, Oliveira AA,
Evangelista GCM, Bergami-Santos PC and Barbuto JAM: Human dendritic
cells: Their heterogeneity and clinical application potential in
cancer immunotherapy. Front Immunol. 9:31762018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Spinelli FM, Vitale DL, Sevic I and Alaniz
L: Hyaluronan in the tumor microenvironment. Adv Exp Med Biol.
1245:67–83. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wu M, Bai J, Ma C, Wei J and Du X: The
role of gut microbiota in tumor immunotherapy. J Immunol Res.
2021:50615702021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang J, Zhang F, Zhao C, Xu Q, Liang C,
Yang Y, Wang H, Shang Y, Wang Y, Mu X, et al: Dysbiosis of the gut
microbiome is associated with thyroid cancer and thyroid nodules
and correlated with clinical index of thyroid function. Endocrine.
64:564–574. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Quigley EMM: Microbiota-brain-gut axis and
neurodegenerative diseases. Curr Neurol Neurosci Rep. 17:942017.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chen Y, Zhou J and Wang L: Role and
mechanism of gut microbiota in human disease. Front Cell Infect
Microbiol. 11:6259132021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yang X, Guo Y, Chen C, Shao B, Zhao L,
Zhou Q, Liu J, Wang G, Yuan W and Sun Z: Interaction between
intestinal microbiota and tumour immunity in the tumour
microenvironment. Immunology. 164:476–493. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Maito F, Souza A, Pereira L, Smithey M and
Bonorino C: Intratumoral TLR-4 agonist injection is critical for
modulation of tumor microenvironment and tumor rejection. Isrn
Immunology. 2012:9268172012. View Article : Google Scholar
|
|
34
|
Albrengues J, Shields MA, Ng D, Park CG,
Ambrico A, Poindexter ME, Upadhyay P, Uyeminami DL, Pommier A,
Küttner V, et al: Neutrophil extracellular traps produced during
inflammation awaken dormant cancer cells in mice. Science.
361:eaao42272018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhou Z, Chen J, Yao H and Hu H:
Fusobacterium and colorectal cancer. Front Oncol. 8:3712018.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Monteran L and Erez NL: The dark side of
fibroblasts: Cancer-associated fibroblasts as mediators of
immunosuppression in the tumor microenvironment. Front Immunol.
10:18352019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhang W, Borcherding N and Kolb R: IL-1
signaling in tumor microenvironment. Adv Exp Med Biol. 1240:1–23.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Long Q, Huang C, Meng Q, Peng J, Yao F, Du
D, Wang X, Zhu W, Shi D, Xu X, et al: TNF patterns and tumor
microenvironment characterization in head and neck squamous cell
carcinoma. Front Immunol. 12:7548182021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Karakasheva TA, Lin EW, Tang Q, Qiao E,
Waldron TJ, Soni M, Klein-Szanto AJ, Sahu V, Basu D, Ohashi S, et
al: IL-6 mediates Cross-talk between tumor cells and activated
fibroblasts in the tumor microenvironment. Cancer Res.
78:4957–4970. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Batchu RB, Gruzdyn OV, Kolli BK,
Dachepalli R, Umar PS, Rai SK, Singh N, Tavva PS, Weaver DW and
Gruber SA: IL-10 signaling in the tumor microenvironment of ovarian
cancer. Adv Exp Med Biol. 1290:51–65. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gorczynski RM: IL-17 signaling in the
tumor microenvironment. Adv Exp Med Biol. 1240:47–58. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jiang R and Sun B: IL-22 signaling in the
tumor microenvironment. Adv Exp Med Biol. 1290:81–88. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Liu K, Huang A, Nie J, Tan J, Xing S, Qu Y
and Jiang K: IL-35 regulates the function of immune cells in tumor
microenvironment. Front Immunol. 12:6833322021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lan Y, Moustafa M, Knoll M, Xu C, Furkel
J, Lazorchak A, Yeung TL, Hasheminasab SM, Jenkins MH, Meister S,
et al: Simultaneous targeting of TGF-β/PD-L1 synergizes with
radiotherapy by reprogramming the tumor microenvironment to
overcome immune evasion. Cancer Cell. 39:1388–403.e10. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jobe NP, Rösel D, Dvořánková B, Kodet O,
Lacina L, Mateu R, Smetana K and Brábek J: Simultaneous blocking of
IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human
melanoma cell invasiveness. Histochem Cell Biol. 146:205–217. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Di Pilato M, Kfuri-Rubens R, Pruessmann
JN, Ozga AJ, Messemaker M, Cadilha BL, Sivakumar R, Cianciaruso C,
Warner RD, Marangoni F, et al: CXCR6 positions cytotoxic T cells to
receive critical survival signals in the tumor microenvironment.
Cell. 184:4512–30.e22. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Mukaida N, Sasaki SI and Baba T: CCL4
signaling in the tumor microenvironment. Adv Exp Med Biol.
1231:23–32. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ntanasis-Stathopoulos I, Fotiou D and
Terpos E: CCL3 signaling in the tumor microenvironment. Adv Exp Med
Biol. 1231:13–21. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhang W, Wang H, Sun M, Deng X, Wu X, Ma
Y, Li M, Shuoa SM, You Q and Miao L: CXCL5/CXCR2 axis in tumor
microenvironment as potential diagnostic biomarker and therapeutic
target. Cancer Commun (Lond). 40:69–80. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Portella L, Bello AM and Scala S: CXCL12
signaling in the tumor microenvironment. Adv Exp Med Biol.
1302:51–70. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ohtani N and Hara E: Gut-liver
axis-mediated mechanism of liver cancer: A special focus on the
role of gut microbiota. Cancer Sci. 112:4433–4443. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Huang H, Ren Z, Gao X, Hu X, Zhou Y, Jiang
J, Lu H, Yin S, Ji J, Zhou L and Zheng S: Integrated analysis of
microbiome and host transcriptome reveals correlations between gut
microbiota and clinical outcomes in HBV-related hepatocellular
carcinoma. Genome Med. 12:1022020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gargaro M, Manni G, Scalisi G, Puccetti P
and Fallarino F: Tryptophan metabolites at the crossroad of
immune-cell interaction via the aryl hydrocarbon receptor:
Implications for tumor immunotherapy. Int J Mol Sci. 22:46442021.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
He Y, Fu L, Li Y, Wang W, Gong M, Zhang J,
Dong X, Huang J, Wang Q, Mackay CR, et al: Gut microbial
metabolites facilitate anticancer therapy efficacy by modulating
cytotoxic CD8+ T cell immunity. Cell Metab.
33:988–1000.e7. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Xi Y, Yani Z, Jing M, Yinhang W, Xiaohui
H, Jing Z, Quan Q and Shuwen H: Mechanisms of induction of tumors
by cholesterol and potential therapeutic prospects. Biomed
Pharmacother. 144:1122772021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Long J, Guan P, Hu X, Yang L, He L, Lin Q,
Luo F, Li J, He X, Du Z and Li T: Natural polyphenols as targeted
modulators in colon cancer: Molecular mechanisms and applications.
Front Immunol. 12:6354842021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sepich-Poore GD, Zitvogel L, Straussman R,
Hasty J, Wargo JA and Knight R: The microbiome and human cancer.
Science. 371:eabc45522021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Arthur JC, Perez-Chanona E, Mühlbauer M,
Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B,
Rogers AB, et al: Intestinal inflammation targets cancer-inducing
activity of the microbiota. Science. 338:120–123. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Boleij A, Hechenbleikner EM, Goodwin AC,
Badani R, Stein EM, Lazarev MG, Ellis B, Carroll KC, Albesiano E,
Wick EC, et al: The Bacteroides fragilis toxin gene is prevalent in
the colon mucosa of colorectal cancer patients. Clin Infect Dis.
60:208–215. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Dutilh BE, Backus L, van Hijum SA and
Tjalsma H: Screening metatranscriptomes for toxin genes as
functional drivers of human colorectal cancer. Best Pract Res Clin
Gastroenterol. 27:85–99. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Nenkov M, Ma Y, Gaßler N and Chen Y:
Metabolic reprogramming of colorectal cancer cells and the
microenvironment: implication for therapy. Int J Mol Sci.
22:62622021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Cheong JE, Ekkati A and Sun L: A patent
review of IDO1 inhibitors for cancer. Expert Opin Ther Pat.
28:317–330. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
He Y, Huang J, Li Q, Xia W, Zhang C, Liu
Z, Xiao J, Yi Z, Deng H, Xiao Z, et al: Gut Microbiota and tumor
immune escape: A new perspective for improving tumor immunotherapy.
Cancers (Basel). 14:53172022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Spencer CN, McQuade JL, Gopalakrishnan V,
McCulloch JA, Vetizou M, Cogdill AP, Khan MAW, Zhang X, White MG,
Peterson CB, et al: Dietary fiber and probiotics influence the gut
microbiome and melanoma immunotherapy response. Science.
374:1632–1640. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ling Z, Shao L and Liu X, Cheng Y, Yan C,
Mei Y, Ji F and Liu X: Regulatory T cells and plasmacytoid
dendritic cells within the tumor microenvironment in gastric cancer
are correlated with gastric microbiota dysbiosis: A preliminary
study. Front Immunol. 10:5332019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Nakamura K and Smyth MJ: Myeloid
immunosuppression and immune checkpoints in the tumor
microenvironment. Cell Mol Immunol. 17:1–12. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Maier B, Leader AM, Chen ST, Tung N, Chang
C, LeBerichel J, Chudnovskiy A, Maskey S, Walker L, Finnigan JP, et
al: A conserved dendritic-cell regulatory program limits antitumour
immunity. Nature. 580:257–262. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lam KC, Araya RE, Huang A, Chen Q, Di
Modica M, Rodrigues RR, Lopès A, Johnson SB, Schwarz B, Bohrnsen E,
et al: Microbiota triggers STING-type I IFN-dependent monocyte
reprogramming of the tumor microenvironment. Cell.
184:5338–5356.e21. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Sethi V, Kurtom S, Tarique M, Lavania S,
Malchiodi Z, Hellmund L, Zhang L, Sharma U, Giri B, Garg B, et al:
Gut microbiota promotes tumor growth in mice by modulating immune
response. Gastroenterology. 155:33–37.e6. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gagliani N, Hu B, Huber S, Elinav E and
Flavell RA: The fire within: Microbes inflame tumors. Cell.
157:776–783. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Tang YA, Chen YF, Bao Y, Mahara S, Yatim
S, Oguz G, Lee PL, Feng M, Cai Y, Tan EY, et al: Hypoxic tumor
microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote
chemoresistance in colorectal cancer. Proc Natl Acad Sci USA.
115:E5990–E5999. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Rius J, Guma M, Schachtrup C, Akassoglou
K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG and Karin M:
NF-kappaB links innate immunity to the hypoxic response through
transcriptional regulation of HIF-1alpha. Nature. 453:807–811.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Howe C, Kim SJ, Mitchell J, Im E, Kim YS,
Kim YS and Rhee SH: Differential expression of tumor-associated
genes and altered gut microbiome with decreased Akkermansia
muciniphila confer a tumor-preventive microenvironment in
intestinal epithelial Pten-deficient mice. Biochim Biophys Acta Mol
Basis Dis. 1864:3746–3758. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Li R, Zhou R, Wang H, Li W, Pan M, Yao X,
Zhan W, Yang S, Xu L, Ding Y and Zhao L: Gut microbiota-stimulated
cathepsin K secretion mediates TLR4-dependent M2 macrophage
polarization and promotes tumor metastasis in colorectal cancer.
Cell Death Differ. 26:2447–2463. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhou S, Zhu C, Jin S, Cui C, Xiao L, Yang
Z, Wang X and Yu J: The intestinal microbiota influences the
microenvironment of metastatic colon cancer by targeting miRNAs.
FEMS Microbiol Lett. 369:fnac0232022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Xing SC, Huang CB, Wu RT, Yang YW, Chen
JY, Mi JD, Wu YB, Wang Y and Liao XD: Breed differences in the
expression levels of gga-miR-222a in laying hens influenced
H2S production by regulating methionine synthase genes
in gut bacteria. Microbiome. 9:1772021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhou X, Liu Y, Xiong X, Chen J, Tang W, He
L, Zhang Z, Yin Y and Li F: Intestinal accumulation of
microbiota-produced succinate caused by loss of microRNAs leads to
diarrhea in weanling piglets. Gut Microbes. 14:20913692022.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Li Z, Zhang X, Liu C and Ma J: Non-immune
cell components in the gastrointestinal tumor microenvironment
influencing tumor immunotherapy. Front Cell Dev Biol. 9:7299412021.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Ding S, Hu C, Fang J and Liu G: The
protective role of probiotics against colorectal cancer. Oxid Med
Cell Longev. 2020:88845832020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Shi L, Sheng J, Wang M, Luo H, Zhu J,
Zhang B, Liu Z and Yang X: Combination therapy of TGF-β blockade
and commensal-derived probiotics provides enhanced antitumor immune
response and tumor suppression. Theranostics. 9:4115–4129. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yue Y, Ye K, Lu J, Wang X, Zhang S, Liu L,
Yang B, Nassar K, Xu X, Pang X and Lv J: Probiotic strain
Lactobacillus plantarum YYC-3 prevents colon cancer in mice by
regulating the tumour microenvironment. Biomed Pharmacother.
127:1101592020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Baruch EN, Youngster I, Ben-Betzalel G,
Ortenberg R, Lahat A, Katz L, Adler K, Dick-Necula D, Raskin S,
Bloch N, et al: Fecal microbiota transplant promotes response in
immunotherapy-refractory melanoma patients. Science. 371:602–609.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Di Modica M, Gargari G, Regondi V, Bonizzi
A, Arioli S, Belmonte B, De Cecco L, Fasano E, Bianchi F,
Bertolotti A, et al: Gut microbiota condition the therapeutic
efficacy of trastuzumab in HER2-positive breast cancer. Cancer Res.
81:2195–2206. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ke S, Weiss ST and Liu YY: Rejuvenating
the human gut microbiome. Trends Mol Med. 28:619–630. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chen L, Brar MS, Leung FC and Hsiao WL:
Triterpenoid herbal saponins enhance beneficial bacteria, decrease
sulfate-reducing bacteria, modulate inflammatory intestinal
microenvironment and exert cancer preventive effects in ApcMin/+
mice. Oncotarget. 7:31226–31242. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Fu H, Liu X, Jin L, Lang J, Hu Z, Mao W,
Cheng C and Shou Q: Safflower yellow reduces DEN-induced
hepatocellular carcinoma by enhancing liver immune infiltration
through promotion of collagen degradation and modulation of gut
microbiota. Food Funct. 12:10632–10643. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ding G, Gong Q, Ma J, Liu X, Wang Y and
Cheng X: Immunosuppressive activity is attenuated by Astragalus
polysaccharides through remodeling the gut microenvironment in
melanoma mice. Cancer Sci. 112:4050–4063. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Li B, Liu M, Wang Y, Gong S, Yao W, Li W,
Gao H and Wei M: Puerarin improves the bone micro-environment to
inhibit OVX-induced osteoporosis via modulating SCFAs released by
the gut microbiota and repairing intestinal mucosal integrity.
Biomed Pharmacother. 132:1109232020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Shi HJ, Chen XY, Chen XR, Wu ZB, Li JY,
Sun YQ, Shi DX and Li J: Chinese medicine formula Siwu-Yin inhibits
esophageal precancerous lesions by improving intestinal flora and
macrophage polarization. Front Pharmacol. 13:8123862022. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Jiang F, Liu M, Wang H, Shi G, Chen B,
Chen T, Yuan X, Zhu P, Zhou J, Wang Q and Chen Y: Wu Mei wan
attenuates CAC by regulating gut microbiota and the NF-kB/IL6-STAT3
signaling pathway. Biomed Pharmacother. 125:1099822020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liu YJ, Tang B, Wang FC, Tang L, Lei YY,
Luo Y, Huang SJ, Yang M, Wu LY, Wang W, et al: Parthenolide
ameliorates colon inflammation through regulating Treg/Th17 balance
in a gut microbiota-dependent manner. Theranostics. 10:5225–5241.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li T, Han L, Ma S, Lin W, Ba X, Yan J,
Huang Y, Tu S and Qin K: Interaction of gut microbiota with the
tumor microenvironment: A new strategy for antitumor treatment and
traditional Chinese medicine in colorectal cancer. Front Mol
Biosci. 10:11403252023. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Tong Y, Gao H, Qi Q, Liu X, Li J, Gao J,
Li P, Wang Y, Du L and Wang C: High fat diet, gut microbiome and
gastrointestinal cancer. Theranostics. 11:5889–5910. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Jin H and Zhang C: High fat high calories
diet (HFD) increase gut susceptibility to carcinogens by altering
the gut microbial community. J Cancer. 11:4091–4098. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
AlHilli MM and Bae-Jump V: Diet and gut
microbiome interactions in gynecologic cancer. Gynecol Oncol.
159:299–308. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wu W, Zhou J, Xuan R, Chen J, Han H, Liu
J, Niu T, Chen H and Wang F: Dietary κ-carrageenan facilitates gut
microbiota-mediated intestinal inflammation. Carbohydr Polym.
277:1188302022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Lee JY, Tsolis RM and Bäumler AJ: The
microbiome and gut homeostasis. Science. 377:eabp99602022.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Peterson CT, Perez Santiago J, Iablokov
SN, Chopra D, Rodionov DA and Peterson SN: Short-Chain fatty acids
modulate healthy gut microbiota composition and functional
potential. Curr Microbiol. 79:1282022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Yu LX and Schwabe RF: The gut microbiome
and liver cancer: Mechanisms and clinical translation. Nat Rev
Gastroenterol Hepatol. 14:527–539. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Roberti MP, Yonekura S, Duong CPM, Picard
M, Ferrere G, Tidjani Alou M, Rauber C, Iebba V, Lehmann CHK, Amon
L, et al: Chemotherapy-induced ileal crypt apoptosis and the ileal
microbiome shape immunosurveillance and prognosis of proximal colon
cancer. Nat Med. 26:919–931. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yang Q, Zhang J and Zhu Y: Potential roles
of the gut microbiota in pancreatic carcinogenesis and
therapeutics. Front Cell Infect Microbiol. 12:8720192022.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Wang Z, Qin X, Hu D, Huang J, Guo E, Xiao
R, Li W, Sun C and Chen G: Akkermansia supplementation reverses the
tumor-promoting effect of the fecal microbiota transplantation in
ovarian cancer. Cell Rep. 41:1118902022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Sevcikova A, Izoldova N, Stevurkova V,
Kasperova B, Chovanec M, Ciernikova S and Mego M: The impact of the
microbiome on resistance to cancer treatment with chemotherapeutic
agents and immunotherapy. Int J Mol Sci. 23:4882022. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Liu J, Liu C and Yue J: Radiotherapy and
the gut microbiome: Facts and fiction. Radiat Oncol. 16:92021.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Qiu Q, Lin Y, Ma Y, Li X, Liang J, Chen Z,
Liu K, Huang Y, Luo H, Huang R and Luo L: Exploring the emerging
role of the gut microbiota and tumor microenvironment in cancer
immunotherapy. Front Immunol. 11:6122022020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wang D, Hao H, Li X and Wang Z: The effect
of intestinal flora on immune checkpoint inhibitors in tumor
treatment: A narrative review. Ann Transl Med. 8:10972020.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Smith M, Dai A, Ghilardi G, Amelsberg KV,
Devlin SM, Pajarillo R, Slingerland JB, Beghi S, Herrera PS,
Giardina P, et al: Gut microbiome correlates of response and
toxicity following anti-CD19 CAR T cell therapy. Nat Med.
28:713–723. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Ma J, Huang L, Hu D, Zeng S, Han Y and
Shen H: The role of the tumor microbe microenvironment in the tumor
immune microenvironment: Bystander, activator, or inhibitor? J Exp
Clin Cancer Res. 40:3272021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Sethi V, Vitiello GA, Saxena D, Miller G
and Dudeja V: The role of the microbiome in immunologic development
and its implication for pancreatic cancer immunotherapy.
Gastroenterology. 156:2097–2115.e2. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Wei D, Wang L, Zuo X and Bresalier RS:
Vitamin D: Promises on the Horizon and Challenges Ahead for
Fighting Pancreatic Cancer. Cancers (Basel). 13:27162021.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Xiong J, He J, Zhu J, Pan J, Liao W, Ye H,
Wang H, Song Y, Du Y, Cui B, et al: Lactylation-driven
METTL3-mediated RNA m6A modification promotes
immunosuppression of tumor-infiltrating myeloid cells. Mol Cell.
82:1660–1677.e10. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Kumar H, Lund R, Laiho A, Lundelin K, Ley
RE, Isolauri E and Salminen S: Gut microbiota as an epigenetic
regulator: Pilot study based on whole-genome methylation analysis.
mBio. 5:e02113–14. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Wang L, Zhang S, Li H and Xu Y, Wu Q, Shen
J, Li T and Xu Y: Quantification of m6A RNA methylation modulators
pattern was a potential biomarker for prognosis and associated with
tumor immune microenvironment of pancreatic adenocarcinoma. BMC
Cancer. 21:8762021. View Article : Google Scholar : PubMed/NCBI
|