
Advances in the role of gut microbiota in the regulation of the tumor microenvironment (Review)
- Authors:
- Tian Xinyuan
- Yu Lei
- Shi Jianping
- Zhao Rongwei
- Shi Ruiwen
- Zhang Ye
- Zhao Jing
- Tian Chunfang
- Cui Hongwei
- Guan Haibin
-
Affiliations: School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China, Department of Pharmacy, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China, School of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China, Department of Obstetrics and Gynecology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China, Department of Oncology, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China, Department of Scientific Research, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China - Published online on: August 22, 2023 https://doi.org/10.3892/or.2023.8618
- Article Number: 181
-
Copyright: © Xinyuan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Peng-Xu W, Xin-Ru D, Chen-Hong Z and Hui-Juan Y: Gut microbiota and metabolic syndrome. Chin Med J. 133:808–816. 2020. View Article : Google Scholar : PubMed/NCBI | |
Freeman JW: Structural biology of the tumor microenvironment. Adv Exp Med Biol. 1350:91–100. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wong-Rolle A, Wei HK, Zhao C and Jin C: Unexpected guests in the tumor microenvironment: Microbiome in cancer. Protein Cell. 12:426–435. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gacesa R, Kurilshikov A, Vich Vila A, Sinha T, Klaassen MAY, Bolte LA, Andreu-Sánchez S, Chen L, Collij V, Hu S, et al: Environmental factors shaping the gut microbiome in a Dutch population. Nature. 604:732–739. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sebastián Domingo JJ and Sánchez Sánchez C: From the intestinal flora to the microbiome. Rev Esp Enferm Dig. 110:51–56. 2018.PubMed/NCBI | |
Lucas C, Barnich N and Nguyen HTT: Microbiota, inflammation and colorectal cancer. Int J Mol Sci. 18:13102017. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, Agdashian D, Terabe M, Berzofsky JA, Fako V, et al: Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 360:eaan59312018. View Article : Google Scholar : PubMed/NCBI | |
Rabelo-Gonçalves EM, Roesler BM and Zeitune JM: Extragastric manifestations of Helicobacter pylori infection: Possible role of bacterium in liver and pancreas diseases. World J Hepatol. 7:2968–2979. 2015. View Article : Google Scholar : PubMed/NCBI | |
Knezevic J, Starchl C, Tmava Berisha A and Amrein K: Thyroid-gut-axis: How does the microbiota influence thyroid function? Nutrients. 12:17692020. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Fang Z, Xue Y, Zhang J, Zhu J, Gao R, Yao S, Ye Y, Wang S, Lin C, et al: Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes. 11:1030–1042. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Miao R, Zhu Y, Lin C, Yang X, Jia R, Linghan K, Wan C and Deng J: A new insight into acute lymphoblastic leukemia in children: Influences of changed intestinal microfloras. BMC Pediatr. 20:2902020. View Article : Google Scholar : PubMed/NCBI | |
Westfall S, Caracci F, Estill M, Frolinger T, Shen L and Pasinetti GM: Chronic Stress-induced depression and anxiety priming modulated by Gut-brain-axis immunity. Front Immunol. 12:6705002021. View Article : Google Scholar : PubMed/NCBI | |
Angelucci F, Cechova K, Amlerova J and Hort J: Antibiotics, gut microbiota, and Alzheimer's disease. J Neuroinflammation. 16:1082019. View Article : Google Scholar : PubMed/NCBI | |
Ma Q, Li Y, Li P, Wang M, Wang J, Tang Z, Wang T, Luo L, Wang C, Wang T and Zhao B: Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed Pharmacother. 117:1091382019. View Article : Google Scholar : PubMed/NCBI | |
Dodiya HB, Forsyth CB, Voigt RM, Engen PA, Patel J, Shaikh M, Green SJ, Naqib A, Roy A, Kordower JH, et al: Chronic stress-induced gut dysfunction exacerbates Parkinson's disease phenotype and pathology in a rotenone-induced mouse model of Parkinson's disease. Neurobiol Dis. 135:1043522020. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Lai J, Zhang P, Ding J, Jiang J, Liu C, Huang H, Zhen H, Xi C, Sun Y, et al: Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-brain axis in bipolar depression. Mol Psychiatry. 27:4123–4135. 2022. View Article : Google Scholar : PubMed/NCBI | |
Paget S: The distribution of secondary growths in cancer of the breast 1889. Cancer Metastasis Rev. 8:98–101. 1989.PubMed/NCBI | |
Arneth B: Tumor microenvironment. Medicina (Kaunas). 56:152019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhao L and Li XF: Hypoxia and the tumor microenvironment. Technol Cancer Res Treat. 20:153303382110363042021. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Xu Y and Ning X: Tumor microenvironment acidity modulates ROR1 to promote epithelial-mesenchymal transition and hepatocarcinoma metastasis. J Cell Sci. 134:jcs2553492021. View Article : Google Scholar : PubMed/NCBI | |
Greenwood E: A perfect mismatch. Nat Rev Cancer. 2:76–77. 2002. View Article : Google Scholar | |
Denton AE, Roberts EW and Fearon DT: Stromal cells in the tumor microenvironment. Adv Exp Med Biol. 1060:99–114. 2018. View Article : Google Scholar : PubMed/NCBI | |
Russo M and Nastasi C: Targeting the tumor microenvironment: A close up of tumor-associated macrophages and neutrophils. Front Oncol. 12:8715132022. View Article : Google Scholar : PubMed/NCBI | |
Ngambenjawong C, Gustafson HH and Pun SH: Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 114:206–221. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yin Z, Li C, Wang J and Xue L: Myeloid-derived suppressor cells: Roles in the tumor microenvironment and tumor radiotherapy. Int J Cancer. 144:933–946. 2019. View Article : Google Scholar : PubMed/NCBI | |
Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC and Barbuto JAM: Human dendritic cells: Their heterogeneity and clinical application potential in cancer immunotherapy. Front Immunol. 9:31762018. View Article : Google Scholar : PubMed/NCBI | |
Spinelli FM, Vitale DL, Sevic I and Alaniz L: Hyaluronan in the tumor microenvironment. Adv Exp Med Biol. 1245:67–83. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Bai J, Ma C, Wei J and Du X: The role of gut microbiota in tumor immunotherapy. J Immunol Res. 2021:50615702021. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhang F, Zhao C, Xu Q, Liang C, Yang Y, Wang H, Shang Y, Wang Y, Mu X, et al: Dysbiosis of the gut microbiome is associated with thyroid cancer and thyroid nodules and correlated with clinical index of thyroid function. Endocrine. 64:564–574. 2019. View Article : Google Scholar : PubMed/NCBI | |
Quigley EMM: Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep. 17:942017. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhou J and Wang L: Role and mechanism of gut microbiota in human disease. Front Cell Infect Microbiol. 11:6259132021. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Guo Y, Chen C, Shao B, Zhao L, Zhou Q, Liu J, Wang G, Yuan W and Sun Z: Interaction between intestinal microbiota and tumour immunity in the tumour microenvironment. Immunology. 164:476–493. 2021. View Article : Google Scholar : PubMed/NCBI | |
Maito F, Souza A, Pereira L, Smithey M and Bonorino C: Intratumoral TLR-4 agonist injection is critical for modulation of tumor microenvironment and tumor rejection. Isrn Immunology. 2012:9268172012. View Article : Google Scholar | |
Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME, Upadhyay P, Uyeminami DL, Pommier A, Küttner V, et al: Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 361:eaao42272018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Chen J, Yao H and Hu H: Fusobacterium and colorectal cancer. Front Oncol. 8:3712018. View Article : Google Scholar : PubMed/NCBI | |
Monteran L and Erez NL: The dark side of fibroblasts: Cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front Immunol. 10:18352019. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Borcherding N and Kolb R: IL-1 signaling in tumor microenvironment. Adv Exp Med Biol. 1240:1–23. 2020. View Article : Google Scholar : PubMed/NCBI | |
Long Q, Huang C, Meng Q, Peng J, Yao F, Du D, Wang X, Zhu W, Shi D, Xu X, et al: TNF patterns and tumor microenvironment characterization in head and neck squamous cell carcinoma. Front Immunol. 12:7548182021. View Article : Google Scholar : PubMed/NCBI | |
Karakasheva TA, Lin EW, Tang Q, Qiao E, Waldron TJ, Soni M, Klein-Szanto AJ, Sahu V, Basu D, Ohashi S, et al: IL-6 mediates Cross-talk between tumor cells and activated fibroblasts in the tumor microenvironment. Cancer Res. 78:4957–4970. 2018. View Article : Google Scholar : PubMed/NCBI | |
Batchu RB, Gruzdyn OV, Kolli BK, Dachepalli R, Umar PS, Rai SK, Singh N, Tavva PS, Weaver DW and Gruber SA: IL-10 signaling in the tumor microenvironment of ovarian cancer. Adv Exp Med Biol. 1290:51–65. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gorczynski RM: IL-17 signaling in the tumor microenvironment. Adv Exp Med Biol. 1240:47–58. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang R and Sun B: IL-22 signaling in the tumor microenvironment. Adv Exp Med Biol. 1290:81–88. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Huang A, Nie J, Tan J, Xing S, Qu Y and Jiang K: IL-35 regulates the function of immune cells in tumor microenvironment. Front Immunol. 12:6833322021. View Article : Google Scholar : PubMed/NCBI | |
Lan Y, Moustafa M, Knoll M, Xu C, Furkel J, Lazorchak A, Yeung TL, Hasheminasab SM, Jenkins MH, Meister S, et al: Simultaneous targeting of TGF-β/PD-L1 synergizes with radiotherapy by reprogramming the tumor microenvironment to overcome immune evasion. Cancer Cell. 39:1388–403.e10. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jobe NP, Rösel D, Dvořánková B, Kodet O, Lacina L, Mateu R, Smetana K and Brábek J: Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem Cell Biol. 146:205–217. 2016. View Article : Google Scholar : PubMed/NCBI | |
Di Pilato M, Kfuri-Rubens R, Pruessmann JN, Ozga AJ, Messemaker M, Cadilha BL, Sivakumar R, Cianciaruso C, Warner RD, Marangoni F, et al: CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell. 184:4512–30.e22. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mukaida N, Sasaki SI and Baba T: CCL4 signaling in the tumor microenvironment. Adv Exp Med Biol. 1231:23–32. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ntanasis-Stathopoulos I, Fotiou D and Terpos E: CCL3 signaling in the tumor microenvironment. Adv Exp Med Biol. 1231:13–21. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Wang H, Sun M, Deng X, Wu X, Ma Y, Li M, Shuoa SM, You Q and Miao L: CXCL5/CXCR2 axis in tumor microenvironment as potential diagnostic biomarker and therapeutic target. Cancer Commun (Lond). 40:69–80. 2020. View Article : Google Scholar : PubMed/NCBI | |
Portella L, Bello AM and Scala S: CXCL12 signaling in the tumor microenvironment. Adv Exp Med Biol. 1302:51–70. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ohtani N and Hara E: Gut-liver axis-mediated mechanism of liver cancer: A special focus on the role of gut microbiota. Cancer Sci. 112:4433–4443. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Ren Z, Gao X, Hu X, Zhou Y, Jiang J, Lu H, Yin S, Ji J, Zhou L and Zheng S: Integrated analysis of microbiome and host transcriptome reveals correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma. Genome Med. 12:1022020. View Article : Google Scholar : PubMed/NCBI | |
Gargaro M, Manni G, Scalisi G, Puccetti P and Fallarino F: Tryptophan metabolites at the crossroad of immune-cell interaction via the aryl hydrocarbon receptor: Implications for tumor immunotherapy. Int J Mol Sci. 22:46442021. View Article : Google Scholar : PubMed/NCBI | |
He Y, Fu L, Li Y, Wang W, Gong M, Zhang J, Dong X, Huang J, Wang Q, Mackay CR, et al: Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 33:988–1000.e7. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xi Y, Yani Z, Jing M, Yinhang W, Xiaohui H, Jing Z, Quan Q and Shuwen H: Mechanisms of induction of tumors by cholesterol and potential therapeutic prospects. Biomed Pharmacother. 144:1122772021. View Article : Google Scholar : PubMed/NCBI | |
Long J, Guan P, Hu X, Yang L, He L, Lin Q, Luo F, Li J, He X, Du Z and Li T: Natural polyphenols as targeted modulators in colon cancer: Molecular mechanisms and applications. Front Immunol. 12:6354842021. View Article : Google Scholar : PubMed/NCBI | |
Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA and Knight R: The microbiome and human cancer. Science. 371:eabc45522021. View Article : Google Scholar : PubMed/NCBI | |
Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, et al: Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 338:120–123. 2012. View Article : Google Scholar : PubMed/NCBI | |
Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, Ellis B, Carroll KC, Albesiano E, Wick EC, et al: The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis. 60:208–215. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dutilh BE, Backus L, van Hijum SA and Tjalsma H: Screening metatranscriptomes for toxin genes as functional drivers of human colorectal cancer. Best Pract Res Clin Gastroenterol. 27:85–99. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nenkov M, Ma Y, Gaßler N and Chen Y: Metabolic reprogramming of colorectal cancer cells and the microenvironment: implication for therapy. Int J Mol Sci. 22:62622021. View Article : Google Scholar : PubMed/NCBI | |
Cheong JE, Ekkati A and Sun L: A patent review of IDO1 inhibitors for cancer. Expert Opin Ther Pat. 28:317–330. 2018. View Article : Google Scholar : PubMed/NCBI | |
He Y, Huang J, Li Q, Xia W, Zhang C, Liu Z, Xiao J, Yi Z, Deng H, Xiao Z, et al: Gut Microbiota and tumor immune escape: A new perspective for improving tumor immunotherapy. Cancers (Basel). 14:53172022. View Article : Google Scholar : PubMed/NCBI | |
Spencer CN, McQuade JL, Gopalakrishnan V, McCulloch JA, Vetizou M, Cogdill AP, Khan MAW, Zhang X, White MG, Peterson CB, et al: Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science. 374:1632–1640. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ling Z, Shao L and Liu X, Cheng Y, Yan C, Mei Y, Ji F and Liu X: Regulatory T cells and plasmacytoid dendritic cells within the tumor microenvironment in gastric cancer are correlated with gastric microbiota dysbiosis: A preliminary study. Front Immunol. 10:5332019. View Article : Google Scholar : PubMed/NCBI | |
Nakamura K and Smyth MJ: Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol. 17:1–12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Maier B, Leader AM, Chen ST, Tung N, Chang C, LeBerichel J, Chudnovskiy A, Maskey S, Walker L, Finnigan JP, et al: A conserved dendritic-cell regulatory program limits antitumour immunity. Nature. 580:257–262. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lam KC, Araya RE, Huang A, Chen Q, Di Modica M, Rodrigues RR, Lopès A, Johnson SB, Schwarz B, Bohrnsen E, et al: Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell. 184:5338–5356.e21. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sethi V, Kurtom S, Tarique M, Lavania S, Malchiodi Z, Hellmund L, Zhang L, Sharma U, Giri B, Garg B, et al: Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology. 155:33–37.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gagliani N, Hu B, Huber S, Elinav E and Flavell RA: The fire within: Microbes inflame tumors. Cell. 157:776–783. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tang YA, Chen YF, Bao Y, Mahara S, Yatim S, Oguz G, Lee PL, Feng M, Cai Y, Tan EY, et al: Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer. Proc Natl Acad Sci USA. 115:E5990–E5999. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG and Karin M: NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 453:807–811. 2008. View Article : Google Scholar : PubMed/NCBI | |
Howe C, Kim SJ, Mitchell J, Im E, Kim YS, Kim YS and Rhee SH: Differential expression of tumor-associated genes and altered gut microbiome with decreased Akkermansia muciniphila confer a tumor-preventive microenvironment in intestinal epithelial Pten-deficient mice. Biochim Biophys Acta Mol Basis Dis. 1864:3746–3758. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li R, Zhou R, Wang H, Li W, Pan M, Yao X, Zhan W, Yang S, Xu L, Ding Y and Zhao L: Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ. 26:2447–2463. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Zhu C, Jin S, Cui C, Xiao L, Yang Z, Wang X and Yu J: The intestinal microbiota influences the microenvironment of metastatic colon cancer by targeting miRNAs. FEMS Microbiol Lett. 369:fnac0232022. View Article : Google Scholar : PubMed/NCBI | |
Xing SC, Huang CB, Wu RT, Yang YW, Chen JY, Mi JD, Wu YB, Wang Y and Liao XD: Breed differences in the expression levels of gga-miR-222a in laying hens influenced H2S production by regulating methionine synthase genes in gut bacteria. Microbiome. 9:1772021. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Liu Y, Xiong X, Chen J, Tang W, He L, Zhang Z, Yin Y and Li F: Intestinal accumulation of microbiota-produced succinate caused by loss of microRNAs leads to diarrhea in weanling piglets. Gut Microbes. 14:20913692022. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhang X, Liu C and Ma J: Non-immune cell components in the gastrointestinal tumor microenvironment influencing tumor immunotherapy. Front Cell Dev Biol. 9:7299412021. View Article : Google Scholar : PubMed/NCBI | |
Ding S, Hu C, Fang J and Liu G: The protective role of probiotics against colorectal cancer. Oxid Med Cell Longev. 2020:88845832020. View Article : Google Scholar : PubMed/NCBI | |
Shi L, Sheng J, Wang M, Luo H, Zhu J, Zhang B, Liu Z and Yang X: Combination therapy of TGF-β blockade and commensal-derived probiotics provides enhanced antitumor immune response and tumor suppression. Theranostics. 9:4115–4129. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yue Y, Ye K, Lu J, Wang X, Zhang S, Liu L, Yang B, Nassar K, Xu X, Pang X and Lv J: Probiotic strain Lactobacillus plantarum YYC-3 prevents colon cancer in mice by regulating the tumour microenvironment. Biomed Pharmacother. 127:1101592020. View Article : Google Scholar : PubMed/NCBI | |
Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L, Adler K, Dick-Necula D, Raskin S, Bloch N, et al: Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 371:602–609. 2021. View Article : Google Scholar : PubMed/NCBI | |
Di Modica M, Gargari G, Regondi V, Bonizzi A, Arioli S, Belmonte B, De Cecco L, Fasano E, Bianchi F, Bertolotti A, et al: Gut microbiota condition the therapeutic efficacy of trastuzumab in HER2-positive breast cancer. Cancer Res. 81:2195–2206. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ke S, Weiss ST and Liu YY: Rejuvenating the human gut microbiome. Trends Mol Med. 28:619–630. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Brar MS, Leung FC and Hsiao WL: Triterpenoid herbal saponins enhance beneficial bacteria, decrease sulfate-reducing bacteria, modulate inflammatory intestinal microenvironment and exert cancer preventive effects in ApcMin/+ mice. Oncotarget. 7:31226–31242. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fu H, Liu X, Jin L, Lang J, Hu Z, Mao W, Cheng C and Shou Q: Safflower yellow reduces DEN-induced hepatocellular carcinoma by enhancing liver immune infiltration through promotion of collagen degradation and modulation of gut microbiota. Food Funct. 12:10632–10643. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ding G, Gong Q, Ma J, Liu X, Wang Y and Cheng X: Immunosuppressive activity is attenuated by Astragalus polysaccharides through remodeling the gut microenvironment in melanoma mice. Cancer Sci. 112:4050–4063. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li B, Liu M, Wang Y, Gong S, Yao W, Li W, Gao H and Wei M: Puerarin improves the bone micro-environment to inhibit OVX-induced osteoporosis via modulating SCFAs released by the gut microbiota and repairing intestinal mucosal integrity. Biomed Pharmacother. 132:1109232020. View Article : Google Scholar : PubMed/NCBI | |
Shi HJ, Chen XY, Chen XR, Wu ZB, Li JY, Sun YQ, Shi DX and Li J: Chinese medicine formula Siwu-Yin inhibits esophageal precancerous lesions by improving intestinal flora and macrophage polarization. Front Pharmacol. 13:8123862022. View Article : Google Scholar : PubMed/NCBI | |
Jiang F, Liu M, Wang H, Shi G, Chen B, Chen T, Yuan X, Zhu P, Zhou J, Wang Q and Chen Y: Wu Mei wan attenuates CAC by regulating gut microbiota and the NF-kB/IL6-STAT3 signaling pathway. Biomed Pharmacother. 125:1099822020. View Article : Google Scholar : PubMed/NCBI | |
Liu YJ, Tang B, Wang FC, Tang L, Lei YY, Luo Y, Huang SJ, Yang M, Wu LY, Wang W, et al: Parthenolide ameliorates colon inflammation through regulating Treg/Th17 balance in a gut microbiota-dependent manner. Theranostics. 10:5225–5241. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li T, Han L, Ma S, Lin W, Ba X, Yan J, Huang Y, Tu S and Qin K: Interaction of gut microbiota with the tumor microenvironment: A new strategy for antitumor treatment and traditional Chinese medicine in colorectal cancer. Front Mol Biosci. 10:11403252023. View Article : Google Scholar : PubMed/NCBI | |
Tong Y, Gao H, Qi Q, Liu X, Li J, Gao J, Li P, Wang Y, Du L and Wang C: High fat diet, gut microbiome and gastrointestinal cancer. Theranostics. 11:5889–5910. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jin H and Zhang C: High fat high calories diet (HFD) increase gut susceptibility to carcinogens by altering the gut microbial community. J Cancer. 11:4091–4098. 2020. View Article : Google Scholar : PubMed/NCBI | |
AlHilli MM and Bae-Jump V: Diet and gut microbiome interactions in gynecologic cancer. Gynecol Oncol. 159:299–308. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Zhou J, Xuan R, Chen J, Han H, Liu J, Niu T, Chen H and Wang F: Dietary κ-carrageenan facilitates gut microbiota-mediated intestinal inflammation. Carbohydr Polym. 277:1188302022. View Article : Google Scholar : PubMed/NCBI | |
Lee JY, Tsolis RM and Bäumler AJ: The microbiome and gut homeostasis. Science. 377:eabp99602022. View Article : Google Scholar : PubMed/NCBI | |
Peterson CT, Perez Santiago J, Iablokov SN, Chopra D, Rodionov DA and Peterson SN: Short-Chain fatty acids modulate healthy gut microbiota composition and functional potential. Curr Microbiol. 79:1282022. View Article : Google Scholar : PubMed/NCBI | |
Yu LX and Schwabe RF: The gut microbiome and liver cancer: Mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol. 14:527–539. 2017. View Article : Google Scholar : PubMed/NCBI | |
Roberti MP, Yonekura S, Duong CPM, Picard M, Ferrere G, Tidjani Alou M, Rauber C, Iebba V, Lehmann CHK, Amon L, et al: Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat Med. 26:919–931. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Zhang J and Zhu Y: Potential roles of the gut microbiota in pancreatic carcinogenesis and therapeutics. Front Cell Infect Microbiol. 12:8720192022. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Qin X, Hu D, Huang J, Guo E, Xiao R, Li W, Sun C and Chen G: Akkermansia supplementation reverses the tumor-promoting effect of the fecal microbiota transplantation in ovarian cancer. Cell Rep. 41:1118902022. View Article : Google Scholar : PubMed/NCBI | |
Sevcikova A, Izoldova N, Stevurkova V, Kasperova B, Chovanec M, Ciernikova S and Mego M: The impact of the microbiome on resistance to cancer treatment with chemotherapeutic agents and immunotherapy. Int J Mol Sci. 23:4882022. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Liu C and Yue J: Radiotherapy and the gut microbiome: Facts and fiction. Radiat Oncol. 16:92021. View Article : Google Scholar : PubMed/NCBI | |
Qiu Q, Lin Y, Ma Y, Li X, Liang J, Chen Z, Liu K, Huang Y, Luo H, Huang R and Luo L: Exploring the emerging role of the gut microbiota and tumor microenvironment in cancer immunotherapy. Front Immunol. 11:6122022020. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Hao H, Li X and Wang Z: The effect of intestinal flora on immune checkpoint inhibitors in tumor treatment: A narrative review. Ann Transl Med. 8:10972020. View Article : Google Scholar : PubMed/NCBI | |
Smith M, Dai A, Ghilardi G, Amelsberg KV, Devlin SM, Pajarillo R, Slingerland JB, Beghi S, Herrera PS, Giardina P, et al: Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nat Med. 28:713–723. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Huang L, Hu D, Zeng S, Han Y and Shen H: The role of the tumor microbe microenvironment in the tumor immune microenvironment: Bystander, activator, or inhibitor? J Exp Clin Cancer Res. 40:3272021. View Article : Google Scholar : PubMed/NCBI | |
Sethi V, Vitiello GA, Saxena D, Miller G and Dudeja V: The role of the microbiome in immunologic development and its implication for pancreatic cancer immunotherapy. Gastroenterology. 156:2097–2115.e2. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wei D, Wang L, Zuo X and Bresalier RS: Vitamin D: Promises on the Horizon and Challenges Ahead for Fighting Pancreatic Cancer. Cancers (Basel). 13:27162021. View Article : Google Scholar : PubMed/NCBI | |
Xiong J, He J, Zhu J, Pan J, Liao W, Ye H, Wang H, Song Y, Du Y, Cui B, et al: Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell. 82:1660–1677.e10. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kumar H, Lund R, Laiho A, Lundelin K, Ley RE, Isolauri E and Salminen S: Gut microbiota as an epigenetic regulator: Pilot study based on whole-genome methylation analysis. mBio. 5:e02113–14. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhang S, Li H and Xu Y, Wu Q, Shen J, Li T and Xu Y: Quantification of m6A RNA methylation modulators pattern was a potential biomarker for prognosis and associated with tumor immune microenvironment of pancreatic adenocarcinoma. BMC Cancer. 21:8762021. View Article : Google Scholar : PubMed/NCBI |