Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
October-2023 Volume 50 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2023 Volume 50 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Single‑cell multi‑omics advances in lymphoma research (Review)

  • Authors:
    • Chanjuan Jin
    • Di Zhou
    • Jun Li
    • Lintao Bi
    • Lisha Li
  • View Affiliations / Copyright

    Affiliations: Department of Hematology and Oncology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China, Department of Hematology and Oncology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China, The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
  • Article Number: 184
    |
    Published online on: August 23, 2023
       https://doi.org/10.3892/or.2023.8621
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The evolution of lymphoma is a multifactorial process that leads to unavoidable lymphoma heterogeneity in the form of genetic mutations, chromosomal translocations and other variations. Multi‑omics analyses based on single‑cell assays can reveal and characterize tumor components, enabling us to determine the timing of mutations and to profile disease progression. Increasing numbers of studies are using single‑cell transcriptomics to unravel the mechanisms of lymphoma evolution, drug resistance and therapeutic approaches. Various single‑cell multi‑omics measurements involving genomics, transcriptomics and epigenomics have improved knowledge of the complex lymphatic system and made it possible to obtain individualized and precise tumor biological characteristics, which cannot be accessed from bulk cell analysis, and this can facilitate individualized treatment. In the present review, the advances in multi‑omics analysis based on single‑cell assays of lymphoma specimens were systematically discussed, including the sequencing of the single‑cell from genomic and transcriptomic perspectives, the landscape of the lymphoma microenvironment, the development of single‑cell histology biomarkers, the identification of lymphoma origin and evolution, as well as the current challenges and future prospects of single‑cell multi‑omics. The authors' insights may contribute to the exploration of novel lymphoma biomarkers and the discovery of efficient treatment combinations that target immunological checkpoints and underlying molecular mechanisms.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Ysebaert L, Quillet-Mary A, Tosolini M, Pont F, Laurent C and Fournié JJ: Lymphoma heterogeneity unraveled by single-cell transcriptomics. Front Immunol. 12:5976512021. View Article : Google Scholar : PubMed/NCBI

2 

Bocci F, Gearhart-Serna L, Boareto M, Ribeiro M, Ben-Jacob E, Devi GR, Levine H, Onuchic JN and Jolly MK: Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci USA. 116:148–157. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Lei Y, Tang R, Xu J, Wang W, Zhang B, Liu J, Yu X and Shi S: Applications of single-cell sequencing in cancer research: Progress and perspectives. J Hematol Oncol. 14:912021. View Article : Google Scholar : PubMed/NCBI

4 

Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, et al: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 403:503–511. 2000. View Article : Google Scholar : PubMed/NCBI

5 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M and Alizadeh AA: Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 12:453–457. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, Nair VS, Xu Y, Khuong A, Hoang CD, et al: The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 21:938–945. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Kothalawala WJ, Barták BK, Nagy ZB, Zsigrai S, Szigeti KA, Valcz G, Takács I, Kalmár A and Molnár B: A detailed overview about the single-cell analyses of solid tumors focusing on colorectal cancer. Pathol Oncol Res. 28:16103422022. View Article : Google Scholar : PubMed/NCBI

9 

Bingham GC, Lee F, Naba A and Barker TH: Spatial-omics: Novel approaches to probe cell heterogeneity and extracellular matrix biology. Matrix Biol. 91–92. 152–166. 2020.

10 

Borcherding N, Voigt AP, Liu V, Link BK, Zhang W and Jabbari A: Single-Cell profiling of cutaneous T-Cell lymphoma reveals underlying heterogeneity associated with disease progression. Clin Cancer Res. 25:2996–3005. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Gaydosik AM, Tabib T, Geskin LJ, Bayan CA, Conway JF, Lafyatis R and Fuschiotti P: Single-Cell lymphocyte heterogeneity in advanced cutaneous T-cell lymphoma skin tumors. Clin Cancer Res. 25:4443–4454. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Zhang W, Yang B, Weng L, Li J, Bai J, Wang T, Wang J, Ye J, Jing H, Jiao Y, et al: Single cell sequencing reveals cell populations that predict primary resistance to imatinib in chronic myeloid leukemia. Aging (Albany NY). 12:25337–25355. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Ren J, Qu R, Rahman NT, Lewis JM, King ALO, Liao X, Mirza FN, Carlson KR, Huang Y, Gigante S, et al: Integrated transcriptome and trajectory analysis of cutaneous T-cell lymphoma identifies putative precancer populations. Blood Adv. 7:445–457. 2023. View Article : Google Scholar : PubMed/NCBI

14 

Yamagishi M, Kubokawa M, Kuze Y, Suzuki A, Yokomizo A, Kobayashi S, Nakashima M, Makiyama J, Iwanaga M, Fukuda T, et al: Chronological genome and single-cell transcriptome integration characterizes the evolutionary process of adult T cell leukemia-lymphoma. Nat Commun. 12:48212021. View Article : Google Scholar : PubMed/NCBI

15 

Haebe S, Shree T, Sathe A, Day G, Czerwinski DK, Grimes SM, Lee H, Binkley MS, Long SR, Martin B, et al: Single-cell analysis can define distinct evolution of tumor sites in follicular lymphoma. Blood. 137:2869–2880. 2021. View Article : Google Scholar : PubMed/NCBI

16 

Borcherding N, Severson KJ, Henderson N, Ortolan LS, Rosenthal AC, Bellizzi AM, Liu V, Link BK, Mangold AR and Jabbari A: Single-cell analysis of Sézary syndrome reveals novel markers and shifting gene profiles associated with treatment. Blood Adv. 7:321–335. 2023. View Article : Google Scholar : PubMed/NCBI

17 

Valentin Hansen S, Høy Hansen M, Cédile O, Møller MB, Haaber J, Abildgaard N and Guldborg Nyvold C: Detailed characterization of the transcriptome of single B cells in mantle cell lymphoma suggesting a potential use for SOX4. Sci Rep. 11:190922021. View Article : Google Scholar : PubMed/NCBI

18 

Pritchett JC, Yang ZZ, Kim HJ, Villasboas JC, Tang X, Jalali S, Cerhan JR, Feldman AL and Ansell SM: High-dimensional and single-cell transcriptome analysis of the tumor microenvironment in angioimmunoblastic T cell lymphoma (AITL). Leukemia. 36:165–176. 2022. View Article : Google Scholar : PubMed/NCBI

19 

Wei B, Liu Z, Fan Y, Wang S, Dong C, Rao W, Yang F, Cheng G and Zhang J: Analysis of cellular heterogeneity in immune microenvironment of primary central nervous system lymphoma by single-cell sequencing. Front Oncol. 11:6830072021. View Article : Google Scholar : PubMed/NCBI

20 

Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, et al: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 161:1202–1214. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA and Kirschner MW: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 161:1187–1201. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, et al: Massively parallel digital transcriptional profiling of single cells. Nat Commun. 8:140492017. View Article : Google Scholar : PubMed/NCBI

23 

Gong H, Do D and Ramakrishnan R: Single-Cell mRNA-Seq using the fluidigm C1 system and integrated fluidics circuits. Methods Mol Biol. 1783:193–207. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Han X, Chen H, Huang D, Chen H, Fei L, Cheng C, Huang H, Yuan GC and Guo G: Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing. Genome Biol. 19:472018. View Article : Google Scholar : PubMed/NCBI

25 

Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I and Enard W: Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 65:631–643.e4. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Xin Y, Kim J, Ni M, Wei Y, Okamoto H, Lee J, Adler C, Cavino K, Murphy AJ, Yancopoulos GD, et al: Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. Proc Natl Acad Sci USA. 113:3293–3298. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Gierahn TM, Wadsworth MH II, Hughes TK, Bryson BD, Butler A, Satija R, Fortune S, Love JC and Shalek AK: Seq-Well: Portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods. 14:395–398. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Aicher TP, Carroll S, Raddi G, Gierahn T, Wadsworth MH II, Hughes TK, Love C and Shalek AK: Seq-Well: A sample-efficient, portable picowell platform for massively parallel single-cell RNA sequencing. Methods Mol Biol. 1979:111–132. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, Saadatpour A, Zhou Z, Chen H, Ye F, et al: Mapping the mouse cell atlas by microwell-seq. Cell. 173:13072018. View Article : Google Scholar : PubMed/NCBI

30 

Lai S, Huang W, Xu Y, Jiang M, Chen H, Cheng C, Lu Y, Huang H, Guo G and Han X: Comparative transcriptomic analysis of hematopoietic system between human and mouse by Microwell-seq. Cell Discov. 4:342018. View Article : Google Scholar : PubMed/NCBI

31 

Briggs JA, Weinreb C, Wagner DE, Megason S, Peshkin L, Kirschner MW and Klein AM: The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science. 360:eaar57802018. View Article : Google Scholar : PubMed/NCBI

32 

Tosches MA, Yamawaki TM, Naumann RK, Jacobi AA, Tushev G and Laurent G: Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science. 360:881–888. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A and Amit I: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 343:776–779. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, Satija R and Smibert P: Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 14:865–868. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Mimitou EP, Cheng A, Montalbano A, Hao S, Stoeckius M, Legut M, Roush T, Herrera A, Papalexi E, Ouyang Z, et al: Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat Methods. 16:409–412. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Harris NL, Jaffe ES, Stein H, Banks PM, Chan JK, Cleary ML, Delsol G, De Wolf-Peeters C, Falini B, Gatter KC, et al: A revised European-American classification of lymphoid neoplasms: A proposal from the International Lymphoma Study Group. Blood. 84:1361–1392. 1994. View Article : Google Scholar : PubMed/NCBI

37 

Barbui T, Thiele J, Gisslinger H, Kvasnicka HM, Vannucchi AM, Guglielmelli P, Orazi A and Tefferi A: The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: Document summary and in-depth discussion. Blood Cancer J. 8:152018. View Article : Google Scholar : PubMed/NCBI

38 

Glaser SL and Jarrett RF: The epidemiology of Hodgkin's disease. Baillieres Clin Haematol. 9:401–416. 1996. View Article : Google Scholar : PubMed/NCBI

39 

Marafioti T, Hummel M, Foss HD, Laumen H, Korbjuhn P, Anagnostopoulos I, Lammert H, Demel G, Theil J, Wirth T and Stein H: Hodgkin and reed-sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood. 95:1443–1450. 2000. View Article : Google Scholar : PubMed/NCBI

40 

Kanzler H, Küppers R, Hansmann ML and Rajewsky K: Hodgkin and Reed-Sternberg cells in Hodgkin's disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med. 184:1495–1505. 1996. View Article : Google Scholar : PubMed/NCBI

41 

Grimm KE and O'Malley DP: Aggressive B cell lymphomas in the 2017 revised WHO classification of tumors of hematopoietic and lymphoid tissues. Ann Diagn Pathol. 38:6–10. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Thandra KC, Barsouk A, Saginala K, Padala SA, Barsouk A and Rawla P: Epidemiology of Non-Hodgkin's Lymphoma. Med Sci (Basel). 9:52021.PubMed/NCBI

43 

de Leval L and Jaffe ES: Lymphoma Classification. Cancer J. 26:176–185. 2020. View Article : Google Scholar : PubMed/NCBI

44 

García-Sanz R and Jiménez C: Time to move to the single-cell level: Applications of single-cell multi-omics to hematological malignancies and Waldenström's Macroglobulinemia-A particularly heterogeneous lymphoma. Cancers (Basel). 13:15412021. View Article : Google Scholar : PubMed/NCBI

45 

Glass DR, Tsai AG, Oliveria JP, Hartmann FJ, Kimmey SC, Calderon AA, Borges L, Glass MC, Wagar LE, Davis MM and Bendall SC: An Integrated Multi-omic Single-cell atlas of human B cell identity. Immunity. 53:217–232.e5. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Crinier A, Dumas PY, Escalière B, Piperoglou C, Gil L, Villacreces A, Vély F, Ivanovic Z, Milpied P, Narni-Mancinelli É and Vivier É: Single-cell profiling reveals the trajectories of natural killer cell differentiation in bone marrow and a stress signature induced by acute myeloid leukemia. Cell Mol Immunol. 18:1290–1304. 2021. View Article : Google Scholar : PubMed/NCBI

47 

Aoki T, Chong LC, Takata K, Milne K, Hav M, Colombo A, Chavez EA, Nissen M, Wang X, Miyata-Takata T, et al: Single-Cell transcriptome analysis reveals disease-defining T-cell subsets in the tumor microenvironment of classic Hodgkin Lymphoma. Cancer Discov. 10:406–421. 2020. View Article : Google Scholar : PubMed/NCBI

48 

Pizzolato G, Kaminski H, Tosolini M, Franchini DM, Pont F, Martins F, Valle C, Labourdette D, Cadot S, Quillet-Mary A, et al: Single-cell RNA sequencing unveils the shared and the distinct cytotoxic hallmarks of human TCRVδ1 and TCRVδ2 γδ T lymphocytes. Proc Natl Acad Sci USA. 116:11906–11915. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Singh M, Al-Eryani G, Carswell S, Ferguson JM, Blackburn J, Barton K, Roden D, Luciani F, Giang Phan T, Junankar S, et al: High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nat Commun. 10:31202019. View Article : Google Scholar : PubMed/NCBI

50 

Vitak SA, Torkenczy KA, Rosenkrantz JL, Fields AJ, Christiansen L, Wong MH, Carbone L, Steemers FJ and Adey A: Sequencing thousands of single-cell genomes with combinatorial indexing. Nat Methods. 14:302–328. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Xiong J, Cui BW, Wang N, Dai YT, Zhang H, Wang CF, Zhong HJ, Cheng S, Ou-Yang BS, Hu Y, et al: Genomic and transcriptomic characterization of natural killer T cell lymphoma. Cancer Cell. 37:403–419.e6. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Li P, Chai J, Chen Z, Liu Y, Wei J, Liu Y, Zhao D, Ma J, Wang K, Li X, et al: Genomic mutation profile of primary gastrointestinal diffuse large B-Cell Lymphoma. Front Oncol. 11:6226482021. View Article : Google Scholar : PubMed/NCBI

53 

Radke J, Ishaque N, Koll R, Gu Z, Schumann E, Sieverling L, Uhrig S, Hübschmann D, Toprak UH, López C, et al: The genomic and transcriptional landscape of primary central nervous system lymphoma. Nat Commun. 13:25582022. View Article : Google Scholar : PubMed/NCBI

54 

Yi S, Yan Y, Jin M, Bhattacharya S, Wang Y, Wu Y, Yang L, Gine E, Clot G, Chen L, et al: Genomic and transcriptomic profiling reveals distinct molecular subsets associated with outcomes in mantle cell lymphoma. J Clin Invest. 132:e1532832022. View Article : Google Scholar : PubMed/NCBI

55 

Nadeu F, Martin-Garcia D, Clot G, Díaz-Navarro A, Duran-Ferrer M, Navarro A, Vilarrasa-Blasi R, Kulis M, Royo R, Gutiérrez-Abril J, et al: Genomic and epigenomic insights into the origin, pathogenesis, and clinical behavior of mantle cell lymphoma subtypes. Blood. 136:1419–1432. 2020. View Article : Google Scholar : PubMed/NCBI

56 

De Bie J, Demeyer S, Alberti-Servera L, Geerdens E, Segers H, Broux M, De Keersmaecker K, Michaux L, Vandenberghe P, Voet T, et al: Single-cell sequencing reveals the origin and the order of mutation acquisition in T-cell acute lymphoblastic leukemia. Leukemia. 32:1358–1369. 2018. View Article : Google Scholar : PubMed/NCBI

57 

López C, Kleinheinz K, Aukema SM, Rohde M, Bernhart SH, Hübschmann D, Wagener R, Toprak UH, Raimondi F, Kreuz M, et al: Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma. Nat Commun. 10:14592019. View Article : Google Scholar : PubMed/NCBI

58 

Küçük C, Hu X, Gong Q, Jiang B, Cornish A, Gaulard P, McKeithan T and Chan WC: Diagnostic and biological significance of KIR EXPRESSION PROFILE DETErmined by RNA-Seq in Natural Killer/T-Cell Lymphoma. Am J Pathol. 186:1435–1441. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Andor N, Simonds EF, Czerwinski DK, Chen J, Grimes SM, Wood-Bouwens C, Zheng GXY, Kubit MA, Greer S, Weiss WA, et al: Single-cell RNA-Seq of follicular lymphoma reveals malignant B-cell types and coexpression of T-cell immune checkpoints. Blood. 133:1119–1129. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Huang Z, Ma L, Huang C, Li Q and Nice EC: Proteomic profiling of human plasma for cancer biomarker discovery. Proteomics. 17((6))2017.

61 

Kim MK, Song JY, Koh DI, Kim JY, Hatano M, Jeon BN, Kim MY, Cho SY, Kim KS and Hur MW: Reciprocal negative regulation between the tumor suppressor protein p53 and B cell CLL/lymphoma 6 (BCL6) via control of caspase-1 expression. J Biol Chem. 294:299–313. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Daniunaite K, Jarmalaite S and Kriukiene E: Epigenomic technologies for deciphering circulating tumor DNA. Curr Opin Biotechnol. 55:23–29. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Ng SB, Yan J, Huang G, Selvarajan V, Tay JL, Lin B, Bi C, Tan J, Kwong YL, Shimizu N, et al: Dysregulated microRNAs affect pathways and targets of biologic relevance in nasal-type natural killer/T-cell lymphoma. Blood. 118:4919–4929. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Zhang X, Ji W, Huang R, Li L, Wang X, Li L, Fu X, Sun Z, Li Z, Chen Q and Zhang M: MicroRNA-155 is a potential molecular marker of natural killer/T-cell lymphoma. Oncotarget. 7:53808–53819. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Yan J, Ng SB, Tay JL, Lin B, Koh TL, Tan J, Selvarajan V, Liu SC, Bi C, Wang S, et al: EZH2 overexpression in natural killer/T-cell lymphoma confers growth advantage independently of histone methyltransferase activity. Blood. 121:4512–4520. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Liang L, Nong L, Zhang S, Zhao J, Ti H, Dong Y, Zhang B and Li T: The downregulation of PRDM1/Blimp-1 is associated with aberrant expression of miR-223 in extranodal NK/T-cell lymphoma, nasal type. J Exp Clin Cancer Res. 33:72014. View Article : Google Scholar : PubMed/NCBI

67 

Küçük C, Hu X, Jiang B, Klinkebiel D, Geng H, Gong Q, Bouska A, Iqbal J, Gaulard P, McKeithan TW and Chan WC: Global promoter methylation analysis reveals novel candidate tumor suppressor genes in natural killer cell lymphoma. Clin Cancer Res. 21:1699–1711. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Chen YW, Guo T, Shen L, Wong KY, Tao Q, Choi WW, Au-Yeung RK, Chan YP, Wong ML, Tang JC, et al: Receptor-type tyrosine-protein phosphatase κ directly targets STAT3 activation for tumor suppression in nasal NK/T-cell lymphoma. Blood. 125:1589–1600. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Ranzoni AM, Tangherloni A, Berest I, Riva SG, Myers B, Strzelecka PM, Xu J, Panada E, Mohorianu I, Zaugg JB and Cvejic A: Integrative Single-Cell RNA-Seq and ATAC-seq analysis of human developmental hematopoiesis. Cell Stem Cell. 28:472–487.e7. 2021. View Article : Google Scholar : PubMed/NCBI

70 

Yu J, Gemenetzis G, Kinny-Köster B, Habib JR, Groot VP, Teinor J, Yin L, Pu N, Hasanain A, van Oosten F, et al: Pancreatic circulating tumor cell detection by targeted single-cell next-generation sequencing. Cancer Lett. 493:245–253. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Zhang L, Dong X, Lee M, Maslov AY, Wang T and Vijg J: Single-cell whole-genome sequencing reveals the functional landscape of somatic mutations in B lymphocytes across the human lifespan. Proc Natl Acad Sci USA. 116:9014–9019. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Psatha K, Kollipara L, Voutyraki C, Divanach P, Sickmann A, Rassidakis GZ, Drakos E and Aivaliotis M: Deciphering lymphoma pathogenesis via state-of-the-art mass spectrometry-based quantitative proteomics. J Chromatogr B Analyt Technol Biomed Life Sci. 1047:2–14. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Bacher U, Haferlach T, Alpermann T, Kern W, Schnittger S and Haferlach C: Several lymphoma-specific genetic events in parallel can be found in mature B-cell neoplasms. Genes Chromosomes Cancer. 50:43–50. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Okosun J, Bödör C, Wang J, Araf S, Yang CY, Pan C, Boller S, Cittaro D, Bozek M, Iqbal S, et al: Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet. 46:176–181. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Sewastianik T, Prochorec-Sobieszek M, Chapuy B and Juszczyński P: MYC deregulation in lymphoid tumors: Molecular mechanisms, clinical consequences and therapeutic implications. Biochim Biophys Acta. 1846:457–467. 2014.PubMed/NCBI

76 

Rosenthal A and Rimsza L: Genomics of aggressive B-cell lymphoma. Hematology Am Soc Hematol Educ Program. 2018:69–74. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Gawad C, Koh W and Quake SR: Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc Natl Acad Sci USA. 111:17947–17952. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Snuderl M, Kolman OK, Chen YB, Hsu JJ, Ackerman AM, Dal Cin P, Ferry JA, Harris NL, Hasserjian RP, Zukerberg LR, et al: B-cell lymphomas with concurrent IGH-BCL2 and MYC rearrangements are aggressive neoplasms with clinical and pathologic features distinct from Burkitt lymphoma and diffuse large B-cell lymphoma. Am J Surg Pathol. 34:327–340. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Huang W, Medeiros LJ, Lin P, Wang W, Tang G, Khoury J, Konoplev S, Yin CC, Xu J, Oki Y and Li S: MYC/BCL2/BCL6 triple hit lymphoma: A study of 40 patients with a comparison to MYC/BCL2 and MYC/BCL6 double hit lymphomas. Mod Pathol. 31:1470–1478. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Moore EM, Aggarwal N, Surti U and Swerdlow SH: Further exploration of the complexities of large B-Cell Lymphomas With MYC abnormalities and the importance of a blastoid morphology. Am J Surg Pathol. 41:1155–1166. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Jiang Y, Redmond D, Nie K, Eng KW, Clozel T, Martin P, Tan LH, Melnick AM, Tam W and Elemento O: Deep sequencing reveals clonal evolution patterns and mutation events associated with relapse in B-cell lymphomas. Genome Biol. 15:4322014. View Article : Google Scholar : PubMed/NCBI

82 

Ding S, Chen X and Shen K: Single-cell RNA sequencing in breast cancer: Understanding tumor heterogeneity and paving roads to individualized therapy. Cancer Commun (Lond). 40:329–344. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Kim E, Hurtz C, Koehrer S, Wang Z, Balasubramanian S, Chang BY, Müschen M, Davis RE and Burger JA: Ibrutinib inhibits pre-BCR(+) B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK. Blood. 129:1155–1165. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Wang L, Mo S, Li X, He Y and Yang J: Single-cell RNA-seq reveals the immune escape and drug resistance mechanisms of mantle cell lymphoma. Cancer Biol Med. 17:726–739. 2020. View Article : Google Scholar : PubMed/NCBI

85 

Marcus R, Imrie K, Solal-Celigny P, Catalano JV, Dmoszynska A, Raposo JC, Offner FC, Gomez-Codina J, Belch A, Cunningham D, et al: Phase III study of R-CVP compared with cyclophosphamide, vincristine, and prednisone alone in patients with previously untreated advanced follicular lymphoma. J Clin Oncol. 26:4579–4586. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Lim SH, Vaughan AT, Ashton-Key M, Williams EL, Dixon SV, Chan HT, Beers SA, French RR, Cox KL, Davies AJ, et al: Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood. 118:2530–2540. 2011. View Article : Google Scholar : PubMed/NCBI

87 

Zhang J, Dominguez-Sola D, Hussein S, Lee JE, Holmes AB, Bansal M, Vlasevska S, Mo T, Tang H, Basso K, et al: Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat Med. 21:1190–1198. 2015. View Article : Google Scholar : PubMed/NCBI

88 

Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Swerdlow SH and Cook JR: As the world turns, evolving lymphoma classifications-past, present and future. Hum Pathol. 95:55–77. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Takagi M: DNA damage response and hematological malignancy. Int J Hematol. 106:345–356. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Flinders C, Lam L, Rubbi L, Ferrari R, Fitz-Gibbon S, Chen PY, Thompson M, Christofk H, B Agus D, Ruderman D, et al: Epigenetic changes mediated by polycomb repressive complex 2 and E2a are associated with drug resistance in a mouse model of lymphoma. Genome Med. 8:542016. View Article : Google Scholar : PubMed/NCBI

92 

Chiche J, Reverso-Meinietti J, Mouchotte A, Rubio-Patiño C, Mhaidly R, Villa E, Bossowski JP, Proics E, Grima-Reyes M, Paquet A, et al: GAPDH expression predicts the response to R-CHOP, the tumor metabolic status, and the response of DLBCL patients to metabolic inhibitors. Cell Metab. 29:1243–1257.e10. 2019. View Article : Google Scholar : PubMed/NCBI

93 

Klener P and Klanova M: Drug Resistance in Non-Hodgkin Lymphomas. Int J Mol Sci. 21:20812020. View Article : Google Scholar : PubMed/NCBI

94 

Wang X, Li G, Zhang Y, Li L, Qiu L, Qian Z, Zhou S, Wang X, Li Q and Zhang H: Pan-Cancer analysis reveals genomic and clinical characteristics of TRPV Channel-related genes. Front Oncol. 12:8131002022. View Article : Google Scholar : PubMed/NCBI

95 

Russo M, Crisafulli G, Sogari A, Reilly NM, Arena S, Lamba S, Bartolini A, Amodio V, Magrì A, Novara L, et al: Adaptive mutability of colorectal cancers in response to targeted therapies. Science. 366:1473–1480. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Kater L, Kater B, Jakupec MA, Keppler BK and Prokop A: KP772 overcomes multiple drug resistance in malignant lymphoma and leukemia cells in vitro by inducing Bcl-2-independent apoptosis and upregulation of Harakiri. J Biol Inorg Chem. 26:897–907. 2021. View Article : Google Scholar : PubMed/NCBI

97 

Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, Jansen G, Kaspers GJL, Giovannetti E and Cloos J: The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resist Updat. 53:1007282020. View Article : Google Scholar : PubMed/NCBI

98 

Roider T, Seufert J, Uvarovskii A, Frauhammer F, Bordas M, Abedpour N, Stolarczyk M, Mallm JP, Herbst SA, Bruch PM, et al: Dissecting intratumour heterogeneity of nodal B-cell lymphomas at the transcriptional, genetic and drug-response levels. Nat Cell Biol. 22:896–906. 2020. View Article : Google Scholar : PubMed/NCBI

99 

Wills QF, Livak KJ, Tipping AJ, Enver T, Goldson AJ, Sexton DW and Holmes C: Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat Biotechnol. 31:748–752. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Kotlov N, Bagaev A, Revuelta MV, Phillip JM, Cacciapuoti MT, Antysheva Z, Svekolkin V, Tikhonova E, Miheecheva N, Kuzkina N, et al: Clinical and Biological Subtypes of B-cell lymphoma revealed by microenvironmental signatures. Cancer Discov. 11:1468–1489. 2021. View Article : Google Scholar : PubMed/NCBI

101 

Croci GA, Au-Yeung RKH, Reinke S, Staiger AM, Koch K, Oschlies I, Richter J, Poeschel V, Held G, Loeffler M, et al: SPARC-positive macrophages are the superior prognostic factor in the microenvironment of diffuse large B-cell lymphoma and independent of MYC rearrangement and double-/triple-hit status. Ann Oncol. 32:1400–1409. 2021. View Article : Google Scholar : PubMed/NCBI

102 

Abe Y, Sakata-Yanagimoto M, Fujisawa M, Miyoshi H, Suehara Y, Hattori K, Kusakabe M, Sakamoto T, Nishikii H, Nguyen TB, et al: A single-cell atlas of non-haematopoietic cells in human lymph nodes and lymphoma reveals a landscape of stromal remodelling. Nat Cell Biol. 24:565–578. 2022. View Article : Google Scholar : PubMed/NCBI

103 

Ferreri AJ, Cwynarski K, Pulczynski E, Ponzoni M, Deckert M, Politi LS, Torri V, Fox CP, Rosée PL, Schorb E, et al: Chemoimmunotherapy with methotrexate, cytarabine, thiotepa, and rituximab (MATRix regimen) in patients with primary CNS lymphoma: Results of the first randomisation of the International Extranodal Lymphoma Study Group-32 (IELSG32) phase 2 trial. Lancet Haematol. 3:e217–e227. 2016. View Article : Google Scholar : PubMed/NCBI

104 

Bromberg JEC, Issa S, Bakunina K, Minnema MC, Seute T, Durian M, Cull G, Schouten HC, Stevens WBC, Zijlstra JM, et al: Rituximab in patients with primary CNS lymphoma (HOVON 105/ALLG NHL 24): A randomised, open-label, phase 3 intergroup study. Lancet Oncol. 20:216–228. 2019. View Article : Google Scholar : PubMed/NCBI

105 

Ruggieri S, Tamma R, Resta N, Albano F, Coccaro N, Loconte D, Annese T, Errede M, Specchia G, Senetta R, et al: Stat3-positive tumor cells contribute to vessels neoformation in primary central nervous system lymphoma. Oncotarget. 8:31254–31269. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Zhou Y, Liu W, Xu Z, Zhu H, Xiao D, Su W, Zeng R, Feng Y, Duan Y, Zhou J and Zhong M: Analysis of genomic alteration in primary central nervous system lymphoma and the expression of some related genes. Neoplasia. 20:1059–1069. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Ribatti D, Nico B, Ranieri G, Specchia G and Vacca A: The role of angiogenesis in human non-Hodgkin lymphomas. Neoplasia. 15:231–238. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Clozel T, Yang S, Elstrom RL, Tam W, Martin P, Kormaksson M, Banerjee S, Vasanthakumar A, Culjkovic B, Scott DW, et al: Mechanism-based epigenetic chemosensitization therapy of diffuse large B-cell lymphoma. Cancer Discov. 3:1002–1019. 2013. View Article : Google Scholar : PubMed/NCBI

109 

Hazar B, Paydas S, Zorludemir S, Sahin B and Tuncer I: Prognostic significance of microvessel density and vascular endothelial growth factor (VEGF) expression in non-Hodgkin's lymphoma. Leuk Lymphoma. 44:2089–2093. 2003. View Article : Google Scholar : PubMed/NCBI

110 

Carlo-Stella C and Santoro A: Microenvironment-related biomarkers and novel targets in classical Hodgkin's lymphoma. Biomark Med. 9:807–817. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Holmes AB, Corinaldesi C, Shen Q, Kumar R, Compagno N, Wang Z, Nitzan M, Grunstein E, Pasqualucci L, Dalla-Favera R and Basso K: Single-cell analysis of germinal-center B cells informs on lymphoma cell of origin and outcome. J Exp Med. 217:e202004832020. View Article : Google Scholar : PubMed/NCBI

112 

Mintz MA and Cyster JG: T follicular helper cells in germinal center B cell selection and lymphomagenesis. Immunol Rev. 296:48–61. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Turqueti-Neves A, Otte M, Prazeres da Costa O, Höpken UE, Lipp M, Buch T and Voehringer D: B-cell-intrinsic STAT6 signaling controls germinal center formation. Eur J Immunol. 44:2130–2138. 2014. View Article : Google Scholar : PubMed/NCBI

114 

Mintz MA, Felce JH, Chou MY, Mayya V, Xu Y, Shui JW, An J, Li Z, Marson A, Okada T, et al: The HVEM-BTLA Axis Restrains T cell help to germinal center B cells and functions as a cell-extrinsic suppressor in lymphomagenesis. Immunity. 51:310–323.e7. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Hashwah H, Schmid CA, Kasser S, Bertram K, Stelling A, Manz MG and Müller A: Inactivation of CREBBP expands the germinal center B cell compartment, down-regulates MHCII expression and promotes DLBCL growth. Proc Natl Acad Sci USA. 114:9701–9706. 2017. View Article : Google Scholar : PubMed/NCBI

116 

Deng Q, Han G, Puebla-Osorio N, Ma MCJ, Strati P, Chasen B, Dai E, Dang M, Jain N, Yang H, et al: Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat Med. 26:1878–1887. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Parker KR, Migliorini D, Perkey E, Yost KE, Bhaduri A, Bagga P, Haris M, Wilson NE, Liu F, Gabunia K, et al: Single-Cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell. 183:126–142.e17. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Shi Y, Ding W, Gu W, Shen Y, Li H, Zheng Z, Zheng X, Liu Y and Ling Y: Single-cell phenotypic profiling to identify a set of immune cell protein biomarkers for relapsed and refractory diffuse large B cell lymphoma: A single-center study. J Leukoc Biol. 112:1633–1648. 2022. View Article : Google Scholar : PubMed/NCBI

119 

Shin D, Lee W, Lee JH and Bang D: Multiplexed single-cell RNA-seq via transient barcoding for simultaneous expression profiling of various drug perturbations. Sci Adv. 5:eaav22492019. View Article : Google Scholar : PubMed/NCBI

120 

Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM, Dummer R, Robinson MD, Levesque MP and Becher B: High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med. 24:144–153. 2018. View Article : Google Scholar : PubMed/NCBI

121 

Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, McNamara KL, Granja JM, Sarin KY, Brown RA, et al: Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med. 25:1251–1259. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Wu TD, Madireddi S, de Almeida PE, Banchereau R, Chen YJ, Chitre AS, Chiang EY, Iftikhar H, O'Gorman WE, Au-Yeung A, et al: Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature. 579:274–278. 2020. View Article : Google Scholar : PubMed/NCBI

123 

La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti ME, Lönnerberg P, Furlan A, et al: RNA velocity of single cells. Nature. 560:494–498. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Simmons SK, Lithwick-Yanai G, Adiconis X, Oberstrass F, Iremadze N, Geiger-Schuller K, Thakore PI, Frangieh CJ, Barad O, Almogy G, et al: Mostly natural sequencing-by-synthesis for scRNA-seq using Ultima sequencing. Nat Biotechnol. 41:204–211. 2023. View Article : Google Scholar : PubMed/NCBI

125 

Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F and Huang Y: Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 16:1482015. View Article : Google Scholar : PubMed/NCBI

126 

Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, Goolam M, Saurat N, Coupland P, Shirley LM, et al: G&T-seq: Parallel sequencing of single-cell genomes and transcriptomes. Nat Methods. 12:519–522. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, Wu X, Wen L, Tang F, Huang Y and Peng J: Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 26:304–319. 2016. View Article : Google Scholar : PubMed/NCBI

128 

Katzenelenbogen Y, Sheban F, Yalin A, Yofe I, Svetlichnyy D, Jaitin DA, Bornstein C, Moshe A, Keren-Shaul H, Cohen M, et al: Coupled scRNA-Seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell. 182:872–885.e19. 2020. View Article : Google Scholar : PubMed/NCBI

129 

Svensson V, Vento-Tormo R and Teichmann SA: Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc. 13:599–604. 2018. View Article : Google Scholar : PubMed/NCBI

130 

Bai X, Li Y, Zeng X, Zhao Q and Zhang Z: Single-cell sequencing technology in tumor research. Clin Chim Acta. 518:101–109. 2021. View Article : Google Scholar : PubMed/NCBI

131 

McGinnis CS, Patterson DM, Winkler J, Conrad DN, Hein MY, Srivastava V, Hu JL, Murrow LM, Weissman JS, Werb Z, et al: MULTI-seq: Sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat Methods. 16:619–626. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Kashima Y, Sakamoto Y, Kaneko K, Seki M, Suzuki Y and Suzuki A: Single-cell sequencing techniques from individual to multiomics analyses. Exp Mol Med. 52:1419–1427. 2020. View Article : Google Scholar : PubMed/NCBI

133 

Ando Y, Kwon AT and Shin JW: An era of single-cell genomics consortia. Exp Mol Med. 52:1409–1418. 2020. View Article : Google Scholar : PubMed/NCBI

134 

Landeira-Viñuela A, Díez P, Juanes-Velasco P, Lécrevisse Q, Orfao A, De Las Rivas J and Fuentes M: Deepening into intracellular signaling landscape through integrative spatial proteomics and transcriptomics in a lymphoma model. Biomolecules. 11:17762021. View Article : Google Scholar : PubMed/NCBI

135 

Du J, Qiu C, Li WS, Wang B, Han XL, Lin SW, Fu XH, Hou J and Huang ZF: Spatial transcriptomics analysis reveals that CCL17 and CCL22 are robust indicators of a suppressive immune environment in angioimmunoblastic T cell lymphoma (AITL). Front Biosci (Landmark Ed). 27:2702022. View Article : Google Scholar : PubMed/NCBI

136 

Tripodo C, Zanardi F, Iannelli F, Mazzara S, Vegliante M, Morello G, Di Napoli A, Mangogna A, Facchetti F, Sangaletti S, et al: A spatially resolved dark-versus light-zone microenvironment signature subdivides germinal center-related aggressive B cell lymphomas. iScience. 23:1015622020. View Article : Google Scholar : PubMed/NCBI

137 

Colombo AR, Hav M, Singh M, Xu A, Gamboa A, Lemos T, Gerdtsson E, Chen D, Houldsworth J, Shaknovich R, et al: Single-cell spatial analysis of tumor immune architecture in diffuse large B-cell lymphoma. Blood Adv. 6:4675–4690. 2022. View Article : Google Scholar : PubMed/NCBI

138 

Efremova M, Vento-Tormo R, Park JE, Teichmann SA and James KR: Immunology in the Era of single-cell technologies. Annu Rev Immunol. 38:727–757. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jin C, Zhou D, Li J, Bi L and Li L: Single‑cell multi‑omics advances in lymphoma research (Review). Oncol Rep 50: 184, 2023.
APA
Jin, C., Zhou, D., Li, J., Bi, L., & Li, L. (2023). Single‑cell multi‑omics advances in lymphoma research (Review). Oncology Reports, 50, 184. https://doi.org/10.3892/or.2023.8621
MLA
Jin, C., Zhou, D., Li, J., Bi, L., Li, L."Single‑cell multi‑omics advances in lymphoma research (Review)". Oncology Reports 50.4 (2023): 184.
Chicago
Jin, C., Zhou, D., Li, J., Bi, L., Li, L."Single‑cell multi‑omics advances in lymphoma research (Review)". Oncology Reports 50, no. 4 (2023): 184. https://doi.org/10.3892/or.2023.8621
Copy and paste a formatted citation
x
Spandidos Publications style
Jin C, Zhou D, Li J, Bi L and Li L: Single‑cell multi‑omics advances in lymphoma research (Review). Oncol Rep 50: 184, 2023.
APA
Jin, C., Zhou, D., Li, J., Bi, L., & Li, L. (2023). Single‑cell multi‑omics advances in lymphoma research (Review). Oncology Reports, 50, 184. https://doi.org/10.3892/or.2023.8621
MLA
Jin, C., Zhou, D., Li, J., Bi, L., Li, L."Single‑cell multi‑omics advances in lymphoma research (Review)". Oncology Reports 50.4 (2023): 184.
Chicago
Jin, C., Zhou, D., Li, J., Bi, L., Li, L."Single‑cell multi‑omics advances in lymphoma research (Review)". Oncology Reports 50, no. 4 (2023): 184. https://doi.org/10.3892/or.2023.8621
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team