|
1
|
Shao R, Wang Y, Li L, Dong Y, Zhao J and
Liang W: Bone tumors effective therapy through functionalized
hydrogels: Current developments and future expectations. Drug
Deliv. 29:1631–1647. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel GW, Biermann JS, Calinescu AA,
Spratt DE and Szerlip NJ: Surgical approach to bone metastases.
Curr Osteoporos Rep. 16:512–518. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kwiatkowski S, Knap B, Przystupski D,
Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O,
Kotowski K and Kulbacka J: Photodynamic therapy-mechanisms,
photosensitizers and combinations. Biomed Pharmacother.
106:1098–1107. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ji B, Wei M and Yang B: Recent advances in
nanomedicines for photodynamic therapy (PDT)-driven cancer
immunotherapy. Theranostics. 12:434–458. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Li X, Lovell JF, Yoon J and Chen X:
Clinical development and potential of photothermal and photodynamic
therapies for cancer. Nat Rev Clin Oncol. 17:657–674. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Son S, Kim JH, Wang X, Zhang C, Yoon SA,
Shin J, Sharma A, Lee MH, Cheng L, Wu J and Kim JS: Multifunctional
sonosensitizers in sonodynamic cancer therapy. Chem Soc Rev.
49:3244–3261. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wu T, Liu Y, Cao Y and Liu Z: Engineering
macrophage exosome disguised biodegradable nanoplatform for
enhanced sonodynamic therapy of glioblastoma. Adv Mater.
34:e21103642022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yumita N, Nishigaki R, Umemura K and
Umemura S: Hematoporphyrin as a sensitizer of cell-damaging effect
of ultrasound. Jpn J Cancer Res. 80:219–222. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Pan X, Wang H, Wang S, Sun X, Wang L, Wang
W, Shen H and Liu H: Sonodynamic therapy (SDT): A novel strategy
for cancer nanotheranostics. Sci China Life Sci. 61:415–426. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ji C, Si J, Xu Y, Zhang W, Yang Y, He X,
Xu H, Mou X, Ren H and Guo H: Mitochondria-targeted and
ultrasound-responsive nanoparticles for oxygen and nitric oxide
codelivery to reverse immunosuppression and enhance sonodynamic
therapy for immune activation. Theranostics. 11:8587–8604. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yang Y, Huang J, Liu M, Qiu Y, Chen Q,
Zhao T, Xiao Z, Yang Y, Jiang Y, Huang Q and Ai K: Emerging
sonodynamic therapy-based nanomedicines for cancer immunotherapy.
Adv Sci (Weinh). 10:e22043652023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Xu M, Zhou L, Zheng L, Zhou Q, Liu K, Mao
Y and Song S: Sonodynamic therapy-derived multimodal synergistic
cancer therapy. Cancer Lett. 497:229–242. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang Y, Zhang X, Yang H, Yu L, Xu Y,
Sharma A, Yin P, Li X, Kim JS and Sun Y: Advanced
biotechnology-assisted precise sonodynamic therapy. Chem Soc Rev.
50:11227–11248. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zheng Y, Ye J, Li Z, Chen H and Gao Y:
Recent progress in sono-photodynamic cancer therapy: From developed
new sensitizers to nanotechnology-based efficacy-enhancing
strategies. Acta Pharm Sin B. 11:2197–2219. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Liu Y, Wang P, Liu Q and Wang X:
Sinoporphyrin sodium triggered sono-photodynamic effects on breast
cancer both in vitro and in vivo. Ultrason Sonochem. 31:437–448.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wang P, Li C, Wang X, Xiong W, Feng X, Liu
Q, Leung AW and Xu C: Anti-metastatic and pro-apoptotic effects
elicited by combination photodynamic therapy with sonodynamic
therapy on breast cancer both in vitro and in vivo. Ultrason
Sonochem. 23:116–127. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Li R, Chen Z, Dai Z and Yu Y:
Nanotechnology assisted photo- and sonodynamic therapy for
overcoming drug resistance. Cancer Biol Med. 18:388–400. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zeng Q, Ma X, Song Y, Chen Q, Jiao Q and
Zhou L: Targeting regulated cell death in tumor nanomedicines.
Theranostics. 12:817–841. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Huo J, Jia Q, Huang H, Zhang J, Li P, Dong
X and Huang W: Emerging photothermal-derived multimodal synergistic
therapy in combating bacterial infections. Chem Soc Rev.
50:8762–8789. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Huang J, Xiao Z, An Y, Han S, Wu W, Wang
Y, Guo Y and Shuai X: Nanodrug with dual-sensitivity to tumor
microenvironment for immuno-sonodynamic anti-cancer therapy.
Biomaterials. 269:1206362021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lin X, Song J, Chen X and Yang H:
Ultrasound-activated sensitizers and applications. Angew Chem Int
Ed Engl. 59:14212–14233. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wang XQ, Wang W, Peng M and Zhang XZ: Free
radicals for cancer theranostics. Biomaterials. 266:1204742021.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Tang D, Chen X, Kang R and Kroemer G:
Ferroptosis: Molecular mechanisms and health implications. Cell
Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Stockwell BR: Ferroptosis turns 10:
Emerging mechanisms, physiological functions, and therapeutic
applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ayala A, Muñoz MF and Argüelles S: Lipid
peroxidation: Production, metabolism, and signaling mechanisms of
malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev.
2014:3604382014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang Z, Wang Z, Xiong Y, Wang C, Deng Q,
Yang T, Xu Q, Yong Z, Yang X and Li Z: A two-pronged strategy to
alleviate tumor hypoxia and potentiate photodynamic therapy by mild
hyperthermia. Biomater Sci. 11:108–118. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Phua SZF, Yang G, Lim WQ, Verma A, Chen H,
Thanabalu T and Zhao Y: Catalase-Integrated hyaluronic acid as
nanocarriers for enhanced photodynamic therapy in solid tumor. ACS
Nano. 13:4742–4751. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhang D, Wu M, Zeng Y, Wu L, Wang Q, Han
X, Liu X and Liu J: Chlorin e6 conjugated poly(dopamine)
nanospheres as PDT/PTT dual-modal therapeutic agents for enhanced
cancer therapy. ACS Appl Mater Interfaces. 7:8176–8187. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Xia Q, Zhang Y, Li Z, Hou X and Feng N:
Red blood cell membrane-camouflaged nanoparticles: A novel drug
delivery system for antitumor application. Acta Pharm Sin B.
9:675–689. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ruiz-Moreno JM, Montero JA, Barile S and
Zarbin MA: Photodynamic therapy and high-dose intravitreal
triamcinolone to treat exudative age-related macular degeneration:
1-Year outcome. Retina. 26:602–612. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yang M, Li J, Gu P and Fan X: The
application of nanoparticles in cancer immunotherapy: Targeting
tumor microenvironment. Bioact Mater. 6:1973–1987. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Duan H, Liu Y, Gao Z and Huang W: Recent
advances in drug delivery systems for targeting cancer stem cells.
Acta Pharm Sin B. 11:55–70. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhen Z, Tang W, Wang M, Zhou S, Wang H, Wu
Z, Hao Z, Li Z, Liu L and Xie J: Protein nanocage mediated
fibroblast-activation protein targeted photoimmunotherapy to
enhance cytotoxic T cell infiltration and tumor control. Nano Lett.
17:862–869. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chen Z, Liu W, Yang Z, Luo Y, Qiao C, Xie
A, Jia Q, Yang P, Wang Z and Zhang R: Sonodynamic-immunomodulatory
nanostimulators activate pyroptosis and remodel tumor
microenvironment for enhanced tumor immunotherapy. Theranostics.
13:1571–1583. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yin T, Chen H, Ma A, Pan H, Chen Z, Tang
X, Huang G, Liao J, Zhang B, Zheng M and Cai L: Cleavable
collagenase-assistant nanosonosensitizer for tumor penetration and
sonodynamic therapy. Biomaterials. 293:1219922023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhang D, Feng F, Li Q, Wang X and Yao L:
Nanopurpurin-based photodynamic therapy destructs extracellular
matrix against intractable tumor metastasis. Biomaterials.
173:22–33. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yang Y, Zhu W, Cheng L, Cai R, Yi X, He J,
Pan X, Yang L, Yang K, Liu Z, et al: Tumor microenvironment
(TME)-activatable circular aptamer-PEG as an effective
hierarchical-targeting molecular medicine for photodynamic therapy.
Biomaterials. 246:1199712020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Liu J, Tian L, Zhang R, Dong Z, Wang H and
Liu Z: Collagenase-encapsulated pH-responsive nanoscale
coordination polymers for tumor microenvironment modulation and
enhanced photodynamic nanomedicine. ACS Appl Mater Interfaces.
10:43493–43502. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zuo Q, Ou Y, Zhong S, Yu H, Zhan F and
Zhang M: Targeting GRP78 enhances the sensitivity of HOS
osteosarcoma cells to pyropheophorbide-α methyl ester-mediated
photodynamic therapy via the Wnt/β-catenin signaling pathway. Acta
Biochim Biophys Sin (Shanghai). 53:1387–1397. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yalçın CÖ, Barut B, Barut EN, Demirbaş Ü,
Dinçer T, Engin S, Özel A and Sena Sezen F: Photodynamic therapy
effect of morpholinium containing silicon (IV) phthalocyanine on
HCT-116 cells. Photodiagnosis Photodyn Ther. 32:1019752020.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yang XY, Zhang JG, Zhou QM, Yu JN, Lu YF,
Wang XJ, Zhou JP, Ding XF, Du YZ and Yu RS: Extracellular matrix
modulating enzyme functionalized biomimetic Au
nanoplatform-mediated enhanced tumor penetration and synergistic
antitumor therapy for pancreatic cancer. J Nanobiotechnology.
20:5242022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang SB, Chen ZX, Gao F, Zhang C, Zou MZ,
Ye JJ, Zeng X and Zhang XZ: Remodeling extracellular matrix based
on functional covalent organic framework to enhance tumor
photodynamic therapy. Biomaterials. 234:1197722020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang Y, Yu W, Chen M, Zhang B, Zhang L
and Li P: The applications of nanozymes in cancer therapy: Based on
regulating pyroptosis, ferroptosis and autophagy of tumor cells.
Nanoscale. Jun 28–2023.(Epub ahead of print).
|
|
44
|
Li Q, Liu Q, Wang P, Feng X, Wang H and
Wang X: The effects of Ce6-mediated sono-photodynamic therapy on
cell migration, apoptosis and autophagy in mouse mammary 4T1 cell
line. Ultrasonics. 54:981–989. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Guo T, Liu T, Sun Y, Liu X, Xiong R, Li H,
Li Z, Zhang Z, Tian Z and Tian Y: Sonodynamic therapy inhibits
palmitate-induced beta cell dysfunction via PINK1/Parkin-dependent
mitophagy. Cell Death Dis. 10:4572019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Chen Y, Yin H, Tao Y, Zhong S, Yu H, Li J,
Bai Z and Ou Y: Antitumor effects and mechanisms of
pyropheophorbide-α methyl ester-mediated photodynamic therapy on
the human osteosarcoma cell line MG-63. Int J Mol Med. 45:971–982.
2020.PubMed/NCBI
|
|
47
|
Lu SL, Wang YH, Liu GF, Wang L, Li Y, Guo
ZY and Cheng C: Graphene oxide nanoparticle-loaded ginsenoside Rg3
improves photodynamic therapy in inhibiting malignant progression
and stemness of osteosarcoma. Front Mol Biosci. 8:6630892021.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zou W, Hao J, Wu J, Cai X, Hu B, Wang Z
and Zheng Y: Biodegradable reduce expenditure bioreactor for
augmented sonodynamic therapy via regulating tumor hypoxia and
inducing pro-death autophagy. J Nanobiotechnology. 19:4182021.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Peng Z, Yuan L, XuHong J, Tian H, Zhang Y,
Deng J and Qi X: Chiral nanomaterials for tumor therapy: Autophagy,
apoptosis, and photothermal ablation. J Nanobiotechnology.
19:2202021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang M, Hu W, Cai C, Wu Y, Li J and Dong
S: Advanced application of stimuli-responsive drug delivery system
for inflammatory arthritis treatment. Mater Today Bio.
14:1002232022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lai HW, Takahashi K, Nakajima M, Tanaka T
and Ogura SI: Efficiency of aminolevulinic acid (ALA)-photodynamic
therapy based on ALA uptake transporters in a cell
density-dependent malignancy model. J Photochem Photobiol B.
218:1121912021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Su X, Zhuang D, Zhang Y, Lv H, Wang Y,
Luan X and Bi L: Influence of photodynamic therapy on the
periodontitis-induced bone resorption in rat. Lasers Med Sci.
36:675–680. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Franco EJ, Pogue RE, Sakamoto LH,
Cavalcante LL, Carvalho DR and de Andrade RV: Increased expression
of genes after periodontal treatment with photodynamic therapy.
Photodiagnosis Photodyn Ther. 11:41–47. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Romagnoli C, Marcucci G, Favilli F,
Zonefrati R, Mavilia C, Galli G, Tanini A, Iantomasi T, Brandi ML
and Vincenzini MT: Role of GSH/GSSG redox couple in osteogenic
activity and osteoclastogenic markers of human osteoblast-like
SaOS-2 cells. FEBS J. 280:867–879. 2013.PubMed/NCBI
|
|
55
|
Moya IM and Halder G: Hippo-YAP/TAZ
signalling in organ regeneration and regenerative medicine. Nat Rev
Mol Cell Biol. 20:211–226. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Deng Y, Lu J, Li W, Wu A, Zhang X, Tong W,
Ho KK, Qin L, Song H and Mak KK: Reciprocal inhibition of YAP/TAZ
and NF-κB regulates osteoarthritic cartilage degradation. Nat
Commun. 9:45642018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Rytlewski JD, Scalora N, Garcia K, Tanas
M, Toor F, Miller B, Allen B, Milhem M and Monga V: Photodynamic
therapy using hippo pathway inhibitor verteporfin: A potential dual
mechanistic approach in treatment of soft tissue sarcomas. Cancers
(Basel). 13:6752021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhan F, He T, Chen Z, Zuo Q, Wang Y, Li Q,
Zhong S and Ou Y: RhoA enhances osteosarcoma resistance to MPPa-PDT
via the Hippo/YAP signaling pathway. Cell Biosci. 11:1792021.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wang C, Zhu X, Feng W, Yu Y, Jeong K, Guo
W, Lu Y and Mills GB: Verteporfin inhibits YAP function through
up-regulating 14-3-3σ sequestering YAP in the cytoplasm. Am J
Cancer Res. 6:27–37. 2015.PubMed/NCBI
|
|
60
|
Zhou A, Fang T, Chen K, Xu Y, Chen Z and
Ning X: Biomimetic activator of sonodynamic ferroptosis amplifies
inherent peroxidation for improving the treatment of breast cancer.
Small. 18:e21065682022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Xiao Y, Zhang T, Ma X, Yang QC, Yang LL,
Yang SC, Liang M, Xu Z and Sun ZJ: Microenvironment-responsive
prodrug-induced pyroptosis boosts cancer immunotherapy. Adv Sci
(Weinh). 8:e21018402021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Shui S, Zhao Z, Wang H, Conrad M and Liu
G: Non-enzymatic lipid peroxidation initiated by photodynamic
therapy drives a distinct ferroptosis-like cell death pathway.
Redox Biol. 45:1020562021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sun J, Du K, Diao J, Cai X, Feng F and
Wang S: GSH and H2 O2 Co-activatable
mitochondria-targeted photodynamic therapy under normoxia and
hypoxia. Angew Chem Int Ed Engl. 59:12122–12128. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wu G, Fang YZ, Yang S, Lupton JR and
Turner ND: Glutathione metabolism and its implications for health.
J Nutr. 134:489–492. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xu Q, Zhan G, Zhang Z, Yong T, Yang X and
Gan L: Manganese porphyrin-based metal-organic framework for
synergistic sonodynamic therapy and ferroptosis in hypoxic tumors.
Theranostics. 11:1937–1952. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lai Y, Lu N, Ouyang A, Zhang Q and Zhang
P: Ferroptosis promotes sonodynamic therapy: A
platinum(ii)-indocyanine sonosensitizer. Chem Sci. 13:9921–9926.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhao LP, Chen SY, Zheng RR, Rao XN, Kong
RJ, Huang CY, Liu YB, Tang Y, Cheng H and Li SY: Photodynamic
therapy initiated ferrotherapy of self-delivery nanomedicine to
amplify lipid peroxidation via GPX4 inactivation. ACS Appl Mater
Interfaces. 14:53501–53510. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wang Y, Zhang L, Zhao G, Zhang Y, Zhan F,
Chen Z, He T, Cao Y, Hao L, Wang Z, et al: Homologous targeting
nanoparticles for enhanced PDT against osteosarcoma HOS cells and
the related molecular mechanisms. J Nanobiotechnology. 20:832022.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Meng X, Deng J, Liu F, Guo T, Liu M, Dai
P, Fan A, Wang Z and Zhao Y: Triggered all-active metal organic
framework: ferroptosis machinery contributes to the apoptotic
photodynamic antitumor therapy. Nano Lett. 19:7866–7876. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Di Giorgio E, Ferino A, Choudhary H,
Löffler PMG, D'Este F, Rapozzi V, Tikhomirov A, Shchekotikhin A,
Vogel S and Xodo LE: Photosensitization of pancreatic cancer cells
by cationic alkyl-porphyrins in free form or engrafted into POPC
liposomes: The relationship between delivery mode and mechanism of
cell death. J Photochem Photobiol B. 231:1124492022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wu F, Liu Y, Wu Y, Song D, Qian J and Zhu
B: Chlorin e6 and polydopamine modified gold nanoflowers for
combined photothermal and photodynamic therapy. J Mater Chem B.
8:2128–2138. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang Y, Xu Y, Guo X, Wang L, Zeng J, Qiu
H, Tan Y, Chen D, Zhao H and Gu Y: Enhanced antimicrobial activity
through the combination of antimicrobial photodynamic therapy and
low-frequency ultrasonic irradiation. Adv Drug Deliv Rev.
183:1141682022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Aksel M, Bozkurt-Girit O and Bilgin MD:
Pheophorbide a-mediated sonodynamic, photodynamic and
sonophotodynamic therapies against prostate cancer. Photodiagnosis
Photodyn Ther. 31:1019092020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang X, Chen Y, Yang X, Cheng L, He Z, Xin
Y, Huang S, Meng F, Zhang P and Luo L: Activation of ALOX12 by a
multi-organelle-orienting photosensitizer drives ACSL4-independent
cell ferroptosis. Cell Death Dis. 13:10402022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Fekrazad R, Seraj B, Chiniforush N,
Rokouei M, Mousavi N and Ghadimi S: Effect of antimicrobial
photodynamic therapy on the counts of salivary Streptococcus mutans
in children with severe early childhood caries. Photodiagnosis
Photodyn Ther. 18:319–322. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Chang M, Hou Z, Wang M, Wang M, Dang P,
Liu J, Shu M, Ding B, Al Kheraif AA, Li C and Lin J: Cu2
MoS4/Au heterostructures with enhanced catalase-like
activity and photoconversion efficiency for primary/metastatic
tumors eradication by phototherapy-induced immunotherapy. Small.
16:e19071462020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Martins WK, Santos NF, Rocha CS, Bacellar
IOL, Tsubone TM, Viotto AC, Matsukuma AY, Abrantes ABP, Siani P,
Dias LG and Baptista MS: Parallel damage in mitochondria and
lysosomes is an efficient way to photoinduce cell death. Autophagy.
15:259–279. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Xu Y, Dong Z, Zhang R, Wang Z, Shi Y, Liu
M, Yang J, Yang T, Zhang R, Wang T, et al: Sonodynamic therapy
reduces cardiomyocyte apoptosis through autophagy activated by
reactive oxygen species in myocardial infarction. Free Radic Biol
Med. 195:36–46. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Rogowska-Tylman J, Locs J, Salma I,
Woźniak B, Pilmane M, Zalite V, Wojnarowicz J, Kędzierska-Sar A,
Chudoba T, Szlązak K, et al: In vivo and in vitro study of a novel
nanohydroxyapatite sonocoated scaffolds for enhanced bone
regeneration. Mater Sci Eng C Mater Biol Appl. 99:669–684. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Arnold L, Hendricks-Wenger A,
Coutermarsh-Ott S, Gannon J, Hay AN, Dervisis N, Klahn S, Allen IC,
Tuohy J and Vlaisavljevich E: Histotripsy ablation of bone tumors:
Feasibility study in excised canine osteosarcoma tumors. Ultrasound
Med Biol. 47:3435–3446. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang J, Zhao Z, Liu Y, Cao X, Li F, Ran H,
Cao Y and Wu C: ‘Mito-Bomb’: A novel mitochondria-targeting
nanosystem for ferroptosis-boosted sonodynamic antitumor therapy.
Drug Deliv. 29:3111–3122. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Tian Z, Liu H, Zhao Y, Wang X, Ren H,
Zhang F, Li P, Zhang P, Wang J and Yao W: Secondary pneumothorax as
a potential marker of apatinib efficacy in osteosarcoma: A
multicenter analysis. Anticancer Drugs. 32:82–87. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Antonioli M, Di Rienzo M, Piacentini M and
Fimia GM: Emerging mechanisms in initiating and terminating
autophagy. Trends Biochem Sci. 42:28–41. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kara O, Seseogullari Dirihan R, Sayin Ozel
G, Tezvergil Mutluay A and Usumez A: Inhibition of cathepsin-K and
matrix metalloproteinase by photodynamic therapy. Dent Mater.
37:e485–e492. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wan Y, Fu LH, Li C, Lin J and Huang P:
Conquering the hypoxia limitation for photodynamic therapy. Adv
Mater. 33:e21039782021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhao L, Rao X, Huang C, Zheng R, Kong R,
Chen Z, Yu X, Cheng H and Li S: Epigenetic reprogramming of carrier
free photodynamic modulator to activate tumor immunotherapy by EZH2
inhibition. Biomaterials. 293:1219522023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhang B, Li Y, Wu Q, Xie L, Barwick B, Fu
C, Li X, Wu D, Xia S, Chen J, et al: Acetylation of KLF5 maintains
EMT and tumorigenicity to cause chemoresistant bone metastasis in
prostate cancer. Nat Commun. 12:17142021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
MacDonald IJ, Tsai HC, Chang AC, Huang CC,
Yang SF and Tang CH: Melatonin inhibits osteoclastogenesis and
osteolytic bone metastasis: Implications for osteoporosis. Int J
Mol Sci. 22:94352021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Sardoiwala MN, Kushwaha AC, Dev A,
Shrimali N, Guchhait P, Karmakar S and Roy Choudhury S:
Hypericin-loaded transferrin nanoparticles induce PP2A-regulated
BMI1 degradation in colorectal cancer-specific chemo-photodynamic
therapy. ACS Biomater Sci Eng. 6:3139–3153. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kaundal B, Srivastava AK, Sardoiwala MN,
Karmakar S and Choudhury SR: A NIR-responsive indocyanine
green-genistein nanoformulation to control the polycomb epigenetic
machinery for the efficient combinatorial photo/chemotherapy of
glioblastoma. Nanoscale Adv. 1:2188–2207. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liu P, Zhang W, Deng J, Zheng Y, Weng J,
Yu F, Wang D, Zheng M, Kang B and Zeng H: Chain-shattering
polymeric sulfur dioxide prodrug micelles for redox-triggered gas
therapy of osteosarcoma. J Mater Chem B. 10:5263–5271. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Dong W, Wang H, Liu H, Zhou C, Zhang X,
Wang S and He L: Potential of black phosphorus in immune-based
therapeutic strategies. Bioinorg Chem Appl. 2022:37900972022.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Huang W, Gao Y, Wang J, Ding P, Yan M, Wu
F, Liu J, Liu D, Guo C, Yang B and Cao W: Plasmonic enhanced
reactive oxygen species activation on low-work-function tungsten
nitride for direct near-infrared driven photocatalysis. Small.
16:e20045572020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Huang Q, Ou YS, Tao Y, Yin H and Tu PH:
Apoptosis and autophagy induced by pyropheophorbide-α methyl
ester-mediated photodynamic therapy in human osteosarcoma MG-63
cells. Apoptosis. 21:749–760. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Meier D, Botter SM, Campanile C, Robl B,
Gräfe S, Pellegrini G, Born W and Fuchs B: Foscan and foslip based
photodynamic therapy in osteosarcoma in vitro and in intratibial
mouse models. Int J Cancer. 140:1680–1692. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Sun M, Zhou C, Zeng H, Puebla-Osorio N,
Damiani E, Chen J, Wang H, Li G, Yin F, Shan L, et al:
Hiporfin-mediated photodynamic therapy in preclinical treatment of
osteosarcoma. Photochem Photobiol. 91:533–544. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Tu P, Huang Q, Ou Y, Du X, Li K, Tao Y and
Yin H: Aloe-emodin-mediated photodynamic therapy induces autophagy
and apoptosis in human osteosarcoma cell line MG-63 through the
ROS/JNK signaling pathway. Oncol Rep. 35:3209–3215. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhou YK, Wu WZ, Zhang L, Yang CH and Wang
YP: Effect of M007 mediated photodynamic therapy on proliferation
of human osteosarcoma MG63 cells in vitro. Sichuan Da Xue Xue Bao
Yi Xue Ban. 43:41–45. 2012.(In Chinese). PubMed/NCBI
|
|
99
|
Zhang F, Zhu Y, Fan G and Hu S:
Photodynamic therapy reduces the inhibitory effect of osteosarcoma
cells on dendritic cells by upregulating HSP70. Oncol Lett.
16:5034–5040. 2018.PubMed/NCBI
|
|
100
|
Bu Y, Huang R, Li Z, Zhang P, Zhang L,
Yang Y, Liu Z, Guo K and Gao F: Anisotropic truncated octahedral Au
with Pt deposition on arris for localized surface plasmon
resonance-enhanced photothermal and photodynamic therapy of
osteosarcoma. ACS Appl Mater Interfaces. 13:35328–35341. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Xiong S, Xiong G, Li Z, Jiang Q, Yin J,
Yin T and Zheng H: Gold nanoparticle-based nanoprobes with enhanced
tumor targeting and photothermal/photodynamic response for therapy
of osteosarcoma. Nanotechnology. 32:1551022021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Deng X, Liang H, Yang W and Shao Z:
Polarization and function of tumor-associated macrophages mediate
graphene oxide-induced photothermal cancer therapy. J Photochem
Photobiol B. 208:1119132020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yu W, Ye M, Zhu J, Wang Y, Liang C, Tang
J, Tao H and Shen Y: Zinc phthalocyanine encapsulated in polymer
micelles as a potent photosensitizer for the photodynamic therapy
of osteosarcoma. Nanomedicine. 14:1099–1110. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Yanase S, Nomura J, Matsumura Y, Nagai K,
Kinoshita M, Nakanishi H, Ohnishi Y, Tokuda T and Tagawa T:
Enhancement of the effect of 5-aminolevulinic acid-based
photodynamic therapy by simultaneous hyperthermia. Int J Oncol.
27:193–201. 2005.PubMed/NCBI
|
|
105
|
Zhang J, Miao Y, Ni W, Xiao H and Zhang J:
Cancer cell membrane coated silica nanoparticles loaded with ICG
for tumour specific photothermal therapy of osteosarcoma. Artif
Cells Nanomed Biotechnol. 47:2298–2305. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Kusuzaki K, Murata H, Matsubara T,
Miyazaki S, Shintani K, Seto M, Matsumine A, Hosoi H, Sugimoto T
and Uchida A: Clinical outcome of a novel photodynamic therapy
technique using acridine orange for synovial sarcomas. Photochem
Photobiol. 81:705–709. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Heymann PG, Ziebart T, Kämmerer PW, Mandic
R, Saydali A, Braun A, Neff A and Draenert GF: The enhancing effect
of a laser photochemotherapy with cisplatin or zolendronic acid in
primary human osteoblasts and osteosarcoma cells in vitro. J Oral
Pathol Med. 45:803–809. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
He Z, Du J, Miao Y and Li Y: Recent
developments of inorganic nanosensitizers for sonodynamic therapy.
Adv Healthc Mater. e23002342023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Liu X, Li W, Geng S, Meng QG and Bi ZG:
Apoptosis induced by sonodynamic therapy in human osteosarcoma
cells in vitro. Mol Med Rep. 12:1183–1188. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Geng B, Yang X, Li P, Shi W, Pan D and
Shen L: W-doped TiO2 nanorods for multimode tumor
eradication in osteosarcoma models under single ultrasound
irradiation. ACS Appl Mater Interfaces. 13:45325–45334. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wang H, Guo J, Lin W, Fu Z, Ji X, Yu B, Lu
M, Cui W, Deng L, Engle JW, et al: Open-shell nanosensitizers for
glutathione responsive cancer sonodynamic therapy. Adv Mater.
34:e21102832022. View Article : Google Scholar : PubMed/NCBI
|