Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
November-2023 Volume 50 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2023 Volume 50 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Targeting TRIP13 for overcoming anticancer drug resistance (Review)

  • Authors:
    • Liwen Zhao
    • Siyu Ye
    • Shengnan Jing
    • Yong-Jing Gao
    • Tianzhen He
  • View Affiliations / Copyright

    Affiliations: Institute of Pain Medicine and Special Environmental Medicine, Co‑innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, P.R. China
    Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 202
    |
    Published online on: September 29, 2023
       https://doi.org/10.3892/or.2023.8639
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer is one of the greatest dangers to human wellbeing and survival. A key barrier to effective cancer therapy is development of resistance to anti‑cancer medications. In cancer cells, the AAA+ ATPase family member thyroid hormone receptor interactor 13 (TRIP13) is key in promoting treatment resistance. Nonetheless, knowledge of the molecular processes underlying TRIP13‑based resistance to anticancer therapies is lacking. The present study evaluated the function of TRIP13 expression in anticancer drug resistance and potential methods to overcome this resistance. Additionally, the underlying mechanisms by which TRIP13 promotes resistance to anticancer drugs were explored, including induction of mitotic checkpoint complex surveillance system malfunction, promotion of DNA repair, the enhancement of autophagy and the prevention of immunological clearance. The effects of combination treatment, which include a TRIP13 inhibitor in addition to other inhibitors, were discussed. The present study evaluated the literature on TRIP13 as a possible target and its association with anticancer drug resistance, which may facilitate improvements in current anticancer therapeutic options.
View Figures

Figure 1

Figure 2

View References

1 

Jeong H, Wie M, Baek IJ, Sohn G, Um SH, Lee SG, Seo Y, Ra J, Lee EA, Kim S, et al: TRIP13 participates in immediate-early sensing of DNA strand breaks and ATM signaling amplification through MRE11. Cells. 11:40952022. View Article : Google Scholar : PubMed/NCBI

2 

Lee JW, Choi HS, Gyuris J, Brent R and Moore DD: Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol Endocrinol. 9:243–254. 1995. View Article : Google Scholar : PubMed/NCBI

3 

San-Segundo PA and Roeder GS: Pch2 links chromatin silencing to meiotic checkpoint control. Cell. 97:313–324. 1999. View Article : Google Scholar : PubMed/NCBI

4 

Miao C, Tang D, Zhang H, Wang M, Li Y, Tang S, Yu H, Gu M and Cheng Z: Central region component1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice. Plant Cell. 25:2998–3009. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Farmer S, Hong EJ, Leung WK, Argunhan B, Terentyev Y, Humphryes N, Toyoizumi H and Tsubouchi H: Budding yeast Pch2, a widely conserved meiotic protein, is involved in the initiation of meiotic recombination. PLoS One. 7:e397242012. View Article : Google Scholar : PubMed/NCBI

6 

Joyce EF and McKim KS: Drosophila PCH2 is required for a pachytene checkpoint that monitors double-strand-break-independent events leading to meiotic crossover formation. Genetics. 181:39–51. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Ye Q, Rosenberg SC, Moeller A, Speir JA, Su TY and Corbett KD: TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching. Elife. 4:e073672015. View Article : Google Scholar : PubMed/NCBI

8 

Li XC and Schimenti JC: Mouse pachytene checkpoint 2 (trip13) is required for completing meiotic recombination but not synapsis. PLoS Genet. 3:e1302007. View Article : Google Scholar : PubMed/NCBI

9 

Roig I, Dowdle JA, Toth A, de Rooij DG, Jasin M and Keeney S: Mouse TRIP13/PCH2 is required for recombination and normal higher-order chromosome structure during meiosis. PLoS Genet. 6:e10010622010. View Article : Google Scholar : PubMed/NCBI

10 

Wojtasz L, Daniel K, Roig I, Bolcun-Filas E, Xu H, Boonsanay V, Eckmann CR, Cooke HJ, Jasin M, Keeney S, et al: Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet. 5:e10007022009. View Article : Google Scholar : PubMed/NCBI

11 

Tipton AR, Wang K, Oladimeji P, Sufi S, Gu Z and Liu ST: Identification of novel mitosis regulators through data mining with human centromere/kinetochore proteins as group queries. BMC Cell Biol. 13:152012. View Article : Google Scholar : PubMed/NCBI

12 

Wang K, Sturt-Gillespie B, Hittle JC, Macdonald D, Chan GK, Yen TJ and Liu ST: Thyroid hormone receptor interacting protein 13 (TRIP13) AAA-ATPase is a novel mitotic checkpoint-silencing protein. J Biol Chem. 289:23928–23937. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Eytan E, Wang K, Miniowitz-Shemtov S, Sitry-Shevah D, Kaisari S, Yen TJ, Liu ST and Hershko A: Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31(comet). Proc Natl Acad Sci USA. 111:12019–12024. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Silva RD, Mirkovic M, Guilgur LG, Rathore OS, Martinho RG and Oliveira RA: Absence of the spindle assembly checkpoint restores mitotic fidelity upon loss of sister chromatid cohesion. Curr Biol. 28:2837–2844.e2833. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Bhalla N and Dernburg AF: A conserved checkpoint monitors meiotic chromosome synapsis in Caenorhabditis elegans. Science. 310:1683–1686. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Börner GV, Barot A and Kleckner N: Yeast Pch2 promotes domainal axis organization, timely recombination progression, and arrest of defective recombinosomes during meiosis. Proc Natl Acad Sci USA. 105:3327–3332. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Joshi N, Barot A, Jamison C and Börner GV: Pch2 links chromosome axis remodeling at future crossover sites and crossover distribution during yeast meiosis. PLoS Genet. 5:e10005572009. View Article : Google Scholar : PubMed/NCBI

18 

Vader G, Blitzblau HG, Tame MA, Falk JE, Curtin L and Hochwagen A: Protection of repetitive DNA borders from self-induced meiotic instability. Nature. 477:115–119. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Vader G: Pch2(TRIP13): Controlling cell division through regulation of HORMA domains. Chromosoma. 124:333–339. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Chen C, Jomaa A, Ortega J and Alani EE: Pch2 is a hexameric ring ATPase that remodels the chromosome axis protein Hop1. Proc Natl Acad Sci USA. 111:E44–E53. 2014.PubMed/NCBI

21 

Yedidi RS, Wendler P and Enenkel C: AAA-ATPases in protein degradation. Front Mol Biosci. 4:422017. View Article : Google Scholar : PubMed/NCBI

22 

Sheng N, Yan L, Wu K, You W, Gong J, Hu L, Tan G, Chen H and Wang Z: TRIP13 promotes tumor growth and is associated with poor prognosis in colorectal cancer. Cell Death Dis. 9:4022018. View Article : Google Scholar : PubMed/NCBI

23 

Kurita K, Maeda M, Mansour MA, Kokuryo T, Uehara K, Yokoyama Y, Nagino M, Hamaguchi M and Senga T: TRIP13 is expressed in colorectal cancer and promotes cancer cell invasion. Oncol Lett. 12:5240–5246. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Agarwal S, Behring M, Kim HG, Chandrashekar DS, Chakravarthi BVSK, Gupta N, Bajpai P, Elkholy A, Al Diffalha S, Datta PK, et al: TRIP13 promotes metastasis of colorectal cancer regardless of p53 and microsatellite instability status. Mol Oncol. 14:3007–3029. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Banerjee R, Russo N, Liu M, Basrur V, Bellile E, Palanisamy N, Scanlon CS, van Tubergen E, Inglehart RC, Metwally T, et al: TRIP13 promotes error-prone nonhomologous end joining and induces chemoresistance in head and neck cancer. Nat Commun. 5:45272014. View Article : Google Scholar : PubMed/NCBI

26 

Lan J, Huang J, Tao X, Gao Y, Zhang L, Huang W, Luo J, Liu C, Deng Y, Liu L and Liu X: Evaluation of the TRIP13 level in breast cancer and insights into potential molecular pathways. J Cell Mol Med. 26:2673–2685. 2022. View Article : Google Scholar : PubMed/NCBI

27 

Liu L, Zhang Z, Xia X and Lei J: KIF18B promotes breast cancer cell proliferation, migration and invasion by targeting TRIP13 and activating the Wnt/β-catenin signaling pathway. Oncol Lett. 23:1122022. View Article : Google Scholar : PubMed/NCBI

28 

Li ZH, Lei L, Fei LR, Huang WJ, Zheng YW, Yang MQ, Wang Z, Liu CC and Xu HT: TRIP13 promotes the proliferation and invasion of lung cancer cells via the Wnt signaling pathway and epithelial-mesenchymal transition. J Mol Histol. 52:11–20. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Cai W, Ni W, Jin Y and Li Y: TRIP13 promotes lung cancer cell growth and metastasis through AKT/mTORC1/c-Myc signaling. Cancer Biomark. 30:237–248. 2021. View Article : Google Scholar : PubMed/NCBI

30 

Zhang Q, Dong Y, Hao S, Tong Y, Luo Q and Aerxiding P: The oncogenic role of TRIP13 in regulating proliferation, invasion, and cell cycle checkpoint in NSCLC cells. Int J Clin Exp Pathol. 12:3357–3366. 2019.PubMed/NCBI

31 

Yao J, Zhang X, Li J, Zhao D, Gao B, Zhou H, Gao S and Zhang L: Silencing TRIP13 inhibits cell growth and metastasis of hepatocellular carcinoma by activating of TGF-β1/smad3. Cancer Cell Int. 18:2082018. View Article : Google Scholar : PubMed/NCBI

32 

Garcia MR, Meissburger B, Chan J, de Guia RM, Mattijssen F, Roessler S, Birkenfeld AL, Raschzok N, Riols F, Tokarz J, et al: Trip13 depletion in liver cancer induces a lipogenic response contributing to plin2-dependent mitotic cell death. Adv Sci (Weinh). 9:e21042912022. View Article : Google Scholar : PubMed/NCBI

33 

Dong L, Ding H, Li Y, Xue D, Li Z, Liu Y, Zhang T, Zhou J and Wang P: TRIP13 is a predictor for poor prognosis and regulates cell proliferation, migration and invasion in prostate cancer. Int J Biol Macromol. 121:200–206. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Zeng L, Liu YM, Yang N, Zhang T and Xie H: Hsa_circRNA_100146 promotes prostate cancer progression by upregulating TRIP13 via sponging miR-615-5p. Front Mol Biosci. 8:6934772021. View Article : Google Scholar : PubMed/NCBI

35 

Wang Y, Huang J, Li B, Xue H, Tricot G, Hu L, Xu Z, Sun X, Chang S, Gao L, et al: A small-molecule inhibitor targeting TRIP13 suppresses multiple myeloma progression. Cancer Res. 80:536–548. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Gao Y, Liu S, Guo Q, Zhang S, Zhao Y, Wang H, Li T, Gong Y, Wang Y, Zhang T, et al: Increased expression of TRIP13 drives the tumorigenesis of bladder cancer in association with the EGFR signaling pathway. Int J Biol Sci. 15:1488–1499. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Mohammed aI, Ali ME-H, Mohamed FEA and Abd-Elrehim DM: Immunohistochemical expression of TRIP13 in transitional and squamous cell carcinoma of urinary bladder carcinoma. Minia J Med Res. 2023. View Article : Google Scholar

38 

Zhou KS, Zhang Q, Zhang WT, Liu YY, Wu SS, Zhou J, Wei XD and Song YP: Study on the expression of TRIP13 mRNA in chronic lymphocytic leukemia B lymphocyte and the molecular mechanism of TRIP13 mediated JVM-2 cell proliferation and apoptosis. Zhonghua Xue Ye Xue Za Zhi. 38:618–622. 2017.(In Chinese). PubMed/NCBI

39 

Li W, Zhang G, Li X, Wang X, Li Q, Hong L, Shen Y, Zhao C, Gong X, Chen Y and Zhou J: Thyroid hormone receptor interactor 13 (TRIP13) overexpression associated with tumor progression and poor prognosis in lung adenocarcinoma. Biochem Biophys Res Commun. 499:416–424. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Ju L, Li X, Shao J, Lu R, Wang Y and Bian Z: Upregulation of thyroid hormone receptor interactor 13 is associated with human hepatocellular carcinoma. Oncol Rep. 40:3794–3802. 2018.PubMed/NCBI

41 

Lu W, Mengxuan Z, Ming R, Zixu G, Yong Z, Simin Z, Yang Y, Leqi Q, Kangjie S, Yanlin L, et al: TRIP13/FLNA complex promotes tumor progression and is associated with unfavorable outcomes in melanoma. J Oncol. 2022:14191792022. View Article : Google Scholar : PubMed/NCBI

42 

Tao Y, Yang G, Yang H, Song D, Hu L, Xie B, Wang H, Gao L, Gao M, Xu H, et al: TRIP13 impairs mitotic checkpoint surveillance and is associated with poor prognosis in multiple myeloma. Oncotarget. 8:26718–26731. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Zhang LT, Ke LX, Wu XY, Tian HT, Deng HZ, Xu LY, Li EM and Long L: TRIP13 induces nedaplatin resistance in esophageal squamous cell carcinoma by enhancing repair of DNA damage and inhibiting apoptosis. Biomed Res Int. 2022:72954582022.PubMed/NCBI

44 

Xu H, Ma Z, Mo X, Chen X, Xu F, Wu F, Chen H, Zhou G, Xia H and Zhang C: Inducing synergistic DNA damage by TRIP13 and PARP1 inhibitors provides a potential treatment for hepatocellular carcinoma. J Cancer. 13:2226–2237. 2022. View Article : Google Scholar : PubMed/NCBI

45 

Ye Q, Kim DH, Dereli I, Rosenberg SC, Hagemann G, Herzog F, Tóth A, Cleveland DW and Corbett KD: The AAA+ ATPase TRIP13 remodels HORMA domains through N-terminal engagement and unfolding. EMBO J. 36:2419–2434. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Mapelli M, Massimiliano L, Santaguida S and Musacchio A: The Mad2 conformational dimer: Structure and implications for the spindle assembly checkpoint. Cell. 131:730–743. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Marks DH, Thomas R, Chin Y, Shah R, Khoo C and Benezra R: Mad2 overexpression uncovers a critical role for TRIP13 in mitotic exit. Cell Rep. 19:1832–1845. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Yang M, Li B, Tomchick DR, Machius M, Rizo J, Yu H and Luo X: p31comet blocks Mad2 activation through structural mimicry. Cell. 131:744–755. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Rosenberg SC and Corbett KD: The multifaceted roles of the HORMA domain in cellular signaling. J Cell Biol. 211:745–755. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Zhou K, Zhang W, Zhang Q, Gui R, Zhao H, Chai X, Li Y, Wei X and Song Y: Loss of thyroid hormone receptor interactor 13 inhibits cell proliferation and survival in human chronic lymphocytic leukemia. Oncotarget. 8:25469–25481. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Furlong F, Fitzpatrick P, O'Toole S, Phelan S, McGrogan B, Maguire A, O'Grady A, Gallagher M, Prencipe M, McGoldrick A, et al: Low MAD2 expression levels associate with reduced progression-free survival in patients with high-grade serous epithelial ovarian cancer. J Pathol. 226:746–755. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Zhou XY and Shu XM: TRIP13 promotes proliferation and invasion of epithelial ovarian cancer cells through Notch signaling pathway. Eur Rev Med Pharmacol Sci. 23:522–529. 2019.PubMed/NCBI

53 

Amawi H, Sim HM, Tiwari AK, Ambudkar SV and Shukla S: ABC transporter-mediated multidrug-resistant cancer. Adv Exp Med Biol. 1141:549–580. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Khatami M: Cancer; an induced disease of twentieth century! Induction of tolerance, increased entropy and ‘Dark Energy’: Loss of biorhythms (Anabolism v. Catabolism). Clin Transl Med. 7:202018. View Article : Google Scholar : PubMed/NCBI

55 

Wang DC, Wang W, Zhu B and Wang X: Lung cancer heterogeneity and new strategies for drug therapy. Annu Rev Pharmacol Toxicol. 58:531–546. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Bukowski K, Kciuk M and Kontek R: Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 21:32332020. View Article : Google Scholar : PubMed/NCBI

57 

Vasan N, Baselga J and Hyman DM: A view on drug resistance in cancer. Nature. 575:299–309. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Lu S, Guo M, Fan Z, Chen Y, Shi X, Gu C and Yang Y: Elevated TRIP13 drives cell proliferation and drug resistance in bladder cancer. Am J Transl Res. 11:4397–4410. 2019.PubMed/NCBI

59 

Li C, Xia J, Franqui-Machin R, Chen F, He Y, Ashby TC, Teng F, Xu H, Liu D, Gai D, et al: TRIP13 modulates protein deubiquitination and accelerates tumor development and progression of B cell malignancies. J Clin Invest. 131:e1468932021. View Article : Google Scholar : PubMed/NCBI

60 

Ozols RF and Young RC: High-dose cisplatin therapy in ovarian cancer. Semin Oncol. 12:21–30. 1985.PubMed/NCBI

61 

Markman M: Intraperitoneal cisplatin and carboplatin in the management of ovarian cancer. Semin Oncol. 21:17–19; quiz 20. 581994.PubMed/NCBI

62 

Zoń A and Bednarek I: Cisplatin in ovarian cancer treatment-known limitations in therapy force new solutions. Int J Mol Sci. 24:75852023. View Article : Google Scholar : PubMed/NCBI

63 

Mittica G, Ghisoni E, Giannone G, Genta S, Aglietta M, Sapino A and Valabrega G: PARP inhibitors in ovarian cancer. Recent Pat Anticancer Drug Discov. 13:392–410. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Smith M and Pothuri B: Appropriate selection of PARP inhibitors in ovarian cancer. Curr Treat Options Oncol. 23:887–903. 2022. View Article : Google Scholar : PubMed/NCBI

65 

Jiang X, Li X, Li W, Bai H and Zhang Z: PARP inhibitors in ovarian cancer: Sensitivity prediction and resistance mechanisms. J Cell Mol Med. 23:2303–2313. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Musacchio A and Salmon ED: The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol. 8:379–393. 2007. View Article : Google Scholar : PubMed/NCBI

67 

Lara-Gonzalez P, Westhorpe FG and Taylor SS: The spindle assembly checkpoint. Curr Biol. 22:R966–R980. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Chao WC, Kulkarni K, Zhang Z, Kong EH and Barford D: Structure of the mitotic checkpoint complex. Nature. 484:208–213. 2012. View Article : Google Scholar : PubMed/NCBI

69 

de Cárcer G and Malumbres M: A centrosomal route for cancer genome instability. Nat Cell Biol. 16:504–506. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Sotillo R, Schvartzman JM, Socci ND and Benezra R: Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature. 464:436–440. 2010. View Article : Google Scholar : PubMed/NCBI

71 

Bargiela-Iparraguirre J, Prado-Marchal L, Pajuelo-Lozano N, Jiménez B, Perona R and Sánchez-Pérez I: Mad2 and BubR1 modulates tumourigenesis and paclitaxel response in MKN45 gastric cancer cells. Cell Cycle. 13:3590–3601. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Tusell L, Pampalona J, Soler D, Frías C and Genescà A: Different outcomes of telomere-dependent anaphase bridges. Biochem Soc Trans. 38:1698–1703. 2010. View Article : Google Scholar : PubMed/NCBI

73 

Stewénius Y, Gorunova L, Jonson T, Larsson N, Höglund M, Mandahl N, Mertens F, Mitelman F and Gisselsson D: Structural and numerical chromosome changes in colon cancer develop through telomere-mediated anaphase bridges, not through mitotic multipolarity. Proc Natl Acad Sci USA. 102:5541–5546. 2005. View Article : Google Scholar : PubMed/NCBI

74 

Bailey SM and Murnane JP: Telomeres, chromosome instability and cancer. Nucleic Acids Res. 34:2408–2417. 2006. View Article : Google Scholar : PubMed/NCBI

75 

Mills KD, Ferguson DO and Alt FW: The role of DNA breaks in genomic instability and tumorigenesis. Immunol Rev. 194:77–95. 2003. View Article : Google Scholar : PubMed/NCBI

76 

Zhou W, Yang Y, Xia J, Wang H, Salama ME, Xiong W, Xu H, Shetty S, Chen T, Zeng Z, et al: NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell. 23:48–62. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Carter SL, Eklund AC, Kohane IS, Harris LN and Szallasi Z: A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet. 38:1043–1048. 2006. View Article : Google Scholar : PubMed/NCBI

78 

Clairmont CS, Sarangi P, Ponnienselvan K, Galli LD, Csete I, Moreau L, Adelmant G, Chowdhury D, Marto JA and D'Andrea AD: TRIP13 regulates DNA repair pathway choice through REV7 conformational change. Nat Cell Biol. 22:87–96. 2020. View Article : Google Scholar : PubMed/NCBI

79 

Sudakin V, Chan GK and Yen TJ: Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol. 154:925–936. 2001. View Article : Google Scholar : PubMed/NCBI

80 

Overlack K, Bange T, Weissmann F, Faesen AC, Maffini S, Primorac I, Müller F, Peters JM and Musacchio A: BubR1 promotes Bub3-dependent APC/C inhibition during spindle assembly checkpoint signaling. Curr Biol. 27:2915–2927.e2917. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Burton JL and Solomon MJ: Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev. 21:655–667. 2007. View Article : Google Scholar : PubMed/NCBI

82 

McGranahan N, Burrell RA, Endesfelder D, Novelli MR and Swanton C: Cancer chromosomal instability: Therapeutic and diagnostic challenges. EMBO Rep. 13:528–538. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Lischetti T and Nilsson J: Regulation of mitotic progression by the spindle assembly checkpoint. Mol Cell Oncol. 2:e9704842015. View Article : Google Scholar : PubMed/NCBI

84 

Sudo T, Nitta M, Saya H and Ueno NT: Dependence of paclitaxel sensitivity on a functional spindle assembly checkpoint. Cancer Res. 64:2502–2508. 2004. View Article : Google Scholar : PubMed/NCBI

85 

Wang M, Chen S and Ao D: Targeting DNA repair pathway in cancer: Mechanisms and clinical application. MedComm. 2020.2:654–691. 2021. View Article : Google Scholar : PubMed/NCBI

86 

Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI

87 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Deng S, Vlatkovic T, Li M, Zhan T, Veldwijk MR and Herskind C: Targeting the DNA damage response and DNA repair pathways to enhance radiosensitivity in colorectal cancer. Cancers (Basel). 14:48742022. View Article : Google Scholar : PubMed/NCBI

89 

Mirza MR, Pignata S and Ledermann JA: Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol. 29:1366–1376. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Schettini F, Giudici F, Bernocchi O, Sirico M, Corona SP, Giuliano M, Locci M, Paris I, Scambia G, De Placido S, et al: Poly (ADP-ribose) polymerase inhibitors in solid tumours: Systematic review and meta-analysis. Eur J Cancer. 149:134–152. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Tutt ANJ, Garber JE, Kaufman B, Viale G, Fumagalli D, Rastogi P, Gelber RD, de Azambuja E, Fielding A, Balmaña J, et al: Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med. 384:2394–2405. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Carreira S, Porta N, Arce-Gallego S, Seed G, Llop-Guevara A, Bianchini D, Rescigno P, Paschalis A, Bertan C, Baker C, et al: Biomarkers associating with PARP inhibitor benefit in prostate cancer in the TOPARP-B trial. Cancer Discov. 11:2812–2827. 2021. View Article : Google Scholar : PubMed/NCBI

93 

Mateo J, Porta N, Bianchini D, McGovern U, Elliott T, Jones R, Syndikus I, Ralph C, Jain S, Varughese M, et al: Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): A multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 21:162–174. 2020. View Article : Google Scholar : PubMed/NCBI

94 

Maughan BL and Antonarakis ES: Olaparib and rucaparib for the treatment of DNA repair-deficient metastatic castration-resistant prostate cancer. Expert Opin Pharmacother. 22:1625–1632. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Cleary JM, Wolpin BM, Dougan SK, Raghavan S, Singh H, Huffman B, Sethi NS, Nowak JA, Shapiro GI, Aguirre AJ and D'Andrea AD: Opportunities for utilization of DNA repair inhibitors in homologous recombination repair-deficient and proficient pancreatic adenocarcinoma. Clin Cancer Res. 27:6622–6637. 2021. View Article : Google Scholar : PubMed/NCBI

96 

van Waardenburg R and Yang ES: Targeting DNA repair pathways to overcome cancer drug resistance. Cancer Drug Resist. 4:837–841. 2021.PubMed/NCBI

97 

Ghosh S, Mazumdar T, Xu W, Powell RT, Stephan C, Shen L, Shah PA, Pickering CR, Myers JN, Wang J, et al: Combined TRIP13 and aurora kinase inhibition induces apoptosis in human papillomavirus–driven cancers. Clin Cancer Res. 28:4479–4493. 2022. View Article : Google Scholar : PubMed/NCBI

98 

Chang H and Zou Z: Targeting autophagy to overcome drug resistance: Further developments. J Hematol Oncol. 13:1592020. View Article : Google Scholar : PubMed/NCBI

99 

Ahmadi-Dehlaghi F, Mohammadi P, Valipour E, Pournaghi P, Kiani S and Mansouri K: Autophagy: A challengeable paradox in cancer treatment. Cancer Med. 12:11542–11569. 2023. View Article : Google Scholar : PubMed/NCBI

100 

Salimi-Jeda A, Ghabeshi S, Pour ZGM, Jazaeri EO, Araiinejad M, Sheikholeslami F, Abdoli M, Edalat M and Abdoli A: Autophagy modulation and cancer combination therapy: A smart approach in cancer therapy. Cancer Treat Res Commun. 30:1005122022. View Article : Google Scholar : PubMed/NCBI

101 

Levine B and Kroemer G: Biological functions of autophagy genes: A disease perspective. Cell. 176:11–42. 2019. View Article : Google Scholar : PubMed/NCBI

102 

Galluzzi L and Green DR: Autophagy-independent functions of the autophagy machinery. Cell. 177:1682–1699. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Dikic I and Elazar Z: Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 19:349–364. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Wu M and Zhang P: EGFR-mediated autophagy in tumourigenesis and therapeutic resistance. Cancer Lett. 469:207–216. 2020. View Article : Google Scholar : PubMed/NCBI

105 

Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM and Chen ZS: Autophagy and multidrug resistance in cancer. Chin J Cancer. 36:522017. View Article : Google Scholar : PubMed/NCBI

106 

Amaravadi RK, Kimmelman AC and Debnath J: Targeting autophagy in cancer: Recent advances and future directions. Cancer Discov. 9:1167–1181. 2019. View Article : Google Scholar : PubMed/NCBI

107 

Xiao Z, Li M, Zhang X, Rong X and Xu H: TRIP13 overexpression promotes gefitinib resistance in non-small cell lung cancer via regulating autophagy and phosphorylation of the EGFR signaling pathway. Oncol Rep. 49:842023. View Article : Google Scholar : PubMed/NCBI

108 

Sharma P, Hu-Lieskovan S, Wargo JA and Ribas A: Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 168:707–723. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Agarwal S, Afaq F, Bajpai P, Kim HG, Elkholy A, Behring M, Chandrashekar DS, Diffalha SA, Khushman M, Sugandha SP, et al: DCZ0415, a small-molecule inhibitor targeting TRIP13, inhibits EMT and metastasis via inactivation of the FGFR4/STAT3 axis and the Wnt/β-catenin pathway in colorectal cancer. Mol Oncol. 16:1728–1745. 2022. View Article : Google Scholar : PubMed/NCBI

110 

Qie S and Diehl JA: Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl). 94:1313–1326. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Lindahl T and Barnes DE: Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol. 65:127–133. 2000. View Article : Google Scholar : PubMed/NCBI

112 

Sarangi P, Clairmont CS, Galli LD, Moreau LA and D'Andrea AD: p31(comet) promotes homologous recombination by inactivating REV7 through the TRIP13 ATPase. Proc Natl Acad Sci USA. 117:26795–26803. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Corbett KD: p31comet and TRIP13 recycle Rev7 to regulate DNA repair. Proc Natl Acad Sci USA. 117:27761–27763. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Oser MG, Fonseca R, Chakraborty AA, Brough R, Spektor A, Jennings RB, Flaifel A, Novak JS, Gulati A, Buss E, et al: Cells lacking the RB1 tumor suppressor gene are hyperdependent on aurora B kinase for survival. Cancer Discov. 9:230–247. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Gong X, Du J, Parsons SH, Merzoug FF, Webster Y, Iversen PW, Chio LC, Van Horn RD, Lin X, Blosser W, et al: Aurora A kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene. Cancer Discov. 9:248–263. 2019. View Article : Google Scholar : PubMed/NCBI

116 

Schvartzman JM, Duijf PH, Sotillo R, Coker C and Benezra R: Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell. 19:701–714. 2011. View Article : Google Scholar : PubMed/NCBI

117 

Li Z, Liu J, Chen T, Sun R, Liu Z, Qiu B, Xu Y and Zhang Z: HMGA1-TRIP13 axis promotes stemness and epithelial mesenchymal transition of perihilar cholangiocarcinoma in a positive feedback loop dependent on c-Myc. J Exp Clin Cancer Res. 40:862021. View Article : Google Scholar : PubMed/NCBI

118 

Zhang X, Zhou J, Xue D, Li Z, Liu Y and Dong L: MiR-515-5p acts as a tumor suppressor via targeting TRIP13 in prostate cancer. Int J Biol Macromol. 129:227–232. 2019. View Article : Google Scholar : PubMed/NCBI

119 

Chen Y, Chen D, Qin Y, Qiu C, Zhou Y, Dai M, Li L, Sun Q and Jiang Y: TRIP13, identified as a hub gene of tumor progression, is the target of microRNA-4693-5p and a potential therapeutic target for colorectal cancer. Cell Death Discov. 8:352022. View Article : Google Scholar : PubMed/NCBI

120 

Zhu MX, Wei CY, Zhang PF, Gao DM, Chen J, Zhao Y, Dong SS and Liu BB: Elevated TRIP13 drives the AKT/mTOR pathway to induce the progression of hepatocellular carcinoma via interacting with ACTN4. J Exp Clin Cancer Res. 38:4092019. View Article : Google Scholar : PubMed/NCBI

121 

Arun G, Diermeier SD and Spector DL: Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med. 24:257–277. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhao L, Ye S, Jing S, Gao Y and He T: Targeting TRIP13 for overcoming anticancer drug resistance (Review). Oncol Rep 50: 202, 2023.
APA
Zhao, L., Ye, S., Jing, S., Gao, Y., & He, T. (2023). Targeting TRIP13 for overcoming anticancer drug resistance (Review). Oncology Reports, 50, 202. https://doi.org/10.3892/or.2023.8639
MLA
Zhao, L., Ye, S., Jing, S., Gao, Y., He, T."Targeting TRIP13 for overcoming anticancer drug resistance (Review)". Oncology Reports 50.5 (2023): 202.
Chicago
Zhao, L., Ye, S., Jing, S., Gao, Y., He, T."Targeting TRIP13 for overcoming anticancer drug resistance (Review)". Oncology Reports 50, no. 5 (2023): 202. https://doi.org/10.3892/or.2023.8639
Copy and paste a formatted citation
x
Spandidos Publications style
Zhao L, Ye S, Jing S, Gao Y and He T: Targeting TRIP13 for overcoming anticancer drug resistance (Review). Oncol Rep 50: 202, 2023.
APA
Zhao, L., Ye, S., Jing, S., Gao, Y., & He, T. (2023). Targeting TRIP13 for overcoming anticancer drug resistance (Review). Oncology Reports, 50, 202. https://doi.org/10.3892/or.2023.8639
MLA
Zhao, L., Ye, S., Jing, S., Gao, Y., He, T."Targeting TRIP13 for overcoming anticancer drug resistance (Review)". Oncology Reports 50.5 (2023): 202.
Chicago
Zhao, L., Ye, S., Jing, S., Gao, Y., He, T."Targeting TRIP13 for overcoming anticancer drug resistance (Review)". Oncology Reports 50, no. 5 (2023): 202. https://doi.org/10.3892/or.2023.8639
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team