Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
November-2023 Volume 50 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2023 Volume 50 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Targeting KRAS for the potential treatment of pancreatic ductal adenocarcinoma: Recent advancements provide hope (Review)

  • Authors:
    • Joshua Zhang
    • Lily Darman
    • Md Sazzad Hassan
    • Urs Von Holzen
    • Niranjan Awasthi
  • View Affiliations / Copyright

    Affiliations: Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 206
    |
    Published online on: October 4, 2023
       https://doi.org/10.3892/or.2023.8643
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Kirsten rat sarcoma viral oncogene homolog (KRAS) is one of the most frequently mutated oncogenes in solid tumors. More than 90% of pancreatic ductal adenocarcinoma (PDAC) are driven by mutations in the KRAS gene, suggesting the importance of targeting this oncogene in PDAC. Initial efforts to target KRAS have been unsuccessful due to its small size, high affinity for guanosine triphosphate/guanosine diphosphate, and lack of distinct drug‑binding pockets. Therefore, much of the focus has been directed at inhibiting the activation of major signaling pathways downstream of KRAS, most notably the PI3K/AKT and RAF/MAPK pathways, using tyrosine kinase inhibitors and monoclonal antibodies. While preclinical studies showed promising results, clinical data using the inhibitors alone and in combination with other standard therapies have shown limited practicality, largely due to the lack of efficacy and dose‑limiting toxicities. Recent therapeutic approaches for KRAS‑driven tumors focus on mutation‑specific drugs such as selective KRASG12C inhibitors and son of sevenless 1 pan‑KRAS inhibitors. While KRASG12C inhibitors showed great promise against patients with non‑small cell lung cancer (NSCLC) harboring KRASG12C mutations, they were not efficacious in PDAC largely because the major KRAS mutant isoforms in PDAC are G12D, G12V, and G12R. As a result, KRASG12D and pan‑KRAS inhibitors are currently under investigation as potential therapeutic options for PDAC. The present review summarized the importance of KRAS oncogenic signaling, challenges in its targeting, and preclinical and clinical targeted agents including recent direct KRAS inhibitors for blocking KRAS signaling in PDAC.
View Figures

Figure 1

View References

1 

Cox AD and Der CJ: Ras history: The saga continues. Small GTPases. 1:2–27. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Bryant KL, Mancias JD, Kimmelman AC and Der CJ: KRAS: Feeding pancreatic cancer proliferation. Trends Biochem Sci. 39:91–100. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Hobbs GA, Der CJ and Rossman KL: RAS isoforms and mutations in cancer at a glance. J Cell Sci. 129:1287–1292. 2016.PubMed/NCBI

4 

Zhu C, Guan X, Zhang X, Luan X, Song Z, Cheng X, Zhang W and Qin JJ: Targeting KRAS mutant cancers: From druggable therapy to drug resistance. Mol Cancer. 21:1592022. View Article : Google Scholar : PubMed/NCBI

5 

Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Waters AM and Der CJ: KRAS: The critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb Perspect Med. 8:a0314352018. View Article : Google Scholar : PubMed/NCBI

7 

Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, Redston MS and DePinho RA: Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 17:3112–3126. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M, Lengrand J, Deshpande V, Selig MK, Ferrone CR, et al: Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature. 524:361–365. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell'antonio G, et al: Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25:717–729. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Buscail L, Bournet B and Cordelier P: Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 17:153–168. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Dey P, Kimmelman AC and DePinho RA: Metabolic Codependencies in the tumor microenvironment. Cancer Discov. 11:1067–1081. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Shen X, Niu N and Xue J: Oncogenic KRAS triggers metabolic reprogramming in pancreatic ductal adenocarcinoma. J Transl Int Medicine 0. -. 2022. View Article : Google Scholar

13 

Muthalagu N, Monteverde T, Raffo-Iraolagoitia X, Wiesheu R, Whyte D, Hedley A, Laing S, Kruspig B, Upstill-Goddard R, Shaw R, et al: Repression of the type I interferon pathway underlies MYC- and KRAS-dependent evasion of NK and B cells in pancreatic ductal adenocarcinoma. Cancer Discov. 10:872–887. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Dey P, Li J, Zhang J, Chaurasiya A, Strom A, Wang H, Liao WT, Cavallaro F, Denz P, Bernard V, et al: Oncogenic KRAS-driven metabolic reprogramming in pancreatic cancer cells utilizes cytokines from the tumor microenvironment. Cancer Discov. 10:608–625. 2020. View Article : Google Scholar : PubMed/NCBI

15 

Santana-Codina N, Roeth AA, Zhang Y, Yang A, Mashadova O, Asara JM, Wang X, Bronson RT, Lyssiotis CA, Ying H and Kimmelman AC: Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat Commun. 9:49452018. View Article : Google Scholar : PubMed/NCBI

16 

Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, et al: Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 496:101–105. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Raho S, Capobianco L, Malivindi R, Vozza A, Piazzolla C, Leonardis FD, Gorgoglione R, Scarcia P, Pezzuto F, Agrimi G, et al: KRAS-regulated glutamine metabolism requires UCP2-mediated aspartate transport to support pancreatic cancer growth. Nat Metab. 2:1373–1381. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Kessler D, Gmachl M, Mantoulidis A, Martin LJ, Zoephel A, Mayer M, Gollner A, Covini D, Fischer S, Gerstberger T, et al: Drugging an undruggable pocket on KRAS. Proc Natl Acad Sci USA. 116:15823–15829. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Vigil D, Cherfils J, Rossman KL and Der CJ: Ras superfamily GEFs and GAPs: Validated and tractable targets for cancer therapy? Nat Rev Cancer. 10:842–857. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Cuesta C, Arévalo-Alameda C and Castellano E: The importance of being PI3K in the RAS signaling network. Genes (Basel). 12:10942021. View Article : Google Scholar : PubMed/NCBI

21 

Krygowska AA and Castellano E: PI3K: A crucial piece in the RAS signaling puzzle. Cold Spring Harb Perspect Med. 8:a0314502018. View Article : Google Scholar : PubMed/NCBI

22 

Hemmings BA and Restuccia DF: PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol. 4:a0111892012. View Article : Google Scholar : PubMed/NCBI

23 

Fritsch R and Downward J: SnapShot: Class I PI3K isoform signaling. Cell. 154:940–940.e941. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Peng Y, Wang Y, Zhou C, Mei W and Zeng C: PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway? Front Oncol. 12:8191282022. View Article : Google Scholar : PubMed/NCBI

25 

Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS and Ranieri E: The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: An updated review. Cancers (Basel). 13:39492021. View Article : Google Scholar : PubMed/NCBI

26 

Witkiewicz AK, McMillan EA, Balaji U, Baek G, Lin WC, Mansour J, Mollaee M, Wagner KU, Koduru P, Yopp A, et al: Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 6:67442015. View Article : Google Scholar : PubMed/NCBI

27 

Hayes TK, Neel NF, Hu C, Gautam P, Chenard M, Long B, Aziz M, Kassner M, Bryant KL, Pierobon M, et al: Long-term ERK inhibition in KRAS-mutant pancreatic cancer is associated with MYC degradation and senescence-like growth suppression. Cancer Cell. 29:75–89. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Workman P, Clarke PA, Raynaud FI and van Montfort RL: Drugging the PI3 kinome: From chemical tools to drugs in the clinic. Cancer Res. 70:2146–2157. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Ng SS, Tsao MS, Nicklee T and Hedley DW: Wortmannin inhibits pkb/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice. Clin Cancer Res. 7:3269–3275. 2001.PubMed/NCBI

30 

Fujiwara M, Izuishi K, Sano T, Hossain MA, Kimura S, Masaki T and Suzuki Y: Modulating effect of the PI3-kinase inhibitor LY294002 on cisplatin in human pancreatic cancer cells. J Exp Clin Cancer Res. 27:762008. View Article : Google Scholar : PubMed/NCBI

31 

Wang Y, Kuramitsu Y, Baron B, Kitagawa T, Tokuda K, Akada J, Maehara SI, Maehara Y and Nakamura K: PI3K inhibitor LY294002, as opposed to wortmannin, enhances AKT phosphorylation in gemcitabine-resistant pancreatic cancer cells. Int J Oncol. 50:606–612. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Wang Z, Luo G and Qiu Z: Akt inhibitor MK-2206 reduces pancreatic cancer cell viability and increases the efficacy of gemcitabine. Oncol Lett. 19:1999–2004. 2020.PubMed/NCBI

33 

Hu C, Dadon T, Chenna V, Yabuuchi S, Bannerji R, Booher R, Strack P, Azad N, Nelkin BD and Maitra A: Combined inhibition of cyclin-dependent kinases (Dinaciclib) and AKT (MK-2206) blocks pancreatic tumor growth and metastases in patient-derived xenograft models. Mol Cancer Ther. 14:1532–1539. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Massihnia D, Avan A, Funel N, Maftouh M, van Krieken A, Granchi C, Raktoe R, Boggi U, Aicher B, Minutolo F, et al: Phospho-Akt overexpression is prognostic and can be used to tailor the synergistic interaction of Akt inhibitors with gemcitabine in pancreatic cancer. J Hematol Oncol. 10:92017. View Article : Google Scholar : PubMed/NCBI

35 

Utomo WK, Narayanan V, Biermann K, van Eijck CHJ, Bruno MJ, Peppelenbosch MP and Braat H: mTOR is a promising therapeutical target in a subpopulation of pancreatic adenocarcinoma. Cancer Lett. 346:309–317. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Soares HP, Ni Y, Kisfalvi K, Sinnett-Smith J and Rozengurt E: Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells. PLoS One. 8:e572892013. View Article : Google Scholar : PubMed/NCBI

37 

Dai ZJ, Gao J, Kang HF, Ma YG, Ma XB, Lu WF, Lin S, Ma HB, Wang XJ and Wu WY: Targeted inhibition of mammalian target of rapamycin (mTOR) enhances radiosensitivity in pancreatic carcinoma cells. Drug Des Devel Ther. 7:149–159. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Azzariti A, Porcelli L, Gatti G, Nicolin A and Paradiso A: Synergic antiproliferative and antiangiogenic effects of EGFR and mTor inhibitors on pancreatic cancer cells. Biochem Pharmacol. 75:1035–1044. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Morran DC, Wu J, Jamieson NB, Mrowinska A, Kalna G, Karim SA, Au AYM, Scarlett CJ, Chang DK, Pajak MZ, et al: Targeting mTOR dependency in pancreatic cancer. Gut. 63:1481–1489. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Cifarelli V, Lashinger LM, Devlin KL, Dunlap SM, Huang J, Kaaks R, Pollak MN and Hursting SD: Metformin and rapamycin reduce pancreatic cancer growth in obese prediabetic mice by distinct MicroRNA-regulated mechanisms. Diabetes. 64:1632–1642. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Tuncyurek P, Mayer JM, Klug F, Dillmann S, Henne-Bruns D, Keller F and Stracke S: Everolimus and mycophenolate mofetil sensitize human pancreatic cancer cells to gemcitabine in vitro: A novel adjunct to standard chemotherapy? Eur Surg Res. 39:380–387. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Peng T and Dou QP: Everolimus inhibits growth of gemcitabine-resistant pancreatic cancer cells via induction of caspase-dependent apoptosis and G(2) /M arrest. J Cell Biochem. 118:2722–2730. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Pawaskar DK, Straubinger RM, Fetterly GJ, Ma WW and Jusko WJ: Interactions of everolimus and sorafenib in pancreatic cancer cells. AAPS J. 15:78–84. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Wei F, Zhang Y, Geng L, Zhang P, Wang G and Liu Y: mTOR inhibition induces EGFR feedback activation in association with its resistance to human pancreatic cancer. Int J Mol Sci. 16:3267–3282. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Pawaskar DK, Straubinger RM, Fetterly GJ, Hylander BH, Repasky EA, Ma WW and Jusko WJ: Synergistic interactions between sorafenib and everolimus in pancreatic cancer xenografts in mice. Cancer Chemother Pharmacol. 71:1231–1240. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Witkiewicz AK, Balaji U, Eslinger C, McMillan E, Conway W, Posner B, Mills GB, O'Reilly EM and Knudsen ES: Integrated patient-derived models delineate individualized therapeutic vulnerabilities of pancreatic cancer. Cell Rep. 16:2017–2031. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL and Reddy SA: The rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell proliferation. Biochem Biophys Res Commun. 331:295–302. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Ito D, Fujimoto K, Mori T, Kami K, Koizumi M, Toyoda E, Kawaguchi Y and Doi R: In vivo antitumor effect of the mTOR inhibitor CCI-779 and gemcitabine in xenograft models of human pancreatic cancer. Int J Cancer. 118:2337–2343. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Cao P, Maira SM, García-Echeverría C and Hedley DW: Activity of a novel, dual PI3-kinase/mTor inhibitor NVP-BEZ235 against primary human pancreatic cancers grown as orthotopic xenografts. Br J Cancer. 100:1267–1276. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Awasthi N, Yen PL, Schwarz MA and Schwarz RE: The efficacy of a novel, dual PI3K/mTOR inhibitor NVP-BEZ235 to enhance chemotherapy and antiangiogenic response in pancreatic cancer. J Cell Biochem. 113:784–791. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Venkannagari S, Fiskus W, Peth K, Atadja P, Hidalgo M, Maitra A and Bhalla KN: Superior efficacy of co-treatment with dual PI3K/mTOR inhibitor NVP-BEZ235 and pan-histone deacetylase inhibitor against human pancreatic cancer. Oncotarget. 3:1416–1427. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Lee JE, Woo MG, Jung KH, Shin SM, Son MK, Fang Z, Yan HH, Park JH, Yoon YC, Kim YS and Hong SS: Combination therapy of the active KRAS-targeting antibody inRas37 and a PI3K inhibitor in pancreatic cancer. Biomol Ther (Seoul). 30:274–283. 2022. View Article : Google Scholar : PubMed/NCBI

53 

Soares HP, Ming M, Mellon M, Young SH, Han L, Sinnet-Smith J and Rozengurt E: Dual PI3K/mTOR inhibitors induce rapid overactivation of the MEK/ERK pathway in human pancreatic cancer cells through suppression of mTORC2. Mol Cancer Ther. 14:1014–1023. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Venkatasubbarao K, Choudary A and Freeman JW: Farnesyl transferase inhibitor (R115777)-induced inhibition of STAT3(Tyr705) phosphorylation in human pancreatic cancer cell lines require extracellular signal-regulated kinases. Cancer Res. 65:2861–2871. 2005. View Article : Google Scholar : PubMed/NCBI

55 

Shi B, Yaremko B, Hajian G, Terracina G, Bishop WR, Liu M and Nielsen LL: The farnesyl protein transferase inhibitor SCH66336 synergizes with taxanes in vitro and enhances their antitumor activity in vivo. Cancer Chemother Pharmacol. 46:387–393. 2000. View Article : Google Scholar : PubMed/NCBI

56 

Ulivi P, Arienti C, Amadori D, Fabbri F, Carloni S, Tesei A, Vannini I, Silvestrini R and Zoli W: Role of RAF/MEK/ERK pathway, p-STAT-3 and Mcl-1 in sorafenib activity in human pancreatic cancer cell lines. J Cell Physiol. 220:214–221. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Wei G, Wang M and Carr BI: Sorafenib combined vitamin K induces apoptosis in human pancreatic cancer cell lines through RAF/MEK/ERK and c-Jun NH2-terminal kinase pathways. J Cell Physiol. 224:112–119. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Fang Z, Jung KH, Yan HH, Kim SJ, Rumman M, Park JH, Han B, Lee JE, Kang YW, Lim JH and Hong SS: Melatonin synergizes with sorafenib to suppress pancreatic cancer via melatonin receptor and PDGFR-β/STAT3 pathway. Cell Physiol Biochem. 47:1751–1768. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Awasthi N, Zhang C, Hinz S, Schwarz MA and Schwarz RE: Enhancing sorafenib-mediated sensitization to gemcitabine in experimental pancreatic cancer through EMAP II. J Exp Clin Cancer Res. 32:122013. View Article : Google Scholar : PubMed/NCBI

60 

Nakkina SP, Gitto SB, Beardsley JM, Pandey V, Rohr MW, Parikh JG, Phanstiel O IV and Altomare DA: DFMO improves survival and increases immune cell infiltration in association with MYC downregulation in the pancreatic tumor microenvironment. Int J Mol Sci. 22:131752021. View Article : Google Scholar : PubMed/NCBI

61 

Walters DM, Lindberg JM, Adair SJ, Newhook TE, Cowan CR, Stokes JB, Borgman CA, Stelow EB, Lowrey BT, Chopivsky ME, et al: Inhibition of the growth of patient-derived pancreatic cancer xenografts with the MEK inhibitor trametinib is augmented by combined treatment with the epidermal growth factor receptor/HER2 inhibitor lapatinib. Neoplasia. 15:143–155. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Awasthi N, Monahan S, Stefaniak A, Schwarz MA and Schwarz RE: Inhibition of the MEK/ERK pathway augments nab-paclitaxel-based chemotherapy effects in preclinical models of pancreatic cancer. Oncotarget. 9:5274–5286. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Chao MW, Chang LH, Tu HJ, Chang CD, Lai MJ, Chen YY, Liou JP, Teng CM and Pan SL: Combination treatment strategy for pancreatic cancer involving the novel HDAC inhibitor MPT0E028 with a MEK inhibitor beyond K-Ras status. Clin Epigenetics. 11:852019. View Article : Google Scholar : PubMed/NCBI

64 

Amada K, Hijiya N, Ikarimoto S, Yanagihara K, Hanada T, Hidano S, Kurogi S, Tsukamoto Y, Nakada C, Kinoshita K, et al: Involvement of clusterin expression in the refractory response of pancreatic cancer cells to a MEK inhibitor. Cancer Sci. 114:2189–2202. 2023. View Article : Google Scholar : PubMed/NCBI

65 

Zhou J, Zhao T, Ma L, Liang M, Guo YJ and Zhao LM: Cucurbitacin B and SCH772984 exhibit synergistic anti-pancreatic cancer activities by suppressing EGFR, PI3K/Akt/mTOR, STAT3 and ERK signaling. Oncotarget. 8:103167–103181. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, Gunda V, Pierobon M, Waters AM, George SD, et al: Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med. 25:628–640. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Yan Z, Ohuchida K, Fei S, Zheng B, Guan W, Feng H, Kibe S, Ando Y, Koikawa K, Abe T, et al: Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer-stromal interaction and metastasis. J Exp Clin Cancer Res. 38:2212019. View Article : Google Scholar : PubMed/NCBI

68 

Goodwin CM, Waters AM, Klomp JE, Javaid S, Bryant KL, Stalnecker CA, Drizyte-Miller K, Papke B, Yang R, Amparo AM, et al: Combination therapies with CDK4/6 inhibitors to treat KRAS-mutant pancreatic cancer. Cancer Res. 83:141–157. 2023. View Article : Google Scholar : PubMed/NCBI

69 

Jiang H, Xu M, Li L, Grierson P, Dodhiawala P, Highkin M, Zhang D, Li Q, Wang-Gillam A and Lim KH: Concurrent HER or PI3K inhibition potentiates the antitumor effect of the erk inhibitor ulixertinib in preclinical pancreatic cancer models. Mol Cancer Ther. 17:2144–2155. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Williams TM, Flecha AR, Keller P, Ram A, Karnak D, Galbán S, Galbán CJ, Ross BD, Lawrence TS, Rehemtulla A and Sebolt-Leopold J: Cotargeting MAPK and PI3K signaling with concurrent radiotherapy as a strategy for the treatment of pancreatic cancer. Mol Cancer Ther. 11:1193–1202. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Dai X, Zhang J, Arfuso F, Chinnathambi Zayed ME, Alharbi SA, Kumar AP, Ahn KS and Sethi G: Targeting TNF-related apoptosis-inducing ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy. Exp Biol Med (Maywood). 240:760–773. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Zhang Q, Wang H, Ran L, Zhang Z and Jiang R: The preclinical evaluation of TIC10/ONC201 as an anti-pancreatic cancer agent. Biochem Biophys Res Commun. 476:260–266. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Awasthi N, Kronenberger D, Stefaniak A, Hassan MS, von Holzen U, Schwarz MA and Schwarz RE: Dual inhibition of the PI3K and MAPK pathways enhances nab-paclitaxel/gemcitabine chemotherapy response in preclinical models of pancreatic cancer. Cancer Lett. 459:41–49. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Thomas D and Radhakrishnan P: Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol Cancer. 18:142019. View Article : Google Scholar : PubMed/NCBI

75 

Krempley BD and Yu KH: Preclinical models of pancreatic ductal adenocarcinoma. Chin Clin Oncol. 6:252017. View Article : Google Scholar : PubMed/NCBI

76 

Yu Y, Yang G, Huang H, Fu Z, Cao Z, Zheng L, You L and Zhang T: Preclinical models of pancreatic ductal adenocarcinoma: Challenges and opportunities in the era of precision medicine. J Exp Clin Cancer Res. 40:82021. View Article : Google Scholar : PubMed/NCBI

77 

Kim RD, Alberts SR, Peña C, Genvresse I, Ajavon-Hartmann A, Xia C, Kelly A and Grilley-Olson JE: Phase I dose-escalation study of copanlisib in combination with gemcitabine or cisplatin plus gemcitabine in patients with advanced cancer. Br J Cancer. 118:462–470. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Soares HP, Al-Toubah TE, Kim RD, Kim J, Lewis NK and Mahipal A: Final report: A phase I trial of BYL719 in combination with gemcitabine and nab-paclitaxel in locally advanced and metastatic pancreatic cancer. J Clin Oncol. 36:398. 2018. View Article : Google Scholar

79 

Bedard PL, Tabernero J, Janku F, Wainberg ZA, Paz-Ares L, Vansteenkiste J, Cutsem EV, Pérez-García J, Stathis A, Britten CD, et al: A phase Ib dose-escalation study of the oral pan-PI3K inhibitor buparlisib (BKM120) in combination with the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected advanced solid tumors. Clin Cancer Res. 21:730–738. 2015. View Article : Google Scholar : PubMed/NCBI

80 

McRee AJ, Sanoff HK, Carlson C, Ivanova A and O'Neil BH: A phase I trial of mFOLFOX6 combined with the oral PI3K inhibitor BKM120 in patients with advanced refractory solid tumors. Invest New Drugs. 33:1225–1231. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Borazanci E, Pishvaian MJ, Nemunaitis J, Weekes C, Huang J and Rajakumaraswamy N: A Phase Ib study of single-agent idelalisib followed by idelalisib in combination with chemotherapy in patients with metastatic pancreatic ductal adenocarcinoma. Oncologist. 25:e1604–e1613. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Marsh RW, Lima CM, Levy DE, Mitchell EP, Rowland KM Jr and Benson AB III: A phase II trial of perifosine in locally advanced, unresectable, or metastatic pancreatic adenocarcinoma. Am J Clin Oncol. 30:26–31. 2007. View Article : Google Scholar : PubMed/NCBI

83 

Hedley D, Moore MJ, Hirte H, Siu L, Vincent M, Jonker H. Mwang D, Nagai J and Dancey J: A phase II trial of perifosine as second line therapy for advanced pancreatic cancer. A study of the princess margaret hospital [PMH] phase II consortium. J Clin Oncol. 23:4166. 2005. View Article : Google Scholar

84 

Chung V, McDonough S, Philip PA, Cardin D, Wang-Gillam A, Hui L, Tejani MA, Seery TE, Dy IA, Al Baghdadi T, et al: Effect of Selumetinib and MK-2206 vs Oxaliplatin and Fluorouracil in patients with metastatic pancreatic cancer after prior therapy: SWOG S1115 study randomized clinical trial. JAMA Oncol. 3:516–522. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Murphy AG, Zahurak M, Shah M, Weekes CD, Hansen A, Siu LL, Spreafico A, LoConte N, Anders NM, Miles T, et al: A phase I study of dinaciclib in combination with MK-2206 in patients with advanced pancreatic cancer. Clin Transl Sci. 13:1178–1188. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Wolpin BM, Hezel AF, Abrams T, Blaszkowsky LS, Meyerhardt JA, Chan JA, Enzinger PC, Allen B, Clark JW, Ryan DP and Fuchs CS: Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol. 27:193–198. 2009. View Article : Google Scholar : PubMed/NCBI

87 

Javle MM, Shroff RT, Xiong H, Varadhachary GA, Fogelman D, Reddy SA, Davis D, Zhang Y, Wolff RA and Abbruzzese JL: Inhibition of the mammalian target of rapamycin (mTOR) in advanced pancreatic cancer: Results of two phase II studies. BMC Cancer. 10:3682010. View Article : Google Scholar : PubMed/NCBI

88 

Kordes S, Klümpen HJ, Weterman MJ, Schellens JH, Richel DJ and Wilmink JW: Phase II study of capecitabine and the oral mTOR inhibitor everolimus in patients with advanced pancreatic cancer. Cancer Chemother Pharmacol. 75:1135–1141. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Karavasilis V, Samantas E, Koliou GA, Kalogera-Fountzila A, Pentheroudakis G, Varthalitis I, Linardou H, Rallis G, Skondra M, Papadopoulos G, et al: Gemcitabine combined with the mTOR inhibitor temsirolimus in patients with locally advanced or metastatic pancreatic cancer. A Hellenic cooperative oncology group phase I/II study. Target Oncol. 13:715–724. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Amin M, Gao F, Terrero G, Picus J, Wang-Gillam A, Suresh R, Ma C, Tan B, Baggstrom M, Naughton MJ, et al: Phase I study of docetaxel and temsirolimus in refractory solid tumors. Am J Clin Oncol. 44:443–448. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Weinberg BA, Wang H, Witkiewicz AK, Marshall JL, He AR, Vail P, Knudsen ES and Pishvaian MJ: A phase I study of ribociclib plus everolimus in patients with metastatic pancreatic adenocarcinoma refractory to chemotherapy. J Pancreat Cancer. 6:45–54. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Carr RM, Duma N, McCleary-Wheeler AL, Almada LL, Marks DL, Graham RP, Smyrk TC, Lowe V, Borad MJ, Kim G, et al: Targeting of the Hedgehog/GLI and mTOR pathways in advanced pancreatic cancer, a phase 1 trial of Vismodegib and Sirolimus combination. Pancreatology. 20:1115–1122. 2020. View Article : Google Scholar : PubMed/NCBI

93 

Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, et al: Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the national cancer institute of Canada clinical trials group. J Clin Oncol. 25:1960–1966. 2007. View Article : Google Scholar : PubMed/NCBI

94 

Park H, Williams K, Trikalinos NA, Larson S, Tan B, Waqar S, Suresh R, Morgensztern D, Van Tine BA, Govindan R, et al: A phase I trial of temsirolimus and erlotinib in patients with refractory solid tumors. Cancer Chemother Pharmacol. 87:337–347. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Kordes S, Richel DJ, Klümpen HJ, Weterman MJ, Stevens AJ and Wilmink JW: A phase I/II, non-randomized, feasibility/safety and efficacy study of the combination of everolimus, cetuximab and capecitabine in patients with advanced pancreatic cancer. Invest New Drugs. 31:85–91. 2013. View Article : Google Scholar : PubMed/NCBI

96 

Cohen SJ, Ho L, Ranganathan S, Abbruzzese JL, Alpaugh RK, Beard M, Lewis NL, McLaughlin S, Rogatko A, Perez-Ruixo JJ, et al: Phase II and pharmacodynamic study of the farnesyltransferase inhibitor R115777 as initial therapy in patients with metastatic pancreatic adenocarcinoma. J Clin Oncol. 21:1301–1306. 2003. View Article : Google Scholar : PubMed/NCBI

97 

Macdonald JS, McCoy S, Whitehead RP, Iqbal S, Wade JL III, Giguere JK and Abbruzzese JL: A phase II study of farnesyl transferase inhibitor R115777 in pancreatic cancer: A Southwest oncology group (SWOG 9924) study. Invest New Drugs. 23:485–487. 2005. View Article : Google Scholar : PubMed/NCBI

98 

Van Cutsem E, van de Velde H, Karasek P, Oettle H, Vervenne WL, Szawlowski A, Schoffski P, Post S, Verslype C, Neumann H, et al: Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol. 22:1430–1438. 2004. View Article : Google Scholar : PubMed/NCBI

99 

Rich TA, Winter K, Safran H, Hoffman JP, Erickson B, Anne PR, Myerson RJ, Cline-Burkhardt VJ, Perez K and Willett C: Weekly paclitaxel, gemcitabine, and external irradiation followed by randomized farnesyl transferase inhibitor R115777 for locally advanced pancreatic cancer. Onco Targets Ther. 5:161–170. 2012. View Article : Google Scholar : PubMed/NCBI

100 

Siu LL, Awada A, Takimoto CH, Piccart M, Schwartz B, Giannaris T, Lathia C, Petrenciuc O and Moore MJ: Phase I trial of sorafenib and gemcitabine in advanced solid tumors with an expanded cohort in advanced pancreatic cancer. Clin Cancer Res. 12:144–151. 2006. View Article : Google Scholar : PubMed/NCBI

101 

El-Khoueiry AB, Ramanathan RK, Yang DY, Zhang W, Shibata S, Wright JJ, Gandara D and Lenz HJ: A randomized phase II of gemcitabine and sorafenib versus sorafenib alone in patients with metastatic pancreatic cancer. Invest New Drugs. 30:1175–1183. 2012. View Article : Google Scholar : PubMed/NCBI

102 

Gonçalves A, Gilabert M, François E, Dahan L, Perrier H, Lamy R, Re D, Largillier R, Gasmi M, Tchiknavorian X, et al: BAYPAN study: A double-blind phase III randomized trial comparing gemcitabine plus sorafenib and gemcitabine plus placebo in patients with advanced pancreatic cancer. Ann Oncol. 23:2799–2805. 2012. View Article : Google Scholar : PubMed/NCBI

103 

Cascinu S, Berardi R, Sobrero A, Bidoli P, Labianca R, Siena S, Ferrari D, Barni S, Aitini E, Zagonel V, et al: Sorafenib does not improve efficacy of chemotherapy in advanced pancreatic cancer: A GISCAD randomized phase II study. Dig Liver Dis. 46:182–186. 2014. View Article : Google Scholar : PubMed/NCBI

104 

Chiorean EG, Schneider BP, Akisik FM, Perkins SM, Anderson S, Johnson CS, DeWitt J, Helft P, Clark R, Johnston EL, et al: Phase 1 pharmacogenetic and pharmacodynamic study of sorafenib with concurrent radiation therapy and gemcitabine in locally advanced unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys. 89:284–291. 2014. View Article : Google Scholar : PubMed/NCBI

105 

Infante JR, Somer BG, Park JO, Li CP, Scheulen ME, Kasubhai SM, Oh DY, Liu Y, Redhu S, Steplewski K and Le N: A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas. Eur J Cancer. 50:2072–2081. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Huijberts S, van Geel R, van Brummelen EMJ, Opdam FL, Marchetti S, Steeghs N, Pulleman S, Thijssen B, Rosing H, Monkhorst K, et al: Phase I study of lapatinib plus trametinib in patients with KRAS-mutant colorectal, non-small cell lung, and pancreatic cancer. Cancer Chemother Pharmacol. 85:917–930. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Ko AH, Bekaii-Saab T, Van Ziffle J, Mirzoeva OM, Joseph NM, Talasaz A, Kuhn P, Tempero MA, Collisson EA, Kelley RK, et al: A multicenter, open-label phase II clinical trial of combined MEK plus EGFR inhibition for chemotherapy-refractory advanced pancreatic adenocarcinoma. Clin Cancer Res. 22:61–68. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Zhu X, Cao Y, Liu W, Ju X, Zhao X, Jiang L, Ye Y, Jin G and Zhang H: Stereotactic body radiotherapy plus pembrolizumab and trametinib versus stereotactic body radiotherapy plus gemcitabine for locally recurrent pancreatic cancer after surgical resection: an open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 23:e105–e115. 2022. View Article : Google Scholar : PubMed/NCBI

109 

Aung KL, McWhirter E, Welch S, Wang L, Lovell S, Stayner LA, Ali S, Malpage A, Makepeace B, Ramachandran M, et al: A phase II trial of GSK2256098 and trametinib in patients with advanced pancreatic ductal adenocarcinoma. J Gastrointest Oncol. 13:3216–3226. 2022. View Article : Google Scholar : PubMed/NCBI

110 

Bodoky G, Timcheva C, Spigel DR, Stella PJL, Ciuleanu TE, Pover G and Tebbutt NC: A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy. Invest New Drugs. 30:1216–1223. 2012. View Article : Google Scholar : PubMed/NCBI

111 

Kenney C, Kunst T, Webb S, Christina D Jr, Arrowood C, Steinberg SM, Mettu NB, Kim EJ and Rudloff U: Phase II study of selumetinib, an orally active inhibitor of MEK1 and MEK2 kinases, in KRAS(G12R)-mutant pancreatic ductal adenocarcinoma. Invest New Drugs. 39:821–828. 2021. View Article : Google Scholar : PubMed/NCBI

112 

Rodon J, Tan DW, Laguna IG, Harb W, Beck JT, Bahary N, Rottey S, Zhu Z, Deng S, Kowalski K, et al: 344 Avelumab + binimetinib in metastatic pancreatic ductal adenocarcinoma (mPDAC): Dose-escalation results from the phase 1b/2 JAVELIN PARP MEKi trial. J Immunother Cancer. 9:A371. 2021. View Article : Google Scholar

113 

Surana R, Lee JJ, Smaglo BG, Zhao D, Lee MS, Wolff RA, Overman MJ, Willis J, Der CJ and Pant S: Phase I study of hydroxychloroquine plus binimetinib in patients with metastatic pancreatic cancer (the HOPE trial). J Clin Oncol. 40:TPS634. 2022. View Article : Google Scholar

114 

Grierson PM, Tan B, Pedersen KS, Park H, Suresh R, Amin MA, Trikalinos NA, Knoerzer D, Kreider B, Reddy A, et al: Phase Ib study of ulixertinib plus gemcitabine and nab-paclitaxel in patients with metastatic pancreatic adenocarcinoma. Oncologist. 28:e115–e123. 2023. View Article : Google Scholar : PubMed/NCBI

115 

Raybould AL, Burgess B, Urban C, Naim R, Lee MS and McRee AJ: A phase Ib trial of ERK inhibition with ulixertinib combined with palbociclib in patients (Pts) with advanced solid tumors. J Clin Oncol. 39:3103. 2021. View Article : Google Scholar

116 

Grilley-Olson JE, Bedard PL, Fasolo A, Cornfeld M, Cartee L, Razak ARA, Stayner LA, Wu Y, Greenwood R, Singh R, et al: A phase Ib dose-escalation study of the MEK inhibitor trametinib in combination with the PI3K/mTOR inhibitor GSK2126458 in patients with advanced solid tumors. Invest New Drugs. 34:740–749. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Bardia A, Gounder M, Rodon J, Janku F, Lolkema MP, Stephenson JJ, Bedard PL, Schuler M, Sessa C, LoRusso P, et al: Phase Ib study of combination therapy with MEK inhibitor Binimetinib and Phosphatidylinositol 3-kinase inhibitor Buparlisib in patients with advanced solid tumors with RAS/RAF alterations. Oncologist. 25:e160–e169. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Ostrem JM and Shokat KM: Direct small-molecule inhibitors of KRAS: From structural insights to mechanism-based design. Nat Rev Drug Discov. 15:771–785. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, Gaida K, Holt T, Knutson CG, Koppada N, et al: The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 575:217–223. 2019. View Article : Google Scholar : PubMed/NCBI

120 

Hallin J, Engstrom LD, Hargis L, Calinisan A, Aranda R, Briere DM, Sudhakar N, Bowcut V, Baer BR, Ballard JA, et al: The KRAS(G12C) inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 10:54–71. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Skoulidis F, Li BT, Dy GK, Price TJ, Falchook GS, Wolf J, Italiano A, Schuler M, Borghaei H, Barlesi F, et al: Sotorasib for lung cancers with KRAS p.G12C mutation. N Engl J Med. 384:2371–2381. 2021. View Article : Google Scholar : PubMed/NCBI

122 

Khan S, Wiegand J, Zhang P, Hu W, Thummuri D, Budamagunta V, Hua N, Jin L, Allegra CJ, Kopetz SE, et al: BCL-X(L) PROTAC degrader DT2216 synergizes with sotorasib in preclinical models of KRAS(G12C)-mutated cancers. J Hematol Oncol. 15:232022. View Article : Google Scholar : PubMed/NCBI

123 

Strickler JH, Satake H, George TJ, Yaeger R, Hollebecque A, Garrido-Laguna I, Schuler M, Burns TF, Coveler AL, Falchook GS, et al: Sotorasib in KRAS p.G12C-mutated advanced pancreatic cancer. N Engl J Med. 388:33–43. 2023. View Article : Google Scholar : PubMed/NCBI

124 

Bekaii-Saab TS, Spira AI, Yaeger R, Buchschacher GL, McRee AJ, Sabari JK, Johnson ML, Barve NA, Hafez N, Velastegui K, et al: KRYSTAL-1: Updated activity and safety of adagrasib (MRTX849) in patients (Pts) with unresectable or metastatic pancreatic cancer (PDAC) and other gastrointestinal (GI) tumors harboring a KRASG12C mutation. J Clin Oncol. 40:519. 2022. View Article : Google Scholar

125 

Wang-Gillam A, Hubner RA, Siveke JT, Von Hoff DD, Belanger B, de Jong FA, Mirakhur B and Chen LT: NAPOLI-1 phase 3 study of liposomal irinotecan in metastatic pancreatic cancer: Final overall survival analysis and characteristics of long-term survivors. Eur J Cancer. 108:78–87. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Wang X, Allen S, Blake JF, Bowcut V, Briere DM, Calinisan A, Dahlke JR, Fell JB, Fischer JP, Gunn RJ, et al: Identification of MRTX1133, a Noncovalent, potent, and selective KRAS(G12D) inhibitor. J Med Chem. 65:3123–3133. 2022. View Article : Google Scholar : PubMed/NCBI

127 

Hallin J, Bowcut V, Calinisan A, Briere DM, Hargis L, Engstrom LD, Laguer J, Medwid J, Vanderpool D, Lifset E, et al: Anti-tumor efficacy of a potent and selective non-covalent KRAS(G12D) inhibitor. Nat Med. 28:2171–2182. 2022. View Article : Google Scholar : PubMed/NCBI

128 

Kemp SB, Cheng N, Markosyan N, Sor R, Kim IK, Hallin J, Shoush J, Quinones L, Brown NV, Bassett JB, et al: Efficacy of a small molecule inhibitor of KrasG12D in immunocompetent models of pancreatic cancer. Cancer Discov. 13:298–311. 2022. View Article : Google Scholar : PubMed/NCBI

129 

Bannoura SF, Khan HY and Azmi AS: KRAS G12D targeted therapies for pancreatic cancer: Has the fortress been conquered? Front Oncol. 12:10139022022. View Article : Google Scholar : PubMed/NCBI

130 

Huang L, Guo Z, Wang F and Fu L: KRAS mutation: From undruggable to druggable in cancer. Signal Transduct Target Ther. 6:3862021. View Article : Google Scholar : PubMed/NCBI

131 

Gustafson WC, Wildes D, Rice MA, Lee BJ, Jiang J, Wang Z, Chang S, Flagella M, Mu Y, Dinglasan N, et al: Direct targeting of RAS in pancreatic ductal adenocarcinoma with RMC-6236, a first-in-class, RAS-selective, orally bioavailable, tri-complex RASMULTI(ON) inhibitor. J Clin Oncol. 40:591. 2022. View Article : Google Scholar

132 

Frank KJ, Mulero-Sánchez A, Berninger A, Ruiz-Cañas L, Bosma A, Görgülü K, Wu N, Diakopoulos KN, Kaya-Aksoy E, Ruess DA, et al: Extensive preclinical validation of combined RMC-4550 and LY3214996 supports clinical investigation for KRAS mutant pancreatic cancer. Cell Rep Med. 3:1008152022. View Article : Google Scholar : PubMed/NCBI

133 

Gort E, Johnson ML, Hwang JJ, Pant S, Dünzinger U, Riemann K, Kitzing T and Janne PA: A phase I, open-label, dose-escalation trial of BI 1701963 as monotherapy and in combination with trametinib in patients with KRAS mutated advanced or metastatic solid tumors. J Clin Oncol. 38:TPS3651. 2020. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang J, Darman L, Hassan MS, Von Holzen U and Awasthi N: Targeting KRAS for the potential treatment of pancreatic ductal adenocarcinoma: Recent advancements provide hope (Review). Oncol Rep 50: 206, 2023.
APA
Zhang, J., Darman, L., Hassan, M.S., Von Holzen, U., & Awasthi, N. (2023). Targeting KRAS for the potential treatment of pancreatic ductal adenocarcinoma: Recent advancements provide hope (Review). Oncology Reports, 50, 206. https://doi.org/10.3892/or.2023.8643
MLA
Zhang, J., Darman, L., Hassan, M. S., Von Holzen, U., Awasthi, N."Targeting KRAS for the potential treatment of pancreatic ductal adenocarcinoma: Recent advancements provide hope (Review)". Oncology Reports 50.5 (2023): 206.
Chicago
Zhang, J., Darman, L., Hassan, M. S., Von Holzen, U., Awasthi, N."Targeting KRAS for the potential treatment of pancreatic ductal adenocarcinoma: Recent advancements provide hope (Review)". Oncology Reports 50, no. 5 (2023): 206. https://doi.org/10.3892/or.2023.8643
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang J, Darman L, Hassan MS, Von Holzen U and Awasthi N: Targeting KRAS for the potential treatment of pancreatic ductal adenocarcinoma: Recent advancements provide hope (Review). Oncol Rep 50: 206, 2023.
APA
Zhang, J., Darman, L., Hassan, M.S., Von Holzen, U., & Awasthi, N. (2023). Targeting KRAS for the potential treatment of pancreatic ductal adenocarcinoma: Recent advancements provide hope (Review). Oncology Reports, 50, 206. https://doi.org/10.3892/or.2023.8643
MLA
Zhang, J., Darman, L., Hassan, M. S., Von Holzen, U., Awasthi, N."Targeting KRAS for the potential treatment of pancreatic ductal adenocarcinoma: Recent advancements provide hope (Review)". Oncology Reports 50.5 (2023): 206.
Chicago
Zhang, J., Darman, L., Hassan, M. S., Von Holzen, U., Awasthi, N."Targeting KRAS for the potential treatment of pancreatic ductal adenocarcinoma: Recent advancements provide hope (Review)". Oncology Reports 50, no. 5 (2023): 206. https://doi.org/10.3892/or.2023.8643
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team