|
1
|
Cox AD and Der CJ: Ras history: The saga
continues. Small GTPases. 1:2–27. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bryant KL, Mancias JD, Kimmelman AC and
Der CJ: KRAS: Feeding pancreatic cancer proliferation. Trends
Biochem Sci. 39:91–100. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hobbs GA, Der CJ and Rossman KL: RAS
isoforms and mutations in cancer at a glance. J Cell Sci.
129:1287–1292. 2016.PubMed/NCBI
|
|
4
|
Zhu C, Guan X, Zhang X, Luan X, Song Z,
Cheng X, Zhang W and Qin JJ: Targeting KRAS mutant cancers: From
druggable therapy to drug resistance. Mol Cancer. 21:1592022.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Waters AM and Der CJ: KRAS: The critical
driver and therapeutic target for pancreatic cancer. Cold Spring
Harb Perspect Med. 8:a0314352018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Aguirre AJ, Bardeesy N, Sinha M, Lopez L,
Tuveson DA, Horner J, Redston MS and DePinho RA: Activated Kras and
Ink4a/Arf deficiency cooperate to produce metastatic pancreatic
ductal adenocarcinoma. Genes Dev. 17:3112–3126. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Perera RM, Stoykova S, Nicolay BN, Ross
KN, Fitamant J, Boukhali M, Lengrand J, Deshpande V, Selig MK,
Ferrone CR, et al: Transcriptional control of autophagy-lysosome
function drives pancreatic cancer metabolism. Nature. 524:361–365.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yang S, Wang X, Contino G, Liesa M, Sahin
E, Ying H, Bause A, Li Y, Stommel JM, Dell'antonio G, et al:
Pancreatic cancers require autophagy for tumor growth. Genes Dev.
25:717–729. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Buscail L, Bournet B and Cordelier P: Role
of oncogenic KRAS in the diagnosis, prognosis and treatment of
pancreatic cancer. Nat Rev Gastroenterol Hepatol. 17:153–168. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Dey P, Kimmelman AC and DePinho RA:
Metabolic Codependencies in the tumor microenvironment. Cancer
Discov. 11:1067–1081. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Shen X, Niu N and Xue J: Oncogenic KRAS
triggers metabolic reprogramming in pancreatic ductal
adenocarcinoma. J Transl Int Medicine 0. -. 2022. View Article : Google Scholar
|
|
13
|
Muthalagu N, Monteverde T,
Raffo-Iraolagoitia X, Wiesheu R, Whyte D, Hedley A, Laing S,
Kruspig B, Upstill-Goddard R, Shaw R, et al: Repression of the type
I interferon pathway underlies MYC- and KRAS-dependent evasion of
NK and B cells in pancreatic ductal adenocarcinoma. Cancer Discov.
10:872–887. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Dey P, Li J, Zhang J, Chaurasiya A, Strom
A, Wang H, Liao WT, Cavallaro F, Denz P, Bernard V, et al:
Oncogenic KRAS-driven metabolic reprogramming in pancreatic cancer
cells utilizes cytokines from the tumor microenvironment. Cancer
Discov. 10:608–625. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Santana-Codina N, Roeth AA, Zhang Y, Yang
A, Mashadova O, Asara JM, Wang X, Bronson RT, Lyssiotis CA, Ying H
and Kimmelman AC: Oncogenic KRAS supports pancreatic cancer through
regulation of nucleotide synthesis. Nat Commun. 9:49452018.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Son J, Lyssiotis CA, Ying H, Wang X, Hua
S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, et
al: Glutamine supports pancreatic cancer growth through a
KRAS-regulated metabolic pathway. Nature. 496:101–105. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Raho S, Capobianco L, Malivindi R, Vozza
A, Piazzolla C, Leonardis FD, Gorgoglione R, Scarcia P, Pezzuto F,
Agrimi G, et al: KRAS-regulated glutamine metabolism requires
UCP2-mediated aspartate transport to support pancreatic cancer
growth. Nat Metab. 2:1373–1381. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kessler D, Gmachl M, Mantoulidis A, Martin
LJ, Zoephel A, Mayer M, Gollner A, Covini D, Fischer S, Gerstberger
T, et al: Drugging an undruggable pocket on KRAS. Proc Natl Acad
Sci USA. 116:15823–15829. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Vigil D, Cherfils J, Rossman KL and Der
CJ: Ras superfamily GEFs and GAPs: Validated and tractable targets
for cancer therapy? Nat Rev Cancer. 10:842–857. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Cuesta C, Arévalo-Alameda C and Castellano
E: The importance of being PI3K in the RAS signaling network. Genes
(Basel). 12:10942021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Krygowska AA and Castellano E: PI3K: A
crucial piece in the RAS signaling puzzle. Cold Spring Harb
Perspect Med. 8:a0314502018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hemmings BA and Restuccia DF: PI3K-PKB/Akt
pathway. Cold Spring Harb Perspect Biol. 4:a0111892012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Fritsch R and Downward J: SnapShot: Class
I PI3K isoform signaling. Cell. 154:940–940.e941. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Peng Y, Wang Y, Zhou C, Mei W and Zeng C:
PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we
making headway? Front Oncol. 12:8191282022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Rascio F, Spadaccino F, Rocchetti MT,
Castellano G, Stallone G, Netti GS and Ranieri E: The pathogenic
role of PI3K/AKT pathway in cancer onset and drug resistance: An
updated review. Cancers (Basel). 13:39492021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Witkiewicz AK, McMillan EA, Balaji U, Baek
G, Lin WC, Mansour J, Mollaee M, Wagner KU, Koduru P, Yopp A, et
al: Whole-exome sequencing of pancreatic cancer defines genetic
diversity and therapeutic targets. Nat Commun. 6:67442015.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hayes TK, Neel NF, Hu C, Gautam P, Chenard
M, Long B, Aziz M, Kassner M, Bryant KL, Pierobon M, et al:
Long-term ERK inhibition in KRAS-mutant pancreatic cancer is
associated with MYC degradation and senescence-like growth
suppression. Cancer Cell. 29:75–89. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Workman P, Clarke PA, Raynaud FI and van
Montfort RL: Drugging the PI3 kinome: From chemical tools to drugs
in the clinic. Cancer Res. 70:2146–2157. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ng SS, Tsao MS, Nicklee T and Hedley DW:
Wortmannin inhibits pkb/akt phosphorylation and promotes
gemcitabine antitumor activity in orthotopic human pancreatic
cancer xenografts in immunodeficient mice. Clin Cancer Res.
7:3269–3275. 2001.PubMed/NCBI
|
|
30
|
Fujiwara M, Izuishi K, Sano T, Hossain MA,
Kimura S, Masaki T and Suzuki Y: Modulating effect of the
PI3-kinase inhibitor LY294002 on cisplatin in human pancreatic
cancer cells. J Exp Clin Cancer Res. 27:762008. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wang Y, Kuramitsu Y, Baron B, Kitagawa T,
Tokuda K, Akada J, Maehara SI, Maehara Y and Nakamura K: PI3K
inhibitor LY294002, as opposed to wortmannin, enhances AKT
phosphorylation in gemcitabine-resistant pancreatic cancer cells.
Int J Oncol. 50:606–612. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang Z, Luo G and Qiu Z: Akt inhibitor
MK-2206 reduces pancreatic cancer cell viability and increases the
efficacy of gemcitabine. Oncol Lett. 19:1999–2004. 2020.PubMed/NCBI
|
|
33
|
Hu C, Dadon T, Chenna V, Yabuuchi S,
Bannerji R, Booher R, Strack P, Azad N, Nelkin BD and Maitra A:
Combined inhibition of cyclin-dependent kinases (Dinaciclib) and
AKT (MK-2206) blocks pancreatic tumor growth and metastases in
patient-derived xenograft models. Mol Cancer Ther. 14:1532–1539.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Massihnia D, Avan A, Funel N, Maftouh M,
van Krieken A, Granchi C, Raktoe R, Boggi U, Aicher B, Minutolo F,
et al: Phospho-Akt overexpression is prognostic and can be used to
tailor the synergistic interaction of Akt inhibitors with
gemcitabine in pancreatic cancer. J Hematol Oncol. 10:92017.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Utomo WK, Narayanan V, Biermann K, van
Eijck CHJ, Bruno MJ, Peppelenbosch MP and Braat H: mTOR is a
promising therapeutical target in a subpopulation of pancreatic
adenocarcinoma. Cancer Lett. 346:309–317. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Soares HP, Ni Y, Kisfalvi K, Sinnett-Smith
J and Rozengurt E: Different patterns of Akt and ERK feedback
activation in response to rapamycin, active-site mTOR inhibitors
and metformin in pancreatic cancer cells. PLoS One. 8:e572892013.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Dai ZJ, Gao J, Kang HF, Ma YG, Ma XB, Lu
WF, Lin S, Ma HB, Wang XJ and Wu WY: Targeted inhibition of
mammalian target of rapamycin (mTOR) enhances radiosensitivity in
pancreatic carcinoma cells. Drug Des Devel Ther. 7:149–159. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Azzariti A, Porcelli L, Gatti G, Nicolin A
and Paradiso A: Synergic antiproliferative and antiangiogenic
effects of EGFR and mTor inhibitors on pancreatic cancer cells.
Biochem Pharmacol. 75:1035–1044. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Morran DC, Wu J, Jamieson NB, Mrowinska A,
Kalna G, Karim SA, Au AYM, Scarlett CJ, Chang DK, Pajak MZ, et al:
Targeting mTOR dependency in pancreatic cancer. Gut. 63:1481–1489.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Cifarelli V, Lashinger LM, Devlin KL,
Dunlap SM, Huang J, Kaaks R, Pollak MN and Hursting SD: Metformin
and rapamycin reduce pancreatic cancer growth in obese prediabetic
mice by distinct MicroRNA-regulated mechanisms. Diabetes.
64:1632–1642. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tuncyurek P, Mayer JM, Klug F, Dillmann S,
Henne-Bruns D, Keller F and Stracke S: Everolimus and mycophenolate
mofetil sensitize human pancreatic cancer cells to gemcitabine in
vitro: A novel adjunct to standard chemotherapy? Eur Surg Res.
39:380–387. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Peng T and Dou QP: Everolimus inhibits
growth of gemcitabine-resistant pancreatic cancer cells via
induction of caspase-dependent apoptosis and G(2) /M arrest. J Cell
Biochem. 118:2722–2730. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pawaskar DK, Straubinger RM, Fetterly GJ,
Ma WW and Jusko WJ: Interactions of everolimus and sorafenib in
pancreatic cancer cells. AAPS J. 15:78–84. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wei F, Zhang Y, Geng L, Zhang P, Wang G
and Liu Y: mTOR inhibition induces EGFR feedback activation in
association with its resistance to human pancreatic cancer. Int J
Mol Sci. 16:3267–3282. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Pawaskar DK, Straubinger RM, Fetterly GJ,
Hylander BH, Repasky EA, Ma WW and Jusko WJ: Synergistic
interactions between sorafenib and everolimus in pancreatic cancer
xenografts in mice. Cancer Chemother Pharmacol. 71:1231–1240. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Witkiewicz AK, Balaji U, Eslinger C,
McMillan E, Conway W, Posner B, Mills GB, O'Reilly EM and Knudsen
ES: Integrated patient-derived models delineate individualized
therapeutic vulnerabilities of pancreatic cancer. Cell Rep.
16:2017–2031. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL
and Reddy SA: The rapamycin analog CCI-779 is a potent inhibitor of
pancreatic cancer cell proliferation. Biochem Biophys Res Commun.
331:295–302. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ito D, Fujimoto K, Mori T, Kami K, Koizumi
M, Toyoda E, Kawaguchi Y and Doi R: In vivo antitumor effect of the
mTOR inhibitor CCI-779 and gemcitabine in xenograft models of human
pancreatic cancer. Int J Cancer. 118:2337–2343. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cao P, Maira SM, García-Echeverría C and
Hedley DW: Activity of a novel, dual PI3-kinase/mTor inhibitor
NVP-BEZ235 against primary human pancreatic cancers grown as
orthotopic xenografts. Br J Cancer. 100:1267–1276. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Awasthi N, Yen PL, Schwarz MA and Schwarz
RE: The efficacy of a novel, dual PI3K/mTOR inhibitor NVP-BEZ235 to
enhance chemotherapy and antiangiogenic response in pancreatic
cancer. J Cell Biochem. 113:784–791. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Venkannagari S, Fiskus W, Peth K, Atadja
P, Hidalgo M, Maitra A and Bhalla KN: Superior efficacy of
co-treatment with dual PI3K/mTOR inhibitor NVP-BEZ235 and
pan-histone deacetylase inhibitor against human pancreatic cancer.
Oncotarget. 3:1416–1427. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lee JE, Woo MG, Jung KH, Shin SM, Son MK,
Fang Z, Yan HH, Park JH, Yoon YC, Kim YS and Hong SS: Combination
therapy of the active KRAS-targeting antibody inRas37 and a PI3K
inhibitor in pancreatic cancer. Biomol Ther (Seoul). 30:274–283.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Soares HP, Ming M, Mellon M, Young SH, Han
L, Sinnet-Smith J and Rozengurt E: Dual PI3K/mTOR inhibitors induce
rapid overactivation of the MEK/ERK pathway in human pancreatic
cancer cells through suppression of mTORC2. Mol Cancer Ther.
14:1014–1023. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Venkatasubbarao K, Choudary A and Freeman
JW: Farnesyl transferase inhibitor (R115777)-induced inhibition of
STAT3(Tyr705) phosphorylation in human pancreatic cancer cell lines
require extracellular signal-regulated kinases. Cancer Res.
65:2861–2871. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Shi B, Yaremko B, Hajian G, Terracina G,
Bishop WR, Liu M and Nielsen LL: The farnesyl protein transferase
inhibitor SCH66336 synergizes with taxanes in vitro and enhances
their antitumor activity in vivo. Cancer Chemother Pharmacol.
46:387–393. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ulivi P, Arienti C, Amadori D, Fabbri F,
Carloni S, Tesei A, Vannini I, Silvestrini R and Zoli W: Role of
RAF/MEK/ERK pathway, p-STAT-3 and Mcl-1 in sorafenib activity in
human pancreatic cancer cell lines. J Cell Physiol. 220:214–221.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wei G, Wang M and Carr BI: Sorafenib
combined vitamin K induces apoptosis in human pancreatic cancer
cell lines through RAF/MEK/ERK and c-Jun NH2-terminal kinase
pathways. J Cell Physiol. 224:112–119. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Fang Z, Jung KH, Yan HH, Kim SJ, Rumman M,
Park JH, Han B, Lee JE, Kang YW, Lim JH and Hong SS: Melatonin
synergizes with sorafenib to suppress pancreatic cancer via
melatonin receptor and PDGFR-β/STAT3 pathway. Cell Physiol Biochem.
47:1751–1768. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Awasthi N, Zhang C, Hinz S, Schwarz MA and
Schwarz RE: Enhancing sorafenib-mediated sensitization to
gemcitabine in experimental pancreatic cancer through EMAP II. J
Exp Clin Cancer Res. 32:122013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Nakkina SP, Gitto SB, Beardsley JM, Pandey
V, Rohr MW, Parikh JG, Phanstiel O IV and Altomare DA: DFMO
improves survival and increases immune cell infiltration in
association with MYC downregulation in the pancreatic tumor
microenvironment. Int J Mol Sci. 22:131752021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Walters DM, Lindberg JM, Adair SJ, Newhook
TE, Cowan CR, Stokes JB, Borgman CA, Stelow EB, Lowrey BT,
Chopivsky ME, et al: Inhibition of the growth of patient-derived
pancreatic cancer xenografts with the MEK inhibitor trametinib is
augmented by combined treatment with the epidermal growth factor
receptor/HER2 inhibitor lapatinib. Neoplasia. 15:143–155. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Awasthi N, Monahan S, Stefaniak A, Schwarz
MA and Schwarz RE: Inhibition of the MEK/ERK pathway augments
nab-paclitaxel-based chemotherapy effects in preclinical models of
pancreatic cancer. Oncotarget. 9:5274–5286. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chao MW, Chang LH, Tu HJ, Chang CD, Lai
MJ, Chen YY, Liou JP, Teng CM and Pan SL: Combination treatment
strategy for pancreatic cancer involving the novel HDAC inhibitor
MPT0E028 with a MEK inhibitor beyond K-Ras status. Clin
Epigenetics. 11:852019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Amada K, Hijiya N, Ikarimoto S, Yanagihara
K, Hanada T, Hidano S, Kurogi S, Tsukamoto Y, Nakada C, Kinoshita
K, et al: Involvement of clusterin expression in the refractory
response of pancreatic cancer cells to a MEK inhibitor. Cancer Sci.
114:2189–2202. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhou J, Zhao T, Ma L, Liang M, Guo YJ and
Zhao LM: Cucurbitacin B and SCH772984 exhibit synergistic
anti-pancreatic cancer activities by suppressing EGFR,
PI3K/Akt/mTOR, STAT3 and ERK signaling. Oncotarget.
8:103167–103181. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Bryant KL, Stalnecker CA, Zeitouni D,
Klomp JE, Peng S, Tikunov AP, Gunda V, Pierobon M, Waters AM,
George SD, et al: Combination of ERK and autophagy inhibition as a
treatment approach for pancreatic cancer. Nat Med. 25:628–640.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yan Z, Ohuchida K, Fei S, Zheng B, Guan W,
Feng H, Kibe S, Ando Y, Koikawa K, Abe T, et al: Inhibition of
ERK1/2 in cancer-associated pancreatic stellate cells suppresses
cancer-stromal interaction and metastasis. J Exp Clin Cancer Res.
38:2212019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Goodwin CM, Waters AM, Klomp JE, Javaid S,
Bryant KL, Stalnecker CA, Drizyte-Miller K, Papke B, Yang R, Amparo
AM, et al: Combination therapies with CDK4/6 inhibitors to treat
KRAS-mutant pancreatic cancer. Cancer Res. 83:141–157. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Jiang H, Xu M, Li L, Grierson P,
Dodhiawala P, Highkin M, Zhang D, Li Q, Wang-Gillam A and Lim KH:
Concurrent HER or PI3K inhibition potentiates the antitumor effect
of the erk inhibitor ulixertinib in preclinical pancreatic cancer
models. Mol Cancer Ther. 17:2144–2155. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Williams TM, Flecha AR, Keller P, Ram A,
Karnak D, Galbán S, Galbán CJ, Ross BD, Lawrence TS, Rehemtulla A
and Sebolt-Leopold J: Cotargeting MAPK and PI3K signaling with
concurrent radiotherapy as a strategy for the treatment of
pancreatic cancer. Mol Cancer Ther. 11:1193–1202. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Dai X, Zhang J, Arfuso F, Chinnathambi
Zayed ME, Alharbi SA, Kumar AP, Ahn KS and Sethi G: Targeting
TNF-related apoptosis-inducing ligand (TRAIL) receptor by natural
products as a potential therapeutic approach for cancer therapy.
Exp Biol Med (Maywood). 240:760–773. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang Q, Wang H, Ran L, Zhang Z and Jiang
R: The preclinical evaluation of TIC10/ONC201 as an anti-pancreatic
cancer agent. Biochem Biophys Res Commun. 476:260–266. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Awasthi N, Kronenberger D, Stefaniak A,
Hassan MS, von Holzen U, Schwarz MA and Schwarz RE: Dual inhibition
of the PI3K and MAPK pathways enhances nab-paclitaxel/gemcitabine
chemotherapy response in preclinical models of pancreatic cancer.
Cancer Lett. 459:41–49. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Thomas D and Radhakrishnan P:
Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis.
Mol Cancer. 18:142019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Krempley BD and Yu KH: Preclinical models
of pancreatic ductal adenocarcinoma. Chin Clin Oncol. 6:252017.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yu Y, Yang G, Huang H, Fu Z, Cao Z, Zheng
L, You L and Zhang T: Preclinical models of pancreatic ductal
adenocarcinoma: Challenges and opportunities in the era of
precision medicine. J Exp Clin Cancer Res. 40:82021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kim RD, Alberts SR, Peña C, Genvresse I,
Ajavon-Hartmann A, Xia C, Kelly A and Grilley-Olson JE: Phase I
dose-escalation study of copanlisib in combination with gemcitabine
or cisplatin plus gemcitabine in patients with advanced cancer. Br
J Cancer. 118:462–470. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Soares HP, Al-Toubah TE, Kim RD, Kim J,
Lewis NK and Mahipal A: Final report: A phase I trial of BYL719 in
combination with gemcitabine and nab-paclitaxel in locally advanced
and metastatic pancreatic cancer. J Clin Oncol. 36:398. 2018.
View Article : Google Scholar
|
|
79
|
Bedard PL, Tabernero J, Janku F, Wainberg
ZA, Paz-Ares L, Vansteenkiste J, Cutsem EV, Pérez-García J, Stathis
A, Britten CD, et al: A phase Ib dose-escalation study of the oral
pan-PI3K inhibitor buparlisib (BKM120) in combination with the oral
MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected
advanced solid tumors. Clin Cancer Res. 21:730–738. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
McRee AJ, Sanoff HK, Carlson C, Ivanova A
and O'Neil BH: A phase I trial of mFOLFOX6 combined with the oral
PI3K inhibitor BKM120 in patients with advanced refractory solid
tumors. Invest New Drugs. 33:1225–1231. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Borazanci E, Pishvaian MJ, Nemunaitis J,
Weekes C, Huang J and Rajakumaraswamy N: A Phase Ib study of
single-agent idelalisib followed by idelalisib in combination with
chemotherapy in patients with metastatic pancreatic ductal
adenocarcinoma. Oncologist. 25:e1604–e1613. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Marsh RW, Lima CM, Levy DE, Mitchell EP,
Rowland KM Jr and Benson AB III: A phase II trial of perifosine in
locally advanced, unresectable, or metastatic pancreatic
adenocarcinoma. Am J Clin Oncol. 30:26–31. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hedley D, Moore MJ, Hirte H, Siu L,
Vincent M, Jonker H. Mwang D, Nagai J and Dancey J: A phase II
trial of perifosine as second line therapy for advanced pancreatic
cancer. A study of the princess margaret hospital [PMH] phase II
consortium. J Clin Oncol. 23:4166. 2005. View Article : Google Scholar
|
|
84
|
Chung V, McDonough S, Philip PA, Cardin D,
Wang-Gillam A, Hui L, Tejani MA, Seery TE, Dy IA, Al Baghdadi T, et
al: Effect of Selumetinib and MK-2206 vs Oxaliplatin and
Fluorouracil in patients with metastatic pancreatic cancer after
prior therapy: SWOG S1115 study randomized clinical trial. JAMA
Oncol. 3:516–522. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Murphy AG, Zahurak M, Shah M, Weekes CD,
Hansen A, Siu LL, Spreafico A, LoConte N, Anders NM, Miles T, et
al: A phase I study of dinaciclib in combination with MK-2206 in
patients with advanced pancreatic cancer. Clin Transl Sci.
13:1178–1188. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wolpin BM, Hezel AF, Abrams T, Blaszkowsky
LS, Meyerhardt JA, Chan JA, Enzinger PC, Allen B, Clark JW, Ryan DP
and Fuchs CS: Oral mTOR inhibitor everolimus in patients with
gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol.
27:193–198. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Javle MM, Shroff RT, Xiong H, Varadhachary
GA, Fogelman D, Reddy SA, Davis D, Zhang Y, Wolff RA and Abbruzzese
JL: Inhibition of the mammalian target of rapamycin (mTOR) in
advanced pancreatic cancer: Results of two phase II studies. BMC
Cancer. 10:3682010. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kordes S, Klümpen HJ, Weterman MJ,
Schellens JH, Richel DJ and Wilmink JW: Phase II study of
capecitabine and the oral mTOR inhibitor everolimus in patients
with advanced pancreatic cancer. Cancer Chemother Pharmacol.
75:1135–1141. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Karavasilis V, Samantas E, Koliou GA,
Kalogera-Fountzila A, Pentheroudakis G, Varthalitis I, Linardou H,
Rallis G, Skondra M, Papadopoulos G, et al: Gemcitabine combined
with the mTOR inhibitor temsirolimus in patients with locally
advanced or metastatic pancreatic cancer. A Hellenic cooperative
oncology group phase I/II study. Target Oncol. 13:715–724. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Amin M, Gao F, Terrero G, Picus J,
Wang-Gillam A, Suresh R, Ma C, Tan B, Baggstrom M, Naughton MJ, et
al: Phase I study of docetaxel and temsirolimus in refractory solid
tumors. Am J Clin Oncol. 44:443–448. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Weinberg BA, Wang H, Witkiewicz AK,
Marshall JL, He AR, Vail P, Knudsen ES and Pishvaian MJ: A phase I
study of ribociclib plus everolimus in patients with metastatic
pancreatic adenocarcinoma refractory to chemotherapy. J Pancreat
Cancer. 6:45–54. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Carr RM, Duma N, McCleary-Wheeler AL,
Almada LL, Marks DL, Graham RP, Smyrk TC, Lowe V, Borad MJ, Kim G,
et al: Targeting of the Hedgehog/GLI and mTOR pathways in advanced
pancreatic cancer, a phase 1 trial of Vismodegib and Sirolimus
combination. Pancreatology. 20:1115–1122. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Moore MJ, Goldstein D, Hamm J, Figer A,
Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, et al:
Erlotinib plus gemcitabine compared with gemcitabine alone in
patients with advanced pancreatic cancer: A phase III trial of the
national cancer institute of Canada clinical trials group. J Clin
Oncol. 25:1960–1966. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Park H, Williams K, Trikalinos NA, Larson
S, Tan B, Waqar S, Suresh R, Morgensztern D, Van Tine BA, Govindan
R, et al: A phase I trial of temsirolimus and erlotinib in patients
with refractory solid tumors. Cancer Chemother Pharmacol.
87:337–347. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Kordes S, Richel DJ, Klümpen HJ, Weterman
MJ, Stevens AJ and Wilmink JW: A phase I/II, non-randomized,
feasibility/safety and efficacy study of the combination of
everolimus, cetuximab and capecitabine in patients with advanced
pancreatic cancer. Invest New Drugs. 31:85–91. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Cohen SJ, Ho L, Ranganathan S, Abbruzzese
JL, Alpaugh RK, Beard M, Lewis NL, McLaughlin S, Rogatko A,
Perez-Ruixo JJ, et al: Phase II and pharmacodynamic study of the
farnesyltransferase inhibitor R115777 as initial therapy in
patients with metastatic pancreatic adenocarcinoma. J Clin Oncol.
21:1301–1306. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Macdonald JS, McCoy S, Whitehead RP, Iqbal
S, Wade JL III, Giguere JK and Abbruzzese JL: A phase II study of
farnesyl transferase inhibitor R115777 in pancreatic cancer: A
Southwest oncology group (SWOG 9924) study. Invest New Drugs.
23:485–487. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Van Cutsem E, van de Velde H, Karasek P,
Oettle H, Vervenne WL, Szawlowski A, Schoffski P, Post S, Verslype
C, Neumann H, et al: Phase III trial of gemcitabine plus tipifarnib
compared with gemcitabine plus placebo in advanced pancreatic
cancer. J Clin Oncol. 22:1430–1438. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Rich TA, Winter K, Safran H, Hoffman JP,
Erickson B, Anne PR, Myerson RJ, Cline-Burkhardt VJ, Perez K and
Willett C: Weekly paclitaxel, gemcitabine, and external irradiation
followed by randomized farnesyl transferase inhibitor R115777 for
locally advanced pancreatic cancer. Onco Targets Ther. 5:161–170.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Siu LL, Awada A, Takimoto CH, Piccart M,
Schwartz B, Giannaris T, Lathia C, Petrenciuc O and Moore MJ: Phase
I trial of sorafenib and gemcitabine in advanced solid tumors with
an expanded cohort in advanced pancreatic cancer. Clin Cancer Res.
12:144–151. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
El-Khoueiry AB, Ramanathan RK, Yang DY,
Zhang W, Shibata S, Wright JJ, Gandara D and Lenz HJ: A randomized
phase II of gemcitabine and sorafenib versus sorafenib alone in
patients with metastatic pancreatic cancer. Invest New Drugs.
30:1175–1183. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Gonçalves A, Gilabert M, François E, Dahan
L, Perrier H, Lamy R, Re D, Largillier R, Gasmi M, Tchiknavorian X,
et al: BAYPAN study: A double-blind phase III randomized trial
comparing gemcitabine plus sorafenib and gemcitabine plus placebo
in patients with advanced pancreatic cancer. Ann Oncol.
23:2799–2805. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Cascinu S, Berardi R, Sobrero A, Bidoli P,
Labianca R, Siena S, Ferrari D, Barni S, Aitini E, Zagonel V, et
al: Sorafenib does not improve efficacy of chemotherapy in advanced
pancreatic cancer: A GISCAD randomized phase II study. Dig Liver
Dis. 46:182–186. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Chiorean EG, Schneider BP, Akisik FM,
Perkins SM, Anderson S, Johnson CS, DeWitt J, Helft P, Clark R,
Johnston EL, et al: Phase 1 pharmacogenetic and pharmacodynamic
study of sorafenib with concurrent radiation therapy and
gemcitabine in locally advanced unresectable pancreatic cancer. Int
J Radiat Oncol Biol Phys. 89:284–291. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Infante JR, Somer BG, Park JO, Li CP,
Scheulen ME, Kasubhai SM, Oh DY, Liu Y, Redhu S, Steplewski K and
Le N: A randomised, double-blind, placebo-controlled trial of
trametinib, an oral MEK inhibitor, in combination with gemcitabine
for patients with untreated metastatic adenocarcinoma of the
pancreas. Eur J Cancer. 50:2072–2081. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Huijberts S, van Geel R, van Brummelen
EMJ, Opdam FL, Marchetti S, Steeghs N, Pulleman S, Thijssen B,
Rosing H, Monkhorst K, et al: Phase I study of lapatinib plus
trametinib in patients with KRAS-mutant colorectal, non-small cell
lung, and pancreatic cancer. Cancer Chemother Pharmacol.
85:917–930. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Ko AH, Bekaii-Saab T, Van Ziffle J,
Mirzoeva OM, Joseph NM, Talasaz A, Kuhn P, Tempero MA, Collisson
EA, Kelley RK, et al: A multicenter, open-label phase II clinical
trial of combined MEK plus EGFR inhibition for
chemotherapy-refractory advanced pancreatic adenocarcinoma. Clin
Cancer Res. 22:61–68. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhu X, Cao Y, Liu W, Ju X, Zhao X, Jiang
L, Ye Y, Jin G and Zhang H: Stereotactic body radiotherapy plus
pembrolizumab and trametinib versus stereotactic body radiotherapy
plus gemcitabine for locally recurrent pancreatic cancer after
surgical resection: an open-label, randomised, controlled, phase 2
trial. Lancet Oncol. 23:e105–e115. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Aung KL, McWhirter E, Welch S, Wang L,
Lovell S, Stayner LA, Ali S, Malpage A, Makepeace B, Ramachandran
M, et al: A phase II trial of GSK2256098 and trametinib in patients
with advanced pancreatic ductal adenocarcinoma. J Gastrointest
Oncol. 13:3216–3226. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Bodoky G, Timcheva C, Spigel DR, Stella
PJL, Ciuleanu TE, Pover G and Tebbutt NC: A phase II open-label
randomized study to assess the efficacy and safety of selumetinib
(AZD6244 [ARRY-142886]) versus capecitabine in patients with
advanced or metastatic pancreatic cancer who have failed first-line
gemcitabine therapy. Invest New Drugs. 30:1216–1223. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kenney C, Kunst T, Webb S, Christina D Jr,
Arrowood C, Steinberg SM, Mettu NB, Kim EJ and Rudloff U: Phase II
study of selumetinib, an orally active inhibitor of MEK1 and MEK2
kinases, in KRAS(G12R)-mutant pancreatic ductal adenocarcinoma.
Invest New Drugs. 39:821–828. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Rodon J, Tan DW, Laguna IG, Harb W, Beck
JT, Bahary N, Rottey S, Zhu Z, Deng S, Kowalski K, et al: 344
Avelumab + binimetinib in metastatic pancreatic ductal
adenocarcinoma (mPDAC): Dose-escalation results from the phase 1b/2
JAVELIN PARP MEKi trial. J Immunother Cancer. 9:A371. 2021.
View Article : Google Scholar
|
|
113
|
Surana R, Lee JJ, Smaglo BG, Zhao D, Lee
MS, Wolff RA, Overman MJ, Willis J, Der CJ and Pant S: Phase I
study of hydroxychloroquine plus binimetinib in patients with
metastatic pancreatic cancer (the HOPE trial). J Clin Oncol.
40:TPS634. 2022. View Article : Google Scholar
|
|
114
|
Grierson PM, Tan B, Pedersen KS, Park H,
Suresh R, Amin MA, Trikalinos NA, Knoerzer D, Kreider B, Reddy A,
et al: Phase Ib study of ulixertinib plus gemcitabine and
nab-paclitaxel in patients with metastatic pancreatic
adenocarcinoma. Oncologist. 28:e115–e123. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Raybould AL, Burgess B, Urban C, Naim R,
Lee MS and McRee AJ: A phase Ib trial of ERK inhibition with
ulixertinib combined with palbociclib in patients (Pts) with
advanced solid tumors. J Clin Oncol. 39:3103. 2021. View Article : Google Scholar
|
|
116
|
Grilley-Olson JE, Bedard PL, Fasolo A,
Cornfeld M, Cartee L, Razak ARA, Stayner LA, Wu Y, Greenwood R,
Singh R, et al: A phase Ib dose-escalation study of the MEK
inhibitor trametinib in combination with the PI3K/mTOR inhibitor
GSK2126458 in patients with advanced solid tumors. Invest New
Drugs. 34:740–749. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Bardia A, Gounder M, Rodon J, Janku F,
Lolkema MP, Stephenson JJ, Bedard PL, Schuler M, Sessa C, LoRusso
P, et al: Phase Ib study of combination therapy with MEK inhibitor
Binimetinib and Phosphatidylinositol 3-kinase inhibitor Buparlisib
in patients with advanced solid tumors with RAS/RAF alterations.
Oncologist. 25:e160–e169. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Ostrem JM and Shokat KM: Direct
small-molecule inhibitors of KRAS: From structural insights to
mechanism-based design. Nat Rev Drug Discov. 15:771–785. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Canon J, Rex K, Saiki AY, Mohr C, Cooke K,
Bagal D, Gaida K, Holt T, Knutson CG, Koppada N, et al: The
clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity.
Nature. 575:217–223. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Hallin J, Engstrom LD, Hargis L, Calinisan
A, Aranda R, Briere DM, Sudhakar N, Bowcut V, Baer BR, Ballard JA,
et al: The KRAS(G12C) inhibitor MRTX849 provides insight toward
therapeutic susceptibility of KRAS-mutant cancers in mouse models
and patients. Cancer Discov. 10:54–71. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Skoulidis F, Li BT, Dy GK, Price TJ,
Falchook GS, Wolf J, Italiano A, Schuler M, Borghaei H, Barlesi F,
et al: Sotorasib for lung cancers with KRAS p.G12C mutation. N Engl
J Med. 384:2371–2381. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Khan S, Wiegand J, Zhang P, Hu W, Thummuri
D, Budamagunta V, Hua N, Jin L, Allegra CJ, Kopetz SE, et al:
BCL-X(L) PROTAC degrader DT2216 synergizes with sotorasib in
preclinical models of KRAS(G12C)-mutated cancers. J Hematol Oncol.
15:232022. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Strickler JH, Satake H, George TJ, Yaeger
R, Hollebecque A, Garrido-Laguna I, Schuler M, Burns TF, Coveler
AL, Falchook GS, et al: Sotorasib in KRAS p.G12C-mutated advanced
pancreatic cancer. N Engl J Med. 388:33–43. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Bekaii-Saab TS, Spira AI, Yaeger R,
Buchschacher GL, McRee AJ, Sabari JK, Johnson ML, Barve NA, Hafez
N, Velastegui K, et al: KRYSTAL-1: Updated activity and safety of
adagrasib (MRTX849) in patients (Pts) with unresectable or
metastatic pancreatic cancer (PDAC) and other gastrointestinal (GI)
tumors harboring a KRASG12C mutation. J Clin Oncol. 40:519. 2022.
View Article : Google Scholar
|
|
125
|
Wang-Gillam A, Hubner RA, Siveke JT, Von
Hoff DD, Belanger B, de Jong FA, Mirakhur B and Chen LT: NAPOLI-1
phase 3 study of liposomal irinotecan in metastatic pancreatic
cancer: Final overall survival analysis and characteristics of
long-term survivors. Eur J Cancer. 108:78–87. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Wang X, Allen S, Blake JF, Bowcut V,
Briere DM, Calinisan A, Dahlke JR, Fell JB, Fischer JP, Gunn RJ, et
al: Identification of MRTX1133, a Noncovalent, potent, and
selective KRAS(G12D) inhibitor. J Med Chem. 65:3123–3133. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Hallin J, Bowcut V, Calinisan A, Briere
DM, Hargis L, Engstrom LD, Laguer J, Medwid J, Vanderpool D, Lifset
E, et al: Anti-tumor efficacy of a potent and selective
non-covalent KRAS(G12D) inhibitor. Nat Med. 28:2171–2182. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Kemp SB, Cheng N, Markosyan N, Sor R, Kim
IK, Hallin J, Shoush J, Quinones L, Brown NV, Bassett JB, et al:
Efficacy of a small molecule inhibitor of KrasG12D in
immunocompetent models of pancreatic cancer. Cancer Discov.
13:298–311. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Bannoura SF, Khan HY and Azmi AS: KRAS
G12D targeted therapies for pancreatic cancer: Has the fortress
been conquered? Front Oncol. 12:10139022022. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Huang L, Guo Z, Wang F and Fu L: KRAS
mutation: From undruggable to druggable in cancer. Signal Transduct
Target Ther. 6:3862021. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Gustafson WC, Wildes D, Rice MA, Lee BJ,
Jiang J, Wang Z, Chang S, Flagella M, Mu Y, Dinglasan N, et al:
Direct targeting of RAS in pancreatic ductal adenocarcinoma with
RMC-6236, a first-in-class, RAS-selective, orally bioavailable,
tri-complex RASMULTI(ON) inhibitor. J Clin Oncol. 40:591. 2022.
View Article : Google Scholar
|
|
132
|
Frank KJ, Mulero-Sánchez A, Berninger A,
Ruiz-Cañas L, Bosma A, Görgülü K, Wu N, Diakopoulos KN, Kaya-Aksoy
E, Ruess DA, et al: Extensive preclinical validation of combined
RMC-4550 and LY3214996 supports clinical investigation for KRAS
mutant pancreatic cancer. Cell Rep Med. 3:1008152022. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Gort E, Johnson ML, Hwang JJ, Pant S,
Dünzinger U, Riemann K, Kitzing T and Janne PA: A phase I,
open-label, dose-escalation trial of BI 1701963 as monotherapy and
in combination with trametinib in patients with KRAS mutated
advanced or metastatic solid tumors. J Clin Oncol. 38:TPS3651.
2020. View Article : Google Scholar
|