|
1
|
Junttila MR and de Sauvage FJ: Influence
of tumor micro-environment heterogeneity on therapeutic response.
Nature. 501:346–354. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Nawaz S and Yuan Y: Computational
pathology: Exploring the spatial dimension of tumor ecology. Cancer
Lett. 380:296–303. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Greaves M and Maley CC: Clonal evolution
in cancer. Nature. 481:306–313. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wang J, Cazzato E, Ladewig E, Frattini V,
Rosenbloom DI, Zairis S, Abate F, Liu Z, Elliott O, Shin YJ, et al:
Clonal evolution of glioblastoma under therapy. Nat Genet.
48:768–476. 2016. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Azizi E, Carr AJ, Plitas G, Cornish AE,
Konopacki C, Prabhakaran S, Nainys J, Wu K, Kiseliovas V, Setty M,
et al: Single-cell map of diverse immune phenotypes in the breast
tumor microenvironment. Cell. 174:1293–1308.e36. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chevrier S, Levine JH, Zanotelli VRT,
Silina K, Schulz D, Bacac M, Ries CH, Ailles L, Jewett MAS, Moch H,
et al: An immune atlas of clear cell renal cell carcinoma. Cell.
169:736–749.e18. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Costa A, Kieffer Y, Scholer-Dahirel A,
Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L,
Bernard C, et al: Fibroblast heterogeneity and immunosuppressive
environment in human breast cancer. Cancer Cell. 33:463–479.e10.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Jia Q, Wu W, Wang Y, Alexander PB, Sun C,
Gong Z, Cheng JN, Sun H, Guan Y, Xia X, et al: Local mutational
diversity drives intratumoral immune heterogeneity in non-small
cell lung cancer. Nat Commun. 9:53612018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Salmon H, Remark R, Gnjatic S and Merad M:
Host tissue determinants of tumor immunity. Nat Rev Cancer.
19:215–227. 2019.PubMed/NCBI
|
|
10
|
Dentro SC, Leshchiner I, Haase K,
Tarabichi M, Wintersinger J, Deshwar AG, Yu K, Rubanova Y,
Macintyre G, Demeulemeester J, et al: Characterizing genetic
intratumor heterogeneity across 2,658 human cancer genomes. Cell.
184:2239–2254.e39. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kumar S, Warrell J, Li S, McGillivray PD,
Meyerson W, Salichos L, Harmanci A, Martinez-Fundichely A, Chan
CWY, Nielsen MM, et al: Passenger mutations in more than 2,500
cancer genomes: Overall molecular functional impact and
consequences. Cell. 180:915–927.e16. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rosenthal R, Cadieux EL, Salgado R, Bakir
MA, Moore DA, Hiley CT, Lund T, Tanić M, Reading JL, Joshi K, et
al: Neoantigen-directed immune escape in lung cancer evolution.
Nature. 567:479–485. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lv Y, Zhang S, Liu Z, Tian Y, Liang N and
Zhang J: Prognostic value of preoperative neutrophil to lymphocyte
ratio is superior to systemic immune inflammation index for
survival in patients with glioblastoma. Clin Neurol Neurosurg.
181:24–27. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Pasqualetti F, Giampietro C, Montemurro N,
Giannini N, Gadducci G, Orlandi P, Natali E, Chiarugi P, Gonnelli
A, Cantarella M, et al: Old and new systemic immune-inflammation
indexes are associated with overall survival of glioblastoma
patients treated with radio-chemotherapy. Genes (Basel).
13:10542022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Montemurro N, Pahwa B, Tayal A, Shukla A,
De Jesus Encarnacion M, Ramirez I, Nurmukhametov R, Chavda V and De
Carlo A: Macrophages in recurrent glioblastoma as a prognostic
factor in the synergistic system of the tumor microenvironment.
Neurol Int. 15:595–608. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Flavahan WA, Gaskell E and Bernstein BE:
Epigenetic plasticity and the hallmarks of cancer. Science.
357:eaal23802017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Marks DL, Olson RL and Fernandez-Zapico
ME: Epigenetic control of the tumor microenvironment. Epigenomics.
8:1671–1687. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ishak CA, Classon M and De Carvalho DD:
Deregulation of retroelements as an emerging therapeutic
opportunity in cancer. Trends Cancer. 4:583–597. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Dagogo-Jack I and Shaw AT: Tumour
heterogeneity and resistance to cancer therapies. Nat Rev Clin
Oncol. 15:81–94. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wang Y, Martins I, Ma Y, Kepp O, Galluzzi
L and Kroemer G: Autophagy-dependent ATP release from dying cells
via lysosomal exocytosis. Autophagy. 9:1624–1625. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Stagg J and Smyth MJ: Extracellular
adenosine triphosphate and adenosine in cancer. Oncogene.
29:5346–5358. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yost KE, Satpathy AT, Wells DK, Qi Y, Wang
C, Kageyama R, McNamara KL, Granja JM, Sarin KY, Brown RA, et al:
Clonal replacement of tumor-specific T cells following PD-1
blockade. Nat Med. 25:1251–1259. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zou W, Wolchok JD and Chen L: PD-L1
(B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms,
response biomarkers, and combinations. Sci Transl Med.
8:328rv42016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Batlle E and Massagué J: Transforming
growth factor-β signaling in immunity and cancer. Immunity.
50:924–940. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ding R, Liu S, Wang S, Chen H, Wang F, Xu
Q, Zhu L, Dong X, Gu Y, Zhang X, et al: Single-cell transcriptome
analysis of the heterogeneous effects of differential expression of
tumor PD-L1 on responding TCR-T cells. Theranostics. 11:4957–4974.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lamplugh Z and Fan Y: Vascular
microenvironment, tumor Immunity and Immunotherapy. Front Immunol.
12:8114852021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Fu T, Dai LJ, Wu SY, Xiao Y, Ma D, Jiang
YZ and Shao ZM: Spatial architecture of the immune microenvironment
orchestrates tumor immunity and therapeutic response. J Hematol
Oncol. 14:982021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Montenegro F and Indraccolo S: Metabolism
in the tumor microenvironment. Adv Exp Med Biol. 1263:1–11. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Binnewies M, Roberts EW, Kersten K, Chan
V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI,
Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor
immune microenvironment (TIME) for effective therapy. Nat Med.
24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Joshi K, de Massy MR, Ismail M, Reading
JL, Uddin I, Woolston A, Hatipoglu E, Oakes T, Rosenthal R, Peacock
T, et al: Spatial heterogeneity of the T cell receptor repertoire
reflects the mutational landscape in lung cancer. Nat Med.
25:1549–1559. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Bastola S, Pavlyukov MS, Yamashita D,
Ghosh S, Cho H, Kagaya N, Zhang Z, Minata M, Lee Y, Sadahiro H, et
al: Glioma-initiating cells at tumor edge gain signals from tumor
core cells to promote their malignancy. Nat Commun. 11:46602020.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lambrechts D, Wauters E, Boeckx B, Aibar
S, Nittner D, Burton O, Bassez A, Decaluwé H, Pircher A, Van den
Eynde K, et al: Phenotype molding of stromal cells in the lung
tumor microenvironment. Nat Med. 24:1277–1289. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhu J and Thompson CB: Metabolic
regulation of cell growth and proliferation. Nat Rev Mol Cell Biol.
20:436–450. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Sayaman RW, Saad M, Thorsson V, Hu D,
Hendrickx W, Roelands J, Porta-Pardo E, Mokrab Y, Farshidfar F,
Kirchhoff T, et al: Germline genetic contribution to the immune
landscape of cancer. Immunity. 54:367–386.e8. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Maynard A, McCoach CE, Rotow JK, Harris L,
Haderk F, Kerr DL, Yu EA, Schenk EL, Tan W, Zee A, et al:
Therapy-induced evolution of human lung cancer revealed by
single-cell RNA sequencing. Cell. 182:1232–1251.e22. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Bernard V, Semaan A, Huang J, San Lucas
FA, Mulu FC, Stephens BM, Guerrero PA, Huang Y, Zhao J, Kamyabi N,
et al: Single-cell transcriptomics of pancreatic cancer precursors
demonstrates epithelial and microenvironmental heterogeneity as an
early event in neoplastic progression. Clin Cancer Res.
25:2194–2205. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Mascaux C, Angelova M, Vasaturo A, Beane
J, Hijazi K, Anthoine G, Buttard B, Rothe F, Willard-Gallo K,
Haller A, et al: Immune evasion before tumor invasion in early lung
squamous carcinogenesis. Nature. 571:570–575. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Riaz N, Havel JJ, Makarov V, Desrichard A,
Urba WJ, Sims JS, Hodi FS, Martín-Algarra S, Mandal R, Sharfman WH,
et al: Tumor and microenvironment evolution during immunotherapy
with nivolumab. Cell. 171:934–949.e16. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Jiang T, Yan Y, Zhou K, Su C, Ren S, Li N,
Hou L, Guo X, Zhu W, Zhang H, et al: Characterization of evolution
trajectory and immune profiling of brain metastasis in lung
adenocarcinoma. NPJ Precis Oncol. 5:62021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
AbdulJabbar K, Raza SEA, Rosenthal R,
Jamal-Hanjani M, Veeriah S, Akarca A, Lund T, Moore DA, Salgado R,
Al Bakir M, et al: Geospatial immune variability illuminates
differential evolution of lung adenocarcinoma. Nat Med.
26:1054–1062. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gatto L, Franceschi E, Di Nunno V, Tosoni
A, Lodi R and Brandes AA: Liquid biopsy in glioblastoma management:
From current research to future perspectives. Oncologist.
26:865–878. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Postel M, Roosen A, Laurent-Puig P, Taly V
and Wang-Renault SF: Droplet-based digital PCR and next generation
sequencing for monitoring circulating tumor DNA: A cancer
diagnostic perspective. Expert Rev Mol Diagn. 18:7–17. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Karlin-Neumann G: Improved liquid biopsies
with combined digital PCR and next-generation sequencing. Am Lab
Mag. 48:17–19. 2016.
|
|
44
|
Bettegowda C, Sausen M, Leary RJ, Kinde I,
Wang Y, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, et al:
Detection of circulating tumor DNA in early- and late-stage human
malignancies. Sci Transl Med. 6:224ra242014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Piccioni DE, Achrol AS, Kiedrowski LA,
Banks KC, Boucher N, Barkhoudarian G, Kelly DF, Juarez T, Lanman
RB, Raymond VM, et al: Analysis of cell-free circulating tumor DNA
in 419 patients with glioblastoma and other primary brain tumors.
CNS Oncol. 8:CNS342019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mair R, Mouliere F, Smith CG, Chandrananda
D, Gale D, Marass F, Tsui DWY, Massie CE, Wright AJ, Watts C, et
al: Measurement of plasma cell-free mitochondrial tumor DNA
improves detection of glioblastoma in patient-derived orthotopic
xenograft models. Cancer Res. 79:220–230. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed
I, Mansfeld FM, Kulshreshtha R, Kumeria T, Ziegler DS, Kavallaris
M, Mazzieri R and Popat A: Frontiers in the treatment of
glioblastoma: Past, present and emerging. Adv Drug Deliv Rev.
171:108–138. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wong ET, Lok E and Swanson KD: Clinical
benefit in recurrent glioblastoma from adjuvant NovoTTF-100A and
TCCC after temozolomide and bevacizumab failure: A preliminary
observation. Cancer Med. 4:383–391. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Taal W, Oosterkamp HM, Walenkamp AM,
Dubbink HJ, Beerepoot LV, Hanse MC, Buter J, Honkoop AH, Boerman D,
de Vos FY, et al: Single-agent bevacizumab or lomustine versus a
combination of bevacizumab plus lomustine in patients with
recurrent glioblastoma (BELOB trial): A randomised controlled phase
2 trial. Lancet Oncol. 15:943–953. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cloughesy TF, Mochizuki AY, Orpilla JR,
Hugo W, Lee AH, Davidson TB, Wang AC, Ellingson BM, Rytlewski JA,
Sanders CM, et al: Neoadjuvant anti-PD-1 immunotherapy promotes a
survival benefit with intratumoral and systemic immune responses in
recurrent glioblastoma. Nat Med. 25:477–486. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Di Cintio F, Dal Bo M, Baboci L, De Mattia
E, Polano M and Toffoli G: The molecular and microenvironmental
landscape of glioblastomas: Implications for the novel treatment
choices. Front Neurosci. 14:6036472020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Reardon DA, Desjardins A, Vredenburgh JJ,
O'Rourke DM, Tran DD, Fink KL, Nabors LB, Li G, Bota DA, Lukas RV,
et al: Rindopepimut with bevacizumab for patients with relapsed
EGFRvIII-expressing glioblastoma (ReACT): Results of a double-blind
randomized phase II trial. Clin Cancer Res. 26:1586–1594. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Fenstermaker RA, Ciesielski MJ, Qiu J,
Yang N, Frank CL, Lee KP, Mechtler LR, Belal A, Ahluwalia MS and
Hutson AD: Clinical study of a survivin long peptide vaccine
(SurVaxM) in patients with recurrent malignant glioma. Cancer
Immunol Immunother. 65:1339–1352. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhang Y, Mudgal P, Wang L, Wu H, Huang N,
Alexander PB, Gao Z, Ji N and Li QJ: T cell receptor repertoire as
a prognosis marker for heat shock protein peptide complex-96
vaccine trial against newly diagnosed glioblastoma. Oncoimmunology.
9:17494762020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Cloughesy TF, Landolfi J, Vogelbaum MA,
Ostertag D, Elder JB, Bloomfield S, Carter B, Chen CC, Kalkanis SN,
Kesari S, et al: Durable complete responses in some recurrent
high-grade glioma patients treated with Toca 511 + Toca FC. Neuro
Oncol. 20:1383–1392. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ene CI, Fueyo J and Lang FF: Delta-24
adenoviral therapy for glioblastoma: Evolution from the bench to
bedside and future considerations. Neurosurg Focus. 50:E62021.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Raje N, Berdeja J, Lin Y, Siegel D,
Jagannath S, Madduri D, Liedtke M, Rosenblatt J, Maus MV, Turka A,
et al: Anti-BCMA CAR T-Cell therapy bb2121 in relapsed or
refractory multiple myeloma. N Engl J Med. 380:1726–1737. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lemoine J, Ruella M and Houot R: Born to
survive: How cancer cells resist CAR T cell therapy. J Hematol
Oncol. 14:1992021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang H, Gao L, Liu L, Wang J, Wang S, Gao
L, Zhang C, Liu Y, Kong P, Liu J, et al: A Bcma and CD19 bispecific
CAR-T for relapsed and refractory multiple myeloma. Blood.
134:31472019. View Article : Google Scholar
|
|
60
|
Xie B, Li Z, Zhou J and Wang W: Current
status and perspectives of dual-targeting chimeric antigen receptor
T-cell therapy for the treatment of hematological malignancies.
Cancers (Basel). 14:32302022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chen H, Kuhn J, Lamborn KR, Abrey LE,
DeAngelis LM, Lieberman F, Robins HI, Chang SM, Yung WKA, Drappatz
J, et al: Phase I/II study of sorafenib in combination with
erlotinib for recurrent glioblastoma as part of a 3-arm sequential
accrual clinical trial: NABTC 05-02. Neurooncol. 2:vdaa1242020.
|
|
62
|
Jia Q, Wang A, Yuan Y, Zhu B and Long H:
Heterogeneity of the tumor immune microenvironment and its clinical
relevance. Exp Hematol Oncol. 11:242022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang H, Tao Z, Feng M, Li X, Deng Z, Zhao
G, Yin H, Pan T, Chen G, Feng Z, et al: Dual PLK1 and STAT3
inhibition promotes glioblastoma cells apoptosis through MYC.
Biochem Biophys Res Commun. 533:368–375. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wu J, Yuan Y, Long Priel DA, Fink D, Peer
CJ, Sissung TM, Su YT, Pang Y, Yu G, Butler MK, et al: Phase I
study of zotiraciclib in combination with temozolomide for patients
with recurrent high-grade astrocytomas. Clin Cancer Res.
27:3298–3306. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Weiss T, Puca E, Silginer M, Hemmerle T,
Pazahr S, Bink A, Weller M, Neri D and Roth P: Immunocytokines are
a promising immunotherapeutic approach against glioblastoma. Sci
Transl Med. 12:eabb23112020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zang L, Kondengaden SM, Che F, Wang L and
Heng X: Potential epigenetic-based therapeutic targets for glioma.
Front Mol Neurosci. 11:4082018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Higuchi F, Nagashima H, Ning J, Koerner
MVA, Wakimoto H and Cahill DP: Restoration of temozolomide
sensitivity by PARP inhibitors in mismatch repair deficient
glioblastoma is independent of base excision repair. Clin Cancer
Res. 26:1690–1699. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kopa P, Macieja A, Gulbas I, Pastwa E and
Poplawski T: Inhibition of DNA-PK potentiates the synergistic
effect of NK314 and etoposide combination on human glioblastoma
cells. Mol Biol Rep. 47:67–76. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lesueur P, Chevalier F, El-Habr EA, Junier
MP, Chneiweiss H, Castera L, Müller E, Stefan D and Saintigny Y:
Radiosensitization effect of talazoparib, a PARP inhibitor, on
glioblastoma stem cells exposed to low and high linear energy
transfer radiation. Sci Rep. 8:36642018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Shaffer R, Nichol AM, Vollans E, Fong M,
Nakano S, Moiseenko V, Schmuland M, Ma R, McKenzie M and Otto K A:
A comparison of volumetric modulated arc therapy and conventional
intensity-modulated radiotherapy for frontal and temporal
high-grade gliomas. Int J Radiat Oncol Biol Phys. 76:1177–1184.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Bunevicius A and Sheehan JP: Radiosurgery
for glioblastoma. Neurosurg Clin N Am. 32:117–128. 2021. View Article : Google Scholar : PubMed/NCBI
|