Exosomal circRNAs in gastrointestinal cancer: Role in occurrence, development, diagnosis and clinical application (Review)
- Authors:
- Yumeng Xu
- Jiayi Han
- Xuan Zhang
- Xinyi Zhang
- Jiajia Song
- Zihan Gao
- Hui Qian
- Jianhua Jin
- Zhaofeng Liang
-
Affiliations: Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China - Published online on: December 8, 2023 https://doi.org/10.3892/or.2023.8678
- Article Number: 19
-
Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA and Bray F: Global Burden of 5 major types of gastrointestinal cancer. Gastroenterology. 159:335–349.e15. 2020. View Article : Google Scholar : PubMed/NCBI | |
Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B and Aggarwal BB: Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 25:2097–2116. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kashyap S, Pal S, Chandan G, Saini V, Chakrabarti S, Saini NK, Mittal A, Thakur VK, Saini AK and Saini RV: Understanding the cross-talk between human microbiota and gastrointestinal cancer for developing potential diagnostic and prognostic biomarkers. Semin Cancer Biol. 86((Pt 3)): 643–651. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Wang D, Zhang C, Liu H, Hao M, Kan S, Liu D and Liu W: The applications of gold nanoparticles in the diagnosis and treatment of gastrointestinal cancer. Front Oncol. 11:8193292022. View Article : Google Scholar : PubMed/NCBI | |
Jiang DM, Chan KKW, Jang RW, Booth C, Liu G, Amir E, Mason R, Everest L and Elimova E: Anticancer drugs approved by the Food and Drug Administration for gastrointestinal malignancies: Clinical benefit and price considerations. Cancer Med. 8:1584–1593. 2019. View Article : Google Scholar : PubMed/NCBI | |
Singh D, Dheer D, Samykutty A and Shankar R: Antibody drug conjugates in gastrointestinal cancer: From lab to clinical development. J Control Release. 340:1–34. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Hu S, Liu L, Dang P, Liu Y, Sun Z, Qiao B and Wang C: Engineered exosomes from different sources for cancer-targeted therapy. Signal Transduct Target Ther. 8:1242023. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Allavena P, Marchesi F and Garlanda C: Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 21:799–820. 2022. View Article : Google Scholar : PubMed/NCBI | |
Senthebane DA, Rowe A, Thomford NE, Shipanga H, Munro D, Mazeedi MAMA, Almazyadi HAM, Kallmeyer K, Dandara C, Pepper MS, et al: The role of tumor microenvironment in chemoresistance: To survive, keep your enemies closer. Int J Mol Sci. 18:15862017. View Article : Google Scholar : PubMed/NCBI | |
Roma-Rodrigues C, Mendes R, Baptista PV and Fernandes AR: Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 20:8402019. View Article : Google Scholar : PubMed/NCBI | |
van Niel G, D'Angelo G and Raposo G: Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 19:213–228. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Gu Y and Cao X: The exosomes in tumor immunity. Oncoimmunology. 4:e10274722015. View Article : Google Scholar : PubMed/NCBI | |
Sung BH, von Lersner A, Guerrero J, Krystofiak ES, Inman D, Pelletier R, Zijlstra A, Ponik SM and Weaver AM: A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nat Commun. 11:20922020. View Article : Google Scholar : PubMed/NCBI | |
Pluchino S and Smith JA: Explicating exosomes: Reclassifying the rising stars of intercellular communication. Cell. 177:225–227. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Huang W, Li M and Zheng A: Exosome-Based carrier for RNA delivery: Progress and challenges. Pharmaceutics. 15:5982023. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Xiao W, Sun J, Li W, Yuan H, Yu T, Zhang X and Dong W: CircPTK2/PABPC1/SETDB1 axis promotes EMT-mediated tumor metastasis and gemcitabine resistance in bladder cancer. Cancer Lett. 554:2160232023. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Zhang N, Chai J, Wang T, Ma C, Han L and Yang M: CircPDIA4 induces gastric cancer progression by promoting ERK1/2 activation and enhancing biogenesis of oncogenic circRNAs. Cancer Res. 83:538–552. 2023. View Article : Google Scholar : PubMed/NCBI | |
Long F, Lin Z, Li L, Ma M, Lu Z, Jing L, Li X and Lin C: Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer. Mol Cancer. 20:262021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Lin YL, Shao JK, Wu XJ, Li X, Yao H, Shi FL, Li LS, Zhang WG, Chang ZY, et al: Plasma exosomal hsa_circ_0079439 as a novel biomarker for early detection of gastric cancer. World J Gastroenterol. 29:3482–3496. 2023. View Article : Google Scholar : PubMed/NCBI | |
Huang XJ, Wang Y, Wang HT, Liang ZF, Ji C, Li XX, Zhang LL, Ji RB, Xu WR, Jin JH and Qian H: Exosomal hsa_circ_000200 as a potential biomarker and metastasis enhancer of gastric cancer via miR-4659a/b-3p/HBEGF axis. Cancer Cell Int. 23:1512023. View Article : Google Scholar : PubMed/NCBI | |
Xing L, Xia M, Jiao X and Fan L: Hsa_circ_0004831 serves as a blood-based prognostic biomarker for colorectal cancer and its potentially circRNA-miRNA-mRNA regulatory network construction. Cancer Cell Int. 20:5572020. View Article : Google Scholar : PubMed/NCBI | |
Cocucci E and Meldolesi J: Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends Cell Biol. 25:364–372. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI | |
Wortzel I, Dror S, Kenific CM and Lyden D: Exosome-Mediated Metastasis: Communication from a Distance. Dev Cell. 49:347–360. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kok VC and Yu CC: Cancer-Derived Exosomes: Their role in cancer biology and biomarker development. Int J Nanomedicine. 15:8019–8036. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Wu W, Jing D, Yang L, Guo H, Wang L, Zhang W, Pu F and Shao Z: Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. J Control Release. 343:107–117. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pan BT and Johnstone RM: Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor. Cell. 33:967–978. 1983. View Article : Google Scholar : PubMed/NCBI | |
Doyle LM and Wang MZ: Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 8:7272019. View Article : Google Scholar : PubMed/NCBI | |
Kahlert C and Kalluri R: Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl). 91:431–437. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang H, Gu J, Zhang J, Shi H, Qian H, Wang D, Xu W, Pan J and Santos HA: Engineered extracellular vesicles for cancer therapy. Adv Mater. 33:e20057092021. View Article : Google Scholar : PubMed/NCBI | |
Tallon C, Hollinger KR, Pal A, Bell BJ, Rais R, Tsukamoto T, Witwer KW, Haughey NJ and Slusher BS: Nipping disease in the bud: nSMase2 inhibitors as therapeutics in extracellular vesicle-mediated diseases. Drug Discov Today. 26:1656–1668. 2021. View Article : Google Scholar : PubMed/NCBI | |
Henne WM, Buchkovich NJ and Emr SD: The ESCRT pathway. Dev Cell. 21:77–91. 2011. View Article : Google Scholar : PubMed/NCBI | |
Skotland T, Hessvik NP, Sandvig K and Llorente A: Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res. 60:9–18. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dawson G: Isolation of lipid rafts (Detergent-Resistant Microdomains) and comparison to extracellular vesicles (Exosomes). Methods Mol Biol. 2187:99–112. 2021. View Article : Google Scholar : PubMed/NCBI | |
Parton RG, McMahon KA and Wu Y: Caveolae: Formation, dynamics, and function. Curr Opin Cell Biol. 65:8–16. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kwiatkowska K, Matveichuk OV, Fronk J and Ciesielska A: Flotillins: At the Intersection of Protein S-Palmitoylation and lipid-mediated signaling. Int J Mol Sci. 21:22832020. View Article : Google Scholar : PubMed/NCBI | |
Ikonen E and Zhou X: Cholesterol transport between cellular membranes: A balancing act between interconnected lipid fluxes. Dev Cell. 56:1430–1436. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kummer D, Steinbacher T, Schwietzer MF, Thölmann S and Ebnet K: Tetraspanins: integrating cell surface receptors to functional microdomains in homeostasis and disease. Med Microbiol Immunol. 209:397–405. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee YJ, Shin KJ, Jang HJ, Ryu JS, Lee CY, Yoon JH, Seo JK, Park S, Lee S, Je AR, et al: GPR143 controls ESCRT-dependent exosome biogenesis and promotes cancer metastasis. Dev Cell. 58:320–334.e8. 2023. View Article : Google Scholar : PubMed/NCBI | |
Qi R, Bai Y, Li K, Liu N, Xu Y, Dal E, Wang Y, Lin R, Wang H, Liu Z, et al: Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs. Drug Resist Updat. 68:1009602023. View Article : Google Scholar : PubMed/NCBI | |
He Z, Wang J, Zhu C, Xu J, Chen P, Jiang X, Chen Y, Jiang J and Sun C: Exosome-derived FGD5-AS1 promotes tumor-associated macrophage M2 polarization-mediated pancreatic cancer cell proliferation and metastasis. Cancer Lett. 548:2157512022. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Zeng S, Gong Z and Yan Y: Exosome-based immunotherapy: A promising approach for cancer treatment. Mol Cancer. 19:1602020. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Wu S, Mou Z, Zhou Q, Dai X, Ou Y, Chen X, Chen Y, Xu C, Hu Y, et al: Exosome-derived circTRPS1 promotes malignant phenotype and CD8+ T cell exhaustion in bladder cancer microenvironments. Mol Ther. 30:1054–1070. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P and Simons K: Alzheimer's disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci USA. 103:11172–11177. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, Laude H and Raposo G: Cells release prions in association with exosomes. Proc Natl Acad Sci USA. 101:9683–9688. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gomes C, Keller S, Altevogt P and Costa J: Evidence for secretion of Cu, Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis. Neurosci Lett. 428:43–46. 2007. View Article : Google Scholar : PubMed/NCBI | |
Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L and Vekrellis K: Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci. 30:6838–6851. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Cai Y, Liu W, Kang F, He Q, Hong Q, Zhang W, Li J, Yan Y and Peng J: Downregulated exosome-associated gene FGF9 as a novel diagnostic and prognostic target for ovarian cancer and its underlying roles in immune regulation. Aging (Albany NY). 14:1822–1835. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li B, Cao Y, Sun M and Feng H: Expression, regulation, and function of exosome-derived miRNAs in cancer progression and therapy. FASEB J. 35:e219162021. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Yang S, Zhou Q, Wang G, Song J, Li Z, Zhang Z, Xu J, Xia K, Chang Y, et al: Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Mol Cancer. 17:822018. View Article : Google Scholar : PubMed/NCBI | |
Vea A, Llorente-Cortes V and de Gonzalo-Calvo D: Circular RNAs in Blood. Adv Exp Med Biol. 1087:119–130. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Shao Y, Sun W, Ye G, Zhang X, Xiao B and Guo J: Downregulated expression of hsa_circ_0074362 in gastric cancer and its potential diagnostic values. Biomark Med. 12:11–20. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fu L, Jiang Z, Li T, Hu Y and Guo J: Circular RNAs in hepatocellular carcinoma: Functions and implications. Cancer Med. 7:3101–3109. 2018. View Article : Google Scholar : PubMed/NCBI | |
Peng D, Luo L, Zhang X, Wei C, Zhang Z and Han L: CircRNA: An emerging star in the progression of glioma. Biomed Pharmacother. 151:1131502022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu F, Feng Y, Xu X, Wang Y, Zhu S, Dong J, Zhao S, Xu B and Feng N: CircRNA circ_0006156 inhibits the metastasis of prostate cancer by blocking the ubiquitination of S100A9. Cancer Gene Ther. 29:1731–1741. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Ni N, Wang Y, Tang Z, Gao H, Ju Y, Sun N, He X, Gu P and Fan X: CircRNA-vgll3 promotes osteogenic differentiation of adipose-derived mesenchymal stem cells via modulating miRNA-dependent integrin α5 expression. Cell Death Differ. 28:283–302. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Liu H, Jiang J, Yang Y, Wang W and Jia Z: CircRNA circFOXK2 facilitates oncogenesis in breast cancer via IGF2BP3/miR-370 axis. Aging (Albany NY). 13:18978–18992. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Liang M, Liu H, Huang J, Li P, Wang C, Zhang Y, Lin Y and Jiang X: CircRNA hsa_circRNA_104348 promotes hepatocellular carcinoma progression through modulating miR-187-3p/RTKN2 axis and activating Wnt/β-catenin pathway. Cell Death Dis. 11:10652020. View Article : Google Scholar : PubMed/NCBI | |
Su H, Lin F, Deng X, Shen L, Fang Y, Fei Z, Zhao L, Zhang X, Pan H, Xie D, et al: Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells. J Transl Med. 14:2252016. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhao X, Wang Y, Ren F, Sun D, Yan Y, Kong X, Bu J, Liu M and Xu S: circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis. 11:322020. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, Song W, Li X, Li L, Du Z, et al: A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 19:2182018. View Article : Google Scholar : PubMed/NCBI | |
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol Cell. 66:9–21.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xia X, Li X, Li F, Wu X, Zhang M, Zhou H, Huang N, Yang X, Xiao F, Liu D, et al: A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol Cancer. 18:1312019. View Article : Google Scholar : PubMed/NCBI | |
Begum S, Yiu A, Stebbing J and Castellano L: Novel tumour suppressive protein encoded by circular RNA, circ-SHPRH, in glioblastomas. Oncogene. 37:4055–4057. 2018. View Article : Google Scholar : PubMed/NCBI | |
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 Is a Circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lu H, Zhang Z, Yuan X, Song H and Li P: The role of circular RNA hsa_circ_0001789 as a diagnostic biomarker in gastric carcinoma. Scand J Gastroenterol. 58:248–253. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sun XH, Wang YT, Li GF, Zhang N and Fan L: Serum-derived three-circRNA signature as a diagnostic biomarker for hepatocellular carcinoma. Cancer Cell Int. 20:2262020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shabaninejad Z, Vafadar A, Movahedpour A, Ghasemi Y, Namdar A, Fathizadeh H, Pourhanifeh MH, Savardashtaki A and Mirzaei H: Circular RNAs in cancer: New insights into functions and implications in ovarian cancer. J Ovarian Res. 12:842019. View Article : Google Scholar : PubMed/NCBI | |
He Y, Zheng L, Yuan M, Fan J, Rong L, Zhan T and Zhang J: Exosomal circPRRX1 functions as a ceRNA for miR-596 to promote the proliferation, migration, invasion, and reduce radiation sensitivity of gastric cancer cells via the upregulation of NF-κB activating protein. Anticancer Drugs. 33:1114–1125. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lasda E and Parker R: Circular RNAs co-precipitate with extracellular vesicles: A possible mechanism for circRNA clearance. PLoS One. 11:e01484072016. View Article : Google Scholar : PubMed/NCBI | |
Huang XY, Huang ZL, Huang J, Xu B, Huang XY, Xu YH, Zhou J and Tang ZY: Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res. 39:202020. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Zhang H, Yang Y, Wang X, Deng T, Liu R, Ning T, Bai M, Li H, Zhu K, et al: Hypoxia induced exosomal circRNA promotes metastasis of Colorectal Cancer via targeting GEF-H1/RhoA axis. Theranostics. 10:8211–8226. 2020. View Article : Google Scholar : PubMed/NCBI | |
Choi H and Lee DS: Illuminating the physiology of extracellular vesicles. Stem Cell Res Ther. 7:552016. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Yu H, Han F, Lai X, Ye K, Lei S, Mai M, Lai M and Zhang H: Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness. Mol Cancer. 21:462022. View Article : Google Scholar : PubMed/NCBI | |
Yuan G, Ding W, Sun B, Zhu L, Gao Y and Chen L: Upregulated circRNA_102231 promotes gastric cancer progression and its clinical significance. Bioengineered. 12:4936–4945. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Zhou Y, Liang G, Ling Y, Tan W, Tan L, Andrews R, Zhong W, Zhang X, Song E and Gong C: Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death Dis. 10:552019. View Article : Google Scholar : PubMed/NCBI | |
Yang K, Zhang J and Bao C: Exosomal circEIF3K from cancer-associated fibroblast promotes colorectal cancer (CRC) progression via miR-214/PD-L1 axis. BMC Cancer. 21:9332021. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, Xu P, Sun G, Xu J, Lv J and Xu Z: Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 18:202019. View Article : Google Scholar : PubMed/NCBI | |
Vakhshiteh F, Hassani S, Momenifar N and Pakdaman F: Exosomal circRNAs: New players in colorectal cancer. Cancer Cell Int. 21:4832021. View Article : Google Scholar : PubMed/NCBI | |
Sang H, Zhang W, Peng L, Wei S, Zhu X, Huang K, Yang J, Chen M, Dang Y and Zhang G: Exosomal circRELL1 serves as a miR-637 sponge to modulate gastric cancer progression via regulating autophagy activation. Cell Death Dis. 13:562022. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Xie J, Liu X, Yu Y and Wang S: Plasma Exosomal CircNEK9 accelerates the progression of gastric cancer via miR-409-3p/MAP7 axis. Dig Dis Sci. 66:4274–4289. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fan L, Li W and Jiang H: Circ_0000395 Promoted CRC Progression via Elevating MYH9 Expression by Sequestering miR-432-5p. Biochem Genet. 61:116–137. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Tang X, He Q, Sun G, Wang C and Qu H: Exosome-transmitted circCOG2 promotes colorectal cancer progression via miR-1305/TGF-β2/SMAD3 pathway. Cell Death Discov. 7:2812021. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Wang YH, Yoon C, Huang XY, Xu Y, Xie JW, Wang JB, Lin JX, Chen QY, Cao LL, et al: Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877-3p to facilitate gastric cancer invasion and metastasis. Cancer Lett. 471:38–48. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hui C, Tian L and He X: Circular RNA circNHSL1 contributes to gastric cancer progression through the miR-149-5p/YWHAZ axis. Cancer Manag Res. 12:7117–7130. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shen X, Kong S, Ma S, Shen L, Zheng M, Qin S, Qi J, Wang Q, Cui X and Ju S: Hsa_circ_0000437 promotes pathogenesis of gastric cancer and lymph node metastasis. Oncogene. 41:4724–4735. 2022. View Article : Google Scholar : PubMed/NCBI | |
Han K, Wang FW, Cao CH, Ling H, Chen JW, Chen RX, Feng ZH, Luo J, Jin XH, Duan JL, et al: CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17. Mol Cancer. 19:602020. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Liu Y, Liu L, Si C, Xu Y, Wu X, Wang C, Sun Z and Kang Q: Exosomal circTUBGCP4 promotes vascular endothelial cell tipping and colorectal cancer metastasis by activating Akt signaling pathway. J Exp Clin Cancer Res. 42:462023. View Article : Google Scholar : PubMed/NCBI | |
Yu Q, Zhang Y, Tian Y, Peng A, Cui X, Ding B, Yang L, Liu Y, Ju Y and Gao C: Exosomal Circ_FMN2 derived from the serum of colorectal cancer patients promotes cancer progression by miR-338-3p/MSI1 Axis. Appl Biochem Biotechnol. Mar 30–2023.(Epub ahead of print). View Article : Google Scholar | |
Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X, Liu Q, Dou R and Xiong B: Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer. 18:642019. View Article : Google Scholar : PubMed/NCBI | |
Li YF, Pei FL and Cao MZ: CircRNA_101951 promotes migration and invasion of colorectal cancer cells by regulating the KIF3A-mediated EMT pathway. Exp Ther Med. 19:3355–3361. 2020.PubMed/NCBI | |
Zhou LH, Yang YC, Zhang RY, Wang P, Pang MH and Liang LQ: CircRNA_0023642 promotes migration and invasion of gastric cancer cells by regulating EMT. Eur Rev Med Pharmacol Sci. 22:2297–2303. 2018.PubMed/NCBI | |
Liang ZF, Zhang Y, Guo W, Chen B, Fang S and Qian H: Gastric cancer stem cell-derived exosomes promoted tobacco smoke-triggered development of gastric cancer by inducing the expression of circ670. Med Oncol. 40:242022. View Article : Google Scholar : PubMed/NCBI | |
Miao Z, Zhao X and Liu X: Exosomal circCOL1A2 from cancer cells accelerates colorectal cancer progression via regulating miR-665/LASP1 signal axis. Eur J Pharmacol. 950:1757222023. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Chen S and Fu Q: Exosomes from CD133+ cells carrying circ-ABCC1 mediate cell stemness and metastasis in colorectal cancer. J Cell Biochem. 121:3286–3297. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Yang J, Zhu F, Zhao Z and Gao L: Exosomal circ_0001190 regulates the progression of gastric cancer via miR-586/SOSTDC1 Axis. Biochem Genet. 60:1895–1913. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zeng W, Liu Y, Li WT, Li Y and Zhu JF: CircFNDC3B sequestrates miR-937-5p to derepress TIMP3 and inhibit colorectal cancer progression. Mol Oncol. 14:2960–2984. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song J, Xu X, He S, Wang N, Bai Y, Li B and Zhang S: Exosomal hsa_circ_0017252 attenuates the development of gastric cancer via inhibiting macrophage M2 polarization. Hum Cell. 35:1499–1511. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shang A, Gu C, Wang W, Wang X, Sun J, Zeng B, Chen C, Chang W, Ping Y, Ji P, et al: Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p-TGF-β1 axis. Mol Cancer. 19:1172020. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Li Z, Wang Y, Chen W, Lin Y, Guo J and Ye G: CircRNA: A new class of targets for gastric cancer drug resistance therapy. Pathol Oncol Res. 29:16110332023. View Article : Google Scholar : PubMed/NCBI | |
Yu D, Chang Z, Liu X, Chen P, Zhang H and Qin Y: Macrophage-derived exosomes regulate gastric cancer cell oxaliplatin resistance by wrapping circ 0008253. Cell Cycle. 22:705–717. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Liu H, Zou J, Cao G, Li Y, Xing C and Wu J: Exosomal circ_0091741 promotes gastric cancer cell autophagy and chemoresistance via the miR-330-3p/TRIM14/Dvl2/Wnt/β-catenin axis. Hum Cell. 36:258–275. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Tan J, Guo J, Wu Z and Zhan Q: Exosome-mediated transfer of circ_0063526 enhances cisplatin resistance in gastric cancer cells via regulating miR-449a/SHMT2 axis. Anticancer Drugs. 33:1047–1057. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yao W, Guo P, Mu Q and Wang Y: Exosome-Derived Circ-PVT1 contributes to cisplatin resistance by regulating autophagy, invasion, and apoptosis Via miR-30a-5p/YAP1 axis in gastric cancer cells. Cancer Biother Radiopharm. 36:347–359. 2021.PubMed/NCBI | |
Pan Z, Zheng J, Zhang J, Lin J, Lai J, Lyu Z, Feng H, Wang J, Wu D and Li Y: A novel protein encoded by exosomal CircATG4B induces oxaliplatin resistance in colorectal cancer by promoting autophagy. Adv Sci (Weinh). 9:e22045132022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Tan X and Lu Y: Exosomal transfer of circ_0006174 contributes to the chemoresistance of doxorubicin in colorectal cancer by depending on the miR-1205/CCND2 axis. J Physiol Biochem. 78:39–50. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhang H, Yang H, Bai M, Ning T, Deng T, Liu R, Fan Q, Zhu K, Li J, et al: Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol Oncol. 14:539–555. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao K, Cheng X, Ye Z, Li Y, Peng W, Wu Y and Xing C: Exosome-Mediated Transfer of circ_0000338 Enhances 5-Fluorouracil resistance in colorectal cancer through regulating MicroRNA 217 (miR-217) and miR-485-3p. Mol Cell Biol. 41:e00517–20. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M and Worthley DL: Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 16:282–295. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu R, Greening DW, Zhu HJ, Takahashi N and Simpson RJ: Extracellular vesicle isolation and characterization: Toward clinical application. J Clin Invest. 126:1152–1162. 2016. View Article : Google Scholar : PubMed/NCBI | |
Colombo M, Raposo G and Théry C: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 30:255–289. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Zhang K, Tan S, Xin J, Yuan Q, Xu H, Xu X, Liang Q, Christiani DC, Wang M, et al: Circular RNAs in body fluids as cancer biomarkers: The new frontier of liquid biopsies. Mol Cancer. 20:132021. View Article : Google Scholar : PubMed/NCBI | |
Li XN, Wang ZJ, Ye CX, Zhao BC, Li ZL and Yang Y: RNA sequencing reveals the expression profiles of circRNA and indicates that circDDX17 acts as a tumor suppressor in colorectal cancer. J Exp Clin Cancer Res. 37:3252018. View Article : Google Scholar : PubMed/NCBI | |
Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ, Ma XD, Han K, Chen JW, Judde JG, Deas O, et al: N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 10:46952019. View Article : Google Scholar : PubMed/NCBI | |
Zheng P, Gao H, Xie X and Lu P: Plasma Exosomal hsa_circ_0015286 as a potential diagnostic and prognostic biomarker for gastric cancer. Pathol Oncol Res. 28:16104462022. View Article : Google Scholar : PubMed/NCBI | |
Li R, Tian X, Jiang J, Qian H, Shen H and Xu W: CircRNA CDR1as: a novel diagnostic and prognostic biomarker for gastric cancer. Biomarkers. 28:448–457. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tao X, Shao Y, Lu R, Ye Q, Xiao B, Ye G and Guo J: Clinical significance of hsa_circ_0000419 in gastric cancer screening and prognosis estimation. Pathol Res Pract. 216:1527632020. View Article : Google Scholar : PubMed/NCBI | |
Pan B, Qin J, Liu X, He B, Wang X, Pan Y, Sun H, Xu T, Xu M, Chen X, et al: Identification of Serum Exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front Genet. 10:10962019. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Li J, Li P, Li N, Zhang Y, Binang H, Zhao Y, Duan W, Chen Y, Wang Y, et al: RNA-Seq profiling of serum exosomal circular RNAs Reveals Circ-PNN as a potential biomarker for human colorectal cancer. Front Oncol. 10:9822020. View Article : Google Scholar : PubMed/NCBI | |
Li T, Zhou T, Wu J, Lv H, Zhou H, Du M, Zhang X, Wu N, Gong S, Ren Z, et al: Plasma exosome-derived circGAPVD1 as a potential diagnostic marker for colorectal cancer. Transl Oncol. 31:1016522023. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zeng X, Zheng Y, Wang Y and Zhou Y: Exosomal circRNA in digestive system tumors: the main player or coadjuvants? Front Oncol. 11:6144622021. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Fang S, Zhang Y, Jin L, Xu W and Liang Z: Exosomes and Exosomal circRNAs: The rising stars in the progression, diagnosis and prognosis of gastric cancer. Cancer Manag Res. 13:8121–8129. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Sun C, Zheng Y and Gong Y: circFCHO2 promotes gastric cancer progression by activating the JAK1/STAT3 pathway via sponging miR-194-5p. Cell Cycle. 21:2145–2164. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li S, Li J, Zhang H, Zhang Y, Wang X, Yang H, Zhou Z, Hao X, Ying G and Ba Y: Gastric cancer derived exosomes mediate the delivery of circRNA to promote angiogenesis by targeting miR-29a/VEGF axis in endothelial cells. Biochem Biophys Res Commun. 560:37–44. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Hu J, Wang M, Yuan Y, Zhou F, Zhao H, Qiu T and Liang L: Exosomal circPABPC1 promotes colorectal cancer liver metastases by regulating HMGA2 in the nucleus and BMP4/ADAM19 in the cytoplasm. Cell Death Discov. 8:3352022. View Article : Google Scholar : PubMed/NCBI | |
Yi Q, Yue J, Liu Y, Shi H and Sun W, Feng J and Sun W: Recent advances of exosomal circRNAs in cancer and their potential clinical applications. J Transl Med. 21:5162023. View Article : Google Scholar : PubMed/NCBI | |
Guo Z, Zhang Y, Xu W, Zhang X and Jiang J: Engineered exosome-mediated delivery of circDIDO1 inhibits gastric cancer progression via regulation of MiR-1307-3p/SOCS2 Axis. J Transl Med. 20:3262022. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Wei G, Zhu X, Chen X, Ma X, Hu P, Liu W, Yang W, Ruan T, Zhang W, et al: Exosome-Delivered circSTAU2 inhibits the progression of gastric cancer by targeting the miR-589/CAPZA1 Axis. Int J Nanomedicine. 18:127–142. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Zhang F and Wang Y: Circ_0005615 regulates the progression of colorectal cancer through the miR-873-5p/FOSL2 signaling pathway. Biochem Genet. 61:2020–2041. 2023. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Yang D, Zhang B, Zhao Y, Zheng Z and Zhang T: Regulatory mechanisms and clinical applications of tumor-driven exosomal circRNAs in cancers. Int J Med Sci. 20:818–835. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lei T, Zhang Y, Wang X, Liu W, Feng W and Song W: Integrated analysis of the functions and clinical implications of exosome circRNAs in colorectal cancer. Front Immunol. 13:9190142022. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Jiang J, Qian H, Yan Y and Xu W: Exosomal circRNA: Emerging insights into cancer progression and clinical application potential. J Hematol Oncol. 16:672023. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Yu Z, Chen D, Wang Z, Miao J, Li Q, Zhang D, Song J and Cui D: Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small. 16:e19039162020. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Wang L, Zhu L, Xu Z, Liu Y, Li Z, Zhou J and Luo F: Exosomes as drug carriers in anti-cancer therapy. Front Cell Dev Biol. 10:7286162022. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Yang X, Gao Z, Effah CY, Zhang X, Wu Y and Qu L: A holistic review of the state-of-the-art microfluidics for exosome separation: An overview of the current status, existing obstacles, and future outlook. Small. 17:e20071742021. View Article : Google Scholar : PubMed/NCBI |