|
1
|
Arnold M, Abnet CC, Neale RE, Vignat J,
Giovannucci EL, McGlynn KA and Bray F: Global Burden of 5 major
types of gastrointestinal cancer. Gastroenterology.
159:335–349.e15. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Anand P, Kunnumakkara AB, Sundaram C,
Harikumar KB, Tharakan ST, Lai OS, Sung B and Aggarwal BB: Cancer
is a preventable disease that requires major lifestyle changes.
Pharm Res. 25:2097–2116. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kashyap S, Pal S, Chandan G, Saini V,
Chakrabarti S, Saini NK, Mittal A, Thakur VK, Saini AK and Saini
RV: Understanding the cross-talk between human microbiota and
gastrointestinal cancer for developing potential diagnostic and
prognostic biomarkers. Semin Cancer Biol. 86((Pt 3)): 643–651.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Yang Z, Wang D, Zhang C, Liu H, Hao M, Kan
S, Liu D and Liu W: The applications of gold nanoparticles in the
diagnosis and treatment of gastrointestinal cancer. Front Oncol.
11:8193292022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Jiang DM, Chan KKW, Jang RW, Booth C, Liu
G, Amir E, Mason R, Everest L and Elimova E: Anticancer drugs
approved by the Food and Drug Administration for gastrointestinal
malignancies: Clinical benefit and price considerations. Cancer
Med. 8:1584–1593. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Singh D, Dheer D, Samykutty A and Shankar
R: Antibody drug conjugates in gastrointestinal cancer: From lab to
clinical development. J Control Release. 340:1–34. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhang M, Hu S, Liu L, Dang P, Liu Y, Sun
Z, Qiao B and Wang C: Engineered exosomes from different sources
for cancer-targeted therapy. Signal Transduct Target Ther.
8:1242023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Mantovani A, Allavena P, Marchesi F and
Garlanda C: Macrophages as tools and targets in cancer therapy. Nat
Rev Drug Discov. 21:799–820. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Senthebane DA, Rowe A, Thomford NE,
Shipanga H, Munro D, Mazeedi MAMA, Almazyadi HAM, Kallmeyer K,
Dandara C, Pepper MS, et al: The role of tumor microenvironment in
chemoresistance: To survive, keep your enemies closer. Int J Mol
Sci. 18:15862017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Roma-Rodrigues C, Mendes R, Baptista PV
and Fernandes AR: Targeting tumor microenvironment for cancer
therapy. Int J Mol Sci. 20:8402019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
van Niel G, D'Angelo G and Raposo G:
Shedding light on the cell biology of extracellular vesicles. Nat
Rev Mol Cell Biol. 19:213–228. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Liu Y, Gu Y and Cao X: The exosomes in
tumor immunity. Oncoimmunology. 4:e10274722015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sung BH, von Lersner A, Guerrero J,
Krystofiak ES, Inman D, Pelletier R, Zijlstra A, Ponik SM and
Weaver AM: A live cell reporter of exosome secretion and uptake
reveals pathfinding behavior of migrating cells. Nat Commun.
11:20922020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Pluchino S and Smith JA: Explicating
exosomes: Reclassifying the rising stars of intercellular
communication. Cell. 177:225–227. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lu Y, Huang W, Li M and Zheng A:
Exosome-Based carrier for RNA delivery: Progress and challenges.
Pharmaceutics. 15:5982023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Meng X, Xiao W, Sun J, Li W, Yuan H, Yu T,
Zhang X and Dong W: CircPTK2/PABPC1/SETDB1 axis promotes
EMT-mediated tumor metastasis and gemcitabine resistance in bladder
cancer. Cancer Lett. 554:2160232023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Shen Y, Zhang N, Chai J, Wang T, Ma C, Han
L and Yang M: CircPDIA4 induces gastric cancer progression by
promoting ERK1/2 activation and enhancing biogenesis of oncogenic
circRNAs. Cancer Res. 83:538–552. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Long F, Lin Z, Li L, Ma M, Lu Z, Jing L,
Li X and Lin C: Comprehensive landscape and future perspectives of
circular RNAs in colorectal cancer. Mol Cancer. 20:262021.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li X, Lin YL, Shao JK, Wu XJ, Li X, Yao H,
Shi FL, Li LS, Zhang WG, Chang ZY, et al: Plasma exosomal
hsa_circ_0079439 as a novel biomarker for early detection of
gastric cancer. World J Gastroenterol. 29:3482–3496. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Huang XJ, Wang Y, Wang HT, Liang ZF, Ji C,
Li XX, Zhang LL, Ji RB, Xu WR, Jin JH and Qian H: Exosomal
hsa_circ_000200 as a potential biomarker and metastasis enhancer of
gastric cancer via miR-4659a/b-3p/HBEGF axis. Cancer Cell Int.
23:1512023. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Xing L, Xia M, Jiao X and Fan L:
Hsa_circ_0004831 serves as a blood-based prognostic biomarker for
colorectal cancer and its potentially circRNA-miRNA-mRNA regulatory
network construction. Cancer Cell Int. 20:5572020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cocucci E and Meldolesi J: Ectosomes and
exosomes: Shedding the confusion between extracellular vesicles.
Trends Cell Biol. 25:364–372. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kalluri R and LeBleu VS: The biology,
function, and biomedical applications of exosomes. Science.
367:eaau69772020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wortzel I, Dror S, Kenific CM and Lyden D:
Exosome-Mediated Metastasis: Communication from a Distance. Dev
Cell. 49:347–360. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kok VC and Yu CC: Cancer-Derived Exosomes:
Their role in cancer biology and biomarker development. Int J
Nanomedicine. 15:8019–8036. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Huang X, Wu W, Jing D, Yang L, Guo H, Wang
L, Zhang W, Pu F and Shao Z: Engineered exosome as targeted lncRNA
MEG3 delivery vehicles for osteosarcoma therapy. J Control Release.
343:107–117. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Pan BT and Johnstone RM: Fate of the
transferrin receptor during maturation of sheep reticulocytes in
vitro: Selective externalization of the receptor. Cell. 33:967–978.
1983. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Doyle LM and Wang MZ: Overview of
extracellular vesicles, their origin, composition, purpose, and
methods for exosome isolation and analysis. Cells. 8:7272019.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kahlert C and Kalluri R: Exosomes in tumor
microenvironment influence cancer progression and metastasis. J Mol
Med (Berl). 91:431–437. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhang X, Zhang H, Gu J, Zhang J, Shi H,
Qian H, Wang D, Xu W, Pan J and Santos HA: Engineered extracellular
vesicles for cancer therapy. Adv Mater. 33:e20057092021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tallon C, Hollinger KR, Pal A, Bell BJ,
Rais R, Tsukamoto T, Witwer KW, Haughey NJ and Slusher BS: Nipping
disease in the bud: nSMase2 inhibitors as therapeutics in
extracellular vesicle-mediated diseases. Drug Discov Today.
26:1656–1668. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Henne WM, Buchkovich NJ and Emr SD: The
ESCRT pathway. Dev Cell. 21:77–91. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Skotland T, Hessvik NP, Sandvig K and
Llorente A: Exosomal lipid composition and the role of ether lipids
and phosphoinositides in exosome biology. J Lipid Res. 60:9–18.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Dawson G: Isolation of lipid rafts
(Detergent-Resistant Microdomains) and comparison to extracellular
vesicles (Exosomes). Methods Mol Biol. 2187:99–112. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Parton RG, McMahon KA and Wu Y: Caveolae:
Formation, dynamics, and function. Curr Opin Cell Biol. 65:8–16.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kwiatkowska K, Matveichuk OV, Fronk J and
Ciesielska A: Flotillins: At the Intersection of Protein
S-Palmitoylation and lipid-mediated signaling. Int J Mol Sci.
21:22832020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ikonen E and Zhou X: Cholesterol transport
between cellular membranes: A balancing act between interconnected
lipid fluxes. Dev Cell. 56:1430–1436. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kummer D, Steinbacher T, Schwietzer MF,
Thölmann S and Ebnet K: Tetraspanins: integrating cell surface
receptors to functional microdomains in homeostasis and disease.
Med Microbiol Immunol. 209:397–405. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lee YJ, Shin KJ, Jang HJ, Ryu JS, Lee CY,
Yoon JH, Seo JK, Park S, Lee S, Je AR, et al: GPR143 controls
ESCRT-dependent exosome biogenesis and promotes cancer metastasis.
Dev Cell. 58:320–334.e8. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Qi R, Bai Y, Li K, Liu N, Xu Y, Dal E,
Wang Y, Lin R, Wang H, Liu Z, et al: Cancer-associated fibroblasts
suppress ferroptosis and induce gemcitabine resistance in
pancreatic cancer cells by secreting exosome-derived
ACSL4-targeting miRNAs. Drug Resist Updat. 68:1009602023.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
He Z, Wang J, Zhu C, Xu J, Chen P, Jiang
X, Chen Y, Jiang J and Sun C: Exosome-derived FGD5-AS1 promotes
tumor-associated macrophage M2 polarization-mediated pancreatic
cancer cell proliferation and metastasis. Cancer Lett.
548:2157512022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Xu Z, Zeng S, Gong Z and Yan Y:
Exosome-based immunotherapy: A promising approach for cancer
treatment. Mol Cancer. 19:1602020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yang C, Wu S, Mou Z, Zhou Q, Dai X, Ou Y,
Chen X, Chen Y, Xu C, Hu Y, et al: Exosome-derived circTRPS1
promotes malignant phenotype and CD8+ T cell exhaustion in bladder
cancer microenvironments. Mol Ther. 30:1054–1070. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Rajendran L, Honsho M, Zahn TR, Keller P,
Geiger KD, Verkade P and Simons K: Alzheimer's disease beta-amyloid
peptides are released in association with exosomes. Proc Natl Acad
Sci USA. 103:11172–11177. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fevrier B, Vilette D, Archer F, Loew D,
Faigle W, Vidal M, Laude H and Raposo G: Cells release prions in
association with exosomes. Proc Natl Acad Sci USA. 101:9683–9688.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Gomes C, Keller S, Altevogt P and Costa J:
Evidence for secretion of Cu, Zn superoxide dismutase via exosomes
from a cell model of amyotrophic lateral sclerosis. Neurosci Lett.
428:43–46. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Emmanouilidou E, Melachroinou K,
Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L and
Vekrellis K: Cell-produced alpha-synuclein is secreted in a
calcium-dependent manner by exosomes and impacts neuronal survival.
J Neurosci. 30:6838–6851. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Xu Z, Cai Y, Liu W, Kang F, He Q, Hong Q,
Zhang W, Li J, Yan Y and Peng J: Downregulated exosome-associated
gene FGF9 as a novel diagnostic and prognostic target for ovarian
cancer and its underlying roles in immune regulation. Aging (Albany
NY). 14:1822–1835. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Li B, Cao Y, Sun M and Feng H: Expression,
regulation, and function of exosome-derived miRNAs in cancer
progression and therapy. FASEB J. 35:e219162021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sun Z, Yang S, Zhou Q, Wang G, Song J, Li
Z, Zhang Z, Xu J, Xia K, Chang Y, et al: Emerging role of
exosome-derived long non-coding RNAs in tumor microenvironment. Mol
Cancer. 17:822018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Vea A, Llorente-Cortes V and de
Gonzalo-Calvo D: Circular RNAs in Blood. Adv Exp Med Biol.
1087:119–130. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xie Y, Shao Y, Sun W, Ye G, Zhang X, Xiao
B and Guo J: Downregulated expression of hsa_circ_0074362 in
gastric cancer and its potential diagnostic values. Biomark Med.
12:11–20. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li Z, Huang C, Bao C, Chen L, Lin M, Wang
X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs
regulate transcription in the nucleus. Nat Struct Mol Biol.
22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Fu L, Jiang Z, Li T, Hu Y and Guo J:
Circular RNAs in hepatocellular carcinoma: Functions and
implications. Cancer Med. 7:3101–3109. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Peng D, Luo L, Zhang X, Wei C, Zhang Z and
Han L: CircRNA: An emerging star in the progression of glioma.
Biomed Pharmacother. 151:1131502022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang Y, Liu F, Feng Y, Xu X, Wang Y, Zhu
S, Dong J, Zhao S, Xu B and Feng N: CircRNA circ_0006156 inhibits
the metastasis of prostate cancer by blocking the ubiquitination of
S100A9. Cancer Gene Ther. 29:1731–1741. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhang D, Ni N, Wang Y, Tang Z, Gao H, Ju
Y, Sun N, He X, Gu P and Fan X: CircRNA-vgll3 promotes osteogenic
differentiation of adipose-derived mesenchymal stem cells via
modulating miRNA-dependent integrin α5 expression. Cell Death
Differ. 28:283–302. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang W, Liu H, Jiang J, Yang Y, Wang W
and Jia Z: CircRNA circFOXK2 facilitates oncogenesis in breast
cancer via IGF2BP3/miR-370 axis. Aging (Albany NY). 13:18978–18992.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Huang G, Liang M, Liu H, Huang J, Li P,
Wang C, Zhang Y, Lin Y and Jiang X: CircRNA hsa_circRNA_104348
promotes hepatocellular carcinoma progression through modulating
miR-187-3p/RTKN2 axis and activating Wnt/β-catenin pathway. Cell
Death Dis. 11:10652020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Su H, Lin F, Deng X, Shen L, Fang Y, Fei
Z, Zhao L, Zhang X, Pan H, Xie D, et al: Profiling and
bioinformatics analyses reveal differential circular RNA expression
in radioresistant esophageal cancer cells. J Transl Med.
14:2252016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang J, Zhao X, Wang Y, Ren F, Sun D, Yan
Y, Kong X, Bu J, Liu M and Xu S: circRNA-002178 act as a ceRNA to
promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis.
11:322020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang
S, Song W, Li X, Li L, Du Z, et al: A novel FLI1 exonic circular
RNA promotes metastasis in breast cancer by coordinately regulating
TET1 and DNMT1. Genome Biol. 19:2182018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Pamudurti NR, Bartok O, Jens M,
Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E,
Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol
Cell. 66:9–21.e7. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xia X, Li X, Li F, Wu X, Zhang M, Zhou H,
Huang N, Yang X, Xiao F, Liu D, et al: A novel tumor suppressor
protein encoded by circular AKT3 RNA inhibits glioblastoma
tumorigenicity by competing with active phosphoinositide-dependent
Kinase-1. Mol Cancer. 18:1312019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Begum S, Yiu A, Stebbing J and Castellano
L: Novel tumour suppressive protein encoded by circular RNA,
circ-SHPRH, in glioblastomas. Oncogene. 37:4055–4057. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Legnini I, Di Timoteo G, Rossi F, Morlando
M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade
M, et al: Circ-ZNF609 Is a Circular RNA that can be translated and
functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lu H, Zhang Z, Yuan X, Song H and Li P:
The role of circular RNA hsa_circ_0001789 as a diagnostic biomarker
in gastric carcinoma. Scand J Gastroenterol. 58:248–253. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sun XH, Wang YT, Li GF, Zhang N and Fan L:
Serum-derived three-circRNA signature as a diagnostic biomarker for
hepatocellular carcinoma. Cancer Cell Int. 20:2262020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J,
Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable
in exosomes: A promising biomarker for cancer diagnosis. Cell Res.
25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Shabaninejad Z, Vafadar A, Movahedpour A,
Ghasemi Y, Namdar A, Fathizadeh H, Pourhanifeh MH, Savardashtaki A
and Mirzaei H: Circular RNAs in cancer: New insights into functions
and implications in ovarian cancer. J Ovarian Res. 12:842019.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
He Y, Zheng L, Yuan M, Fan J, Rong L, Zhan
T and Zhang J: Exosomal circPRRX1 functions as a ceRNA for miR-596
to promote the proliferation, migration, invasion, and reduce
radiation sensitivity of gastric cancer cells via the upregulation
of NF-κB activating protein. Anticancer Drugs. 33:1114–1125. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lasda E and Parker R: Circular RNAs
co-precipitate with extracellular vesicles: A possible mechanism
for circRNA clearance. PLoS One. 11:e01484072016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Huang XY, Huang ZL, Huang J, Xu B, Huang
XY, Xu YH, Zhou J and Tang ZY: Exosomal circRNA-100338 promotes
hepatocellular carcinoma metastasis via enhancing invasiveness and
angiogenesis. J Exp Clin Cancer Res. 39:202020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yang H, Zhang H, Yang Y, Wang X, Deng T,
Liu R, Ning T, Bai M, Li H, Zhu K, et al: Hypoxia induced exosomal
circRNA promotes metastasis of Colorectal Cancer via targeting
GEF-H1/RhoA axis. Theranostics. 10:8211–8226. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Choi H and Lee DS: Illuminating the
physiology of extracellular vesicles. Stem Cell Res Ther. 7:552016.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Chen C, Yu H, Han F, Lai X, Ye K, Lei S,
Mai M, Lai M and Zhang H: Tumor-suppressive circRHOBTB3 is excreted
out of cells via exosome to sustain colorectal cancer cell fitness.
Mol Cancer. 21:462022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yuan G, Ding W, Sun B, Zhu L, Gao Y and
Chen L: Upregulated circRNA_102231 promotes gastric cancer
progression and its clinical significance. Bioengineered.
12:4936–4945. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Liu Z, Zhou Y, Liang G, Ling Y, Tan W, Tan
L, Andrews R, Zhong W, Zhang X, Song E and Gong C: Circular RNA
hsa_circ_001783 regulates breast cancer progression via sponging
miR-200c-3p. Cell Death Dis. 10:552019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yang K, Zhang J and Bao C: Exosomal
circEIF3K from cancer-associated fibroblast promotes colorectal
cancer (CRC) progression via miR-214/PD-L1 axis. BMC Cancer.
21:9332021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang X, Wang S, Wang H, Cao J, Huang X,
Chen Z, Xu P, Sun G, Xu J, Lv J and Xu Z: Circular RNA circNRIP1
acts as a microRNA-149-5p sponge to promote gastric cancer
progression via the AKT1/mTOR pathway. Mol Cancer. 18:202019.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Vakhshiteh F, Hassani S, Momenifar N and
Pakdaman F: Exosomal circRNAs: New players in colorectal cancer.
Cancer Cell Int. 21:4832021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Sang H, Zhang W, Peng L, Wei S, Zhu X,
Huang K, Yang J, Chen M, Dang Y and Zhang G: Exosomal circRELL1
serves as a miR-637 sponge to modulate gastric cancer progression
via regulating autophagy activation. Cell Death Dis. 13:562022.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Yu L, Xie J, Liu X, Yu Y and Wang S:
Plasma Exosomal CircNEK9 accelerates the progression of gastric
cancer via miR-409-3p/MAP7 axis. Dig Dis Sci. 66:4274–4289. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Fan L, Li W and Jiang H: Circ_0000395
Promoted CRC Progression via Elevating MYH9 Expression by
Sequestering miR-432-5p. Biochem Genet. 61:116–137. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gao L, Tang X, He Q, Sun G, Wang C and Qu
H: Exosome-transmitted circCOG2 promotes colorectal cancer
progression via miR-1305/TGF-β2/SMAD3 pathway. Cell Death Discov.
7:2812021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lu J, Wang YH, Yoon C, Huang XY, Xu Y, Xie
JW, Wang JB, Lin JX, Chen QY, Cao LL, et al: Circular RNA
circ-RanGAP1 regulates VEGFA expression by targeting miR-877-3p to
facilitate gastric cancer invasion and metastasis. Cancer Lett.
471:38–48. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hui C, Tian L and He X: Circular RNA
circNHSL1 contributes to gastric cancer progression through the
miR-149-5p/YWHAZ axis. Cancer Manag Res. 12:7117–7130. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Shen X, Kong S, Ma S, Shen L, Zheng M, Qin
S, Qi J, Wang Q, Cui X and Ju S: Hsa_circ_0000437 promotes
pathogenesis of gastric cancer and lymph node metastasis. Oncogene.
41:4724–4735. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Han K, Wang FW, Cao CH, Ling H, Chen JW,
Chen RX, Feng ZH, Luo J, Jin XH, Duan JL, et al: CircLONP2 enhances
colorectal carcinoma invasion and metastasis through modulating the
maturation and exosomal dissemination of microRNA-17. Mol Cancer.
19:602020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Chen C, Liu Y, Liu L, Si C, Xu Y, Wu X,
Wang C, Sun Z and Kang Q: Exosomal circTUBGCP4 promotes vascular
endothelial cell tipping and colorectal cancer metastasis by
activating Akt signaling pathway. J Exp Clin Cancer Res. 42:462023.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yu Q, Zhang Y, Tian Y, Peng A, Cui X, Ding
B, Yang L, Liu Y, Ju Y and Gao C: Exosomal Circ_FMN2 derived from
the serum of colorectal cancer patients promotes cancer progression
by miR-338-3p/MSI1 Axis. Appl Biochem Biotechnol. Mar 30–2023.(Epub
ahead of print). View Article : Google Scholar
|
|
92
|
Wei C, Yang C, Wang S, Shi D, Zhang C, Lin
X, Liu Q, Dou R and Xiong B: Crosstalk between cancer cells and
tumor associated macrophages is required for mesenchymal
circulating tumor cell-mediated colorectal cancer metastasis. Mol
Cancer. 18:642019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Li YF, Pei FL and Cao MZ: CircRNA_101951
promotes migration and invasion of colorectal cancer cells by
regulating the KIF3A-mediated EMT pathway. Exp Ther Med.
19:3355–3361. 2020.PubMed/NCBI
|
|
94
|
Zhou LH, Yang YC, Zhang RY, Wang P, Pang
MH and Liang LQ: CircRNA_0023642 promotes migration and invasion of
gastric cancer cells by regulating EMT. Eur Rev Med Pharmacol Sci.
22:2297–2303. 2018.PubMed/NCBI
|
|
95
|
Liang ZF, Zhang Y, Guo W, Chen B, Fang S
and Qian H: Gastric cancer stem cell-derived exosomes promoted
tobacco smoke-triggered development of gastric cancer by inducing
the expression of circ670. Med Oncol. 40:242022. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Miao Z, Zhao X and Liu X: Exosomal
circCOL1A2 from cancer cells accelerates colorectal cancer
progression via regulating miR-665/LASP1 signal axis. Eur J
Pharmacol. 950:1757222023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhao H, Chen S and Fu Q: Exosomes from
CD133+ cells carrying circ-ABCC1 mediate cell stemness and
metastasis in colorectal cancer. J Cell Biochem. 121:3286–3297.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Liu C, Yang J, Zhu F, Zhao Z and Gao L:
Exosomal circ_0001190 regulates the progression of gastric cancer
via miR-586/SOSTDC1 Axis. Biochem Genet. 60:1895–1913. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zeng W, Liu Y, Li WT, Li Y and Zhu JF:
CircFNDC3B sequestrates miR-937-5p to derepress TIMP3 and inhibit
colorectal cancer progression. Mol Oncol. 14:2960–2984. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Song J, Xu X, He S, Wang N, Bai Y, Li B
and Zhang S: Exosomal hsa_circ_0017252 attenuates the development
of gastric cancer via inhibiting macrophage M2 polarization. Hum
Cell. 35:1499–1511. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Shang A, Gu C, Wang W, Wang X, Sun J, Zeng
B, Chen C, Chang W, Ping Y, Ji P, et al: Exosomal circPACRGL
promotes progression of colorectal cancer via the
miR-142-3p/miR-506-3p-TGF-β1 axis. Mol Cancer. 19:1172020.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zheng Y, Li Z, Wang Y, Chen W, Lin Y, Guo
J and Ye G: CircRNA: A new class of targets for gastric cancer drug
resistance therapy. Pathol Oncol Res. 29:16110332023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yu D, Chang Z, Liu X, Chen P, Zhang H and
Qin Y: Macrophage-derived exosomes regulate gastric cancer cell
oxaliplatin resistance by wrapping circ 0008253. Cell Cycle.
22:705–717. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Chen Y, Liu H, Zou J, Cao G, Li Y, Xing C
and Wu J: Exosomal circ_0091741 promotes gastric cancer cell
autophagy and chemoresistance via the
miR-330-3p/TRIM14/Dvl2/Wnt/β-catenin axis. Hum Cell. 36:258–275.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Yang G, Tan J, Guo J, Wu Z and Zhan Q:
Exosome-mediated transfer of circ_0063526 enhances cisplatin
resistance in gastric cancer cells via regulating miR-449a/SHMT2
axis. Anticancer Drugs. 33:1047–1057. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yao W, Guo P, Mu Q and Wang Y:
Exosome-Derived Circ-PVT1 contributes to cisplatin resistance by
regulating autophagy, invasion, and apoptosis Via miR-30a-5p/YAP1
axis in gastric cancer cells. Cancer Biother Radiopharm.
36:347–359. 2021.PubMed/NCBI
|
|
107
|
Pan Z, Zheng J, Zhang J, Lin J, Lai J, Lyu
Z, Feng H, Wang J, Wu D and Li Y: A novel protein encoded by
exosomal CircATG4B induces oxaliplatin resistance in colorectal
cancer by promoting autophagy. Adv Sci (Weinh). 9:e22045132022.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhang Y, Tan X and Lu Y: Exosomal transfer
of circ_0006174 contributes to the chemoresistance of doxorubicin
in colorectal cancer by depending on the miR-1205/CCND2 axis. J
Physiol Biochem. 78:39–50. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wang X, Zhang H, Yang H, Bai M, Ning T,
Deng T, Liu R, Fan Q, Zhu K, Li J, et al: Exosome-delivered circRNA
promotes glycolysis to induce chemoresistance through the
miR-122-PKM2 axis in colorectal cancer. Mol Oncol. 14:539–555.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhao K, Cheng X, Ye Z, Li Y, Peng W, Wu Y
and Xing C: Exosome-Mediated Transfer of circ_0000338 Enhances
5-Fluorouracil resistance in colorectal cancer through regulating
MicroRNA 217 (miR-217) and miR-485-3p. Mol Cell Biol. 41:e00517–20.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kobayashi H, Enomoto A, Woods SL, Burt AD,
Takahashi M and Worthley DL: Cancer-associated fibroblasts in
gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 16:282–295.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Xu R, Greening DW, Zhu HJ, Takahashi N and
Simpson RJ: Extracellular vesicle isolation and characterization:
Toward clinical application. J Clin Invest. 126:1152–1162. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Colombo M, Raposo G and Théry C:
Biogenesis, secretion, and intercellular interactions of exosomes
and other extracellular vesicles. Annu Rev Cell Dev Biol.
30:255–289. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Kristensen LS, Andersen MS, Stagsted LVW,
Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and
characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Wang S, Zhang K, Tan S, Xin J, Yuan Q, Xu
H, Xu X, Liang Q, Christiani DC, Wang M, et al: Circular RNAs in
body fluids as cancer biomarkers: The new frontier of liquid
biopsies. Mol Cancer. 20:132021. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Li XN, Wang ZJ, Ye CX, Zhao BC, Li ZL and
Yang Y: RNA sequencing reveals the expression profiles of circRNA
and indicates that circDDX17 acts as a tumor suppressor in
colorectal cancer. J Exp Clin Cancer Res. 37:3252018. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ,
Ma XD, Han K, Chen JW, Judde JG, Deas O, et al: N6-methyladenosine
modification of circNSUN2 facilitates cytoplasmic export and
stabilizes HMGA2 to promote colorectal liver metastasis. Nat
Commun. 10:46952019. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Zheng P, Gao H, Xie X and Lu P: Plasma
Exosomal hsa_circ_0015286 as a potential diagnostic and prognostic
biomarker for gastric cancer. Pathol Oncol Res. 28:16104462022.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Li R, Tian X, Jiang J, Qian H, Shen H and
Xu W: CircRNA CDR1as: a novel diagnostic and prognostic biomarker
for gastric cancer. Biomarkers. 28:448–457. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Tao X, Shao Y, Lu R, Ye Q, Xiao B, Ye G
and Guo J: Clinical significance of hsa_circ_0000419 in gastric
cancer screening and prognosis estimation. Pathol Res Pract.
216:1527632020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Pan B, Qin J, Liu X, He B, Wang X, Pan Y,
Sun H, Xu T, Xu M, Chen X, et al: Identification of Serum Exosomal
hsa-circ-0004771 as a novel diagnostic biomarker of colorectal
cancer. Front Genet. 10:10962019. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Xie Y, Li J, Li P, Li N, Zhang Y, Binang
H, Zhao Y, Duan W, Chen Y, Wang Y, et al: RNA-Seq profiling of
serum exosomal circular RNAs Reveals Circ-PNN as a potential
biomarker for human colorectal cancer. Front Oncol. 10:9822020.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Li T, Zhou T, Wu J, Lv H, Zhou H, Du M,
Zhang X, Wu N, Gong S, Ren Z, et al: Plasma exosome-derived
circGAPVD1 as a potential diagnostic marker for colorectal cancer.
Transl Oncol. 31:1016522023. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Wang H, Zeng X, Zheng Y, Wang Y and Zhou
Y: Exosomal circRNA in digestive system tumors: the main player or
coadjuvants? Front Oncol. 11:6144622021. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Lu L, Fang S, Zhang Y, Jin L, Xu W and
Liang Z: Exosomes and Exosomal circRNAs: The rising stars in the
progression, diagnosis and prognosis of gastric cancer. Cancer
Manag Res. 13:8121–8129. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Zhang Z, Sun C, Zheng Y and Gong Y:
circFCHO2 promotes gastric cancer progression by activating the
JAK1/STAT3 pathway via sponging miR-194-5p. Cell Cycle.
21:2145–2164. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Li S, Li J, Zhang H, Zhang Y, Wang X, Yang
H, Zhou Z, Hao X, Ying G and Ba Y: Gastric cancer derived exosomes
mediate the delivery of circRNA to promote angiogenesis by
targeting miR-29a/VEGF axis in endothelial cells. Biochem Biophys
Res Commun. 560:37–44. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Li Y, Hu J, Wang M, Yuan Y, Zhou F, Zhao
H, Qiu T and Liang L: Exosomal circPABPC1 promotes colorectal
cancer liver metastases by regulating HMGA2 in the nucleus and
BMP4/ADAM19 in the cytoplasm. Cell Death Discov. 8:3352022.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Yi Q, Yue J, Liu Y, Shi H and Sun W, Feng
J and Sun W: Recent advances of exosomal circRNAs in cancer and
their potential clinical applications. J Transl Med. 21:5162023.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Guo Z, Zhang Y, Xu W, Zhang X and Jiang J:
Engineered exosome-mediated delivery of circDIDO1 inhibits gastric
cancer progression via regulation of MiR-1307-3p/SOCS2 Axis. J
Transl Med. 20:3262022. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Zhang C, Wei G, Zhu X, Chen X, Ma X, Hu P,
Liu W, Yang W, Ruan T, Zhang W, et al: Exosome-Delivered circSTAU2
inhibits the progression of gastric cancer by targeting the
miR-589/CAPZA1 Axis. Int J Nanomedicine. 18:127–142. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Yu L, Zhang F and Wang Y: Circ_0005615
regulates the progression of colorectal cancer through the
miR-873-5p/FOSL2 signaling pathway. Biochem Genet. 61:2020–2041.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Meng X, Yang D, Zhang B, Zhao Y, Zheng Z
and Zhang T: Regulatory mechanisms and clinical applications of
tumor-driven exosomal circRNAs in cancers. Int J Med Sci.
20:818–835. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Lei T, Zhang Y, Wang X, Liu W, Feng W and
Song W: Integrated analysis of the functions and clinical
implications of exosome circRNAs in colorectal cancer. Front
Immunol. 13:9190142022. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Zhang F, Jiang J, Qian H, Yan Y and Xu W:
Exosomal circRNA: Emerging insights into cancer progression and
clinical application potential. J Hematol Oncol. 16:672023.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Lin S, Yu Z, Chen D, Wang Z, Miao J, Li Q,
Zhang D, Song J and Cui D: Progress in microfluidics-based exosome
separation and detection technologies for diagnostic applications.
Small. 16:e19039162020. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Chen L, Wang L, Zhu L, Xu Z, Liu Y, Li Z,
Zhou J and Luo F: Exosomes as drug carriers in anti-cancer therapy.
Front Cell Dev Biol. 10:7286162022. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Ding L, Yang X, Gao Z, Effah CY, Zhang X,
Wu Y and Qu L: A holistic review of the state-of-the-art
microfluidics for exosome separation: An overview of the current
status, existing obstacles, and future outlook. Small.
17:e20071742021. View Article : Google Scholar : PubMed/NCBI
|