1
|
Ostrom QT, Gittleman H, Liao P, Rouse C,
Chen Y, Dowling J, Wolinsky Y, Kruchko C and Barnholtz-Sloan J:
CBTRUS statistical report: Primary brain and central nervous system
tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 16
(Suppl 4):iv1–iv63. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Louis DN, Ohgaki H, Wiestler OD, Cavenee
WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007
WHO classification of tumours of the central nervous system. Acta
Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Stupp R, Mason WP, Van Den Bent MJ, Weller
M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn
U, et al: Radiotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Stupp R, Taillibert S, Kanner A, Read W,
Steinberg D, Lhermitte B, Toms S, Idbaih A, Ahluwalia MS, Fink K,
et al: Effect of tumor-treating fields plus maintenance
temozolomide vs maintenance temozolomide alone on survival in
patients with glioblastoma: A randomized clinical trial. JAMA.
318:2306–2316. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gallego O: Nonsurgical treatment of
recurrent glioblastoma. Curr Oncol. 22:e273–e281. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Prados MD, Byron SA, Tran NL, Phillips JJ,
Molinaro AM, Ligon KL, Wen PY, Kuhn JG, Mellinghoff IK, de Groot
JF, et al: Toward precision medicine in glioblastoma: The promise
and the challenges. Neuro Oncol. 17:1051–1063. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rudà R, Pellerino A, Magisstrello M,
Franchino F, Pinessi L and Soffietti R: Molecularly based
management of gliomas in clinical practice. Neurol Sci.
36:1551–1557. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hollon TC, Pandian B, Urias E, Save AV,
Adapa AR, Srinivasan S, Jairath NK, Farooq Z, Marie T, Al-Holou WN,
et al: Rapid, label-free detection of diffuse glioma recurrence
using intraoperative stimulated Raman histology and deep neural
networks. Neuro Oncol. 23:144–155. 2021. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sundar SJ, Hsieh JK, Manjila S, Lathia JD
and Sloan A: The role of cancer stem cells in glioblastoma.
Neurosurg Focus. 37:E62014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ruiz-Garcia H, Alvarado-Estrada K,
Krishnan S, Quinones-Hinojosa A and Trifiletti DM: Nanoparticles
for stem cell therapy bioengineering in glioma. Front Bioeng
Biotechnol. 8:5583752020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Nowell PC: The clonal evolution of tumor
cell populations. Science. 194:23–28. 1976. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bao S, Wu Q, Li Z, Sathornsumetee S, Wang
H, McLendon RE, Hjelmeland AB and Rich JN: Targeting cancer stem
cells through L1CAM suppresses glioma growth. Cancer Res.
68:6043–6048. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Galli R, Binda E, Orfanelli U, Cipelletti
B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F and Vescovi
A: Isolation and characterization of tumorigenic, stem-like neural
precursors from human glioblastoma. Cancer Res. 64:7011–7021. 2004.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen R, Nishimura MC, Bumbaca SM,
Kharbanda S, Forrest WF, Kasman IM, Greve JM, Soriano RH, Gilmour
LL, Rivers CS, et al: A hierarchy of self-renewing tumor-initiating
cell types in glioblastoma. Cancer Cell. 17:362–375. 2010.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen J, Li Y, Yu TS, McKay RM, Burns DK,
Kernie SG and Parada LF: A restricted cell population propagates
glioblastoma growth after chemotherapy. Nature. 488:522–526. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Eyler CE, Foo WC, LaFiura KM, McLendon RE,
Hjelmeland AB and Rich JN: Brain cancer stem cells display
preferential sensitivity to Akt inhibition. Stem Cells.
26:3027–3036. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hoang-Minh LB, Siebzehnrubl FA, Yang C,
Suzuki-Hatano S, Dajac K, Loche T, Andrews N, Schmoll Massari M,
Patel J, Amin K, et al: Infiltrative and drug-resistant
slow-cycling cells support metabolic heterogeneity in glioblastoma.
EMBO J. 37:e987722018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li DX, Fei XR, Dong YF, Cheng CD, Yang Y,
Deng XF, Huang HL, Niu WX, Zhou CX, Xia CY and Niu CS: The long
non-coding RNA CRNDE acts as a ceRNA and promotes glioma malignancy
by preventing miR-136-5p-mediated downregulation of Bcl-2 and Wnt2.
Oncotarget. 8:88163–88178. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shi Y, Wang Y, Luan W, Wang P, Tao T,
Zhang J, Qian J, Liu N and You Y: Long non-coding RNA H19 promotes
glioma cell invasion by deriving miR-675. PLo S One. 9:e862952014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Lee Y, Lee JK, Ahn SH, Lee J and Nam DH:
WNT signaling in glioblastoma and therapeutic opportunities. Lab
Invest. 96:137–150. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang G, Shen J, Sun J, Jiang Z, Fan J,
Wang H, Yu S, Long Y, Liu Y, Bao H, et al: Cyclophilin A maintains
glioma-initiating cell stemness by regulating Wnt/β-catenin
signaling. Clin Cancer Res. 23:6640–6649. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gao L, Chen B, Li J, Yang F, Cen X, Liao Z
and Long X: Wnt/β-catenin signaling pathway inhibits the
proliferation and apoptosis of U87 glioma cells via different
mechanisms. PLoS One. 12:e01813462017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kee N, Sivalingam S, Boonstra R and
Wojtowicz JM: The utility of Ki-67 and BrdU as proliferative
markers of adult neurogenesis. J Neurosci Methods. 115:97–105.
2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wei LC, Ding YX, Liu YH, Duan L, Bai Y,
Shi M and Chen LW: Low-dose radiation stimulates Wnt/β-catenin
signaling, neural stem cell proliferation and neurogenesis of the
mouse hippocampus in vitro and in vivo. Curr Alzheimer Res.
9:278–289. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bylicky MA, Mueller GP and Day RM:
Radiation resistance of normal human astrocytes: The role of
non-homologous end joining DNA repair activity. J Radiat Res.
60:37–50. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Eom HS, Park HR, Jo SK, Kim YS, Moon C,
Kim SH and Jung U: Ionizing radiation induces altered neuronal
differentiation by mGluR1 through PI3K-STAT3 signaling in C17.2
mouse neural stem-like cells. PLoS One. 11:e01475382016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kondo T, Setoguchi T and Taga T:
Persistence of a small subpopulation of cancer stem-like cells in
the C6 glioma cell line. Proc Natl Acad Sci USA. 101:781–786. 2004.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Singh SK, Hawkins C, Clarke ID, Squire JA,
Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB:
Identification of human brain tumour initiating cells. Nature.
432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Stiles CD and Rowitch DH: Glioma stem
cells: A midterm exam. Neuron. 58:832–846. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fan X, Salford LG and Widegren B: Gliomal
stem cells: Evidence and Limitation. Semin Cancer Bio. 17:214–218.
2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mizumatsu S, Monje ML, Morhardt DR, Rola
R, Palmer TD and Fike JR: Extreme sensitivity of adult neurogenesis
to low doses of X-irradiation. Cancer Res. 63:4021–4027.
2003.PubMed/NCBI
|
32
|
Zhang W, Wang PJ, Li P, Li MH and Gao XL:
Effects of low-dose X-ray on morphology of neuron and expression of
microtubule associated protein-2 in hippocampus of young rats.
Zhonghua Yi Xue Za Zhi. 92:336–340. 2012.(In Chinese). PubMed/NCBI
|
33
|
Ding M, Zhang E, He R, Wang X, Li R, Wang
W and Yi Q: The radiation dose-regulated AND gate genetic circuit,
a novel targeted and real-time monitoring strategy for cancer gene
therapy. Cancer Gene Ther. 19:382–392. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liang X, So YH, Cui J, Ma K, Xu X, Zhao Y,
Cai L and Li W: The low-dose ionizing radiation stimulates cell
proliferation via activation of the MAPK/ERK pathway in rat
cultured mesenchymal stem cells. J Radiat Res. 52:380–386. 2011.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Lim YC, Roberts TL, Day BW, Stringer BW,
Kozlov S, Fazry S, Bruce ZC, Ensbey KS, Walker DG, Boyd AW and
Lavin MF: Increased sensitivity to ionizing radiation by targeting
the homologous recombination pathway in glioma initiating cells.
Mol Oncol. 8:1603–1615. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kang JO, Kim SK, Hong SE, Lee TH and Kim
CJ: Low dose radiation overcomes diabetes-induced suppression of
hippocampal neuronal cell proliferation in rats. J Korean Med Sci.
21:500–505. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tapio S: Pathology and biology of
radiation-induced cardiac disease. J Radiat Res. 57:439–448. 2016.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Basso E, Regazzo G, Fiore M, Palma V,
Traversi G, Testa A, Degrassi F and Cozzi R: Resveratrol affects
DNA damage induced by ionizing radiation in human lymphocytes in
vitro. Mutat Res Genet Toxicol Environ Mutagen. 806:40–46. 2016.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Djuzenova CS, Elsner I, Katzer A,
Worschech E, Distel LV, Flentje M and Polat B: Radiosensitivity in
breast cancer assessed by the histone γ-H2AX and 53BP1 foci. Radiat
Oncol. 8:982013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ji J, Zhang Y, Redon CE, Reinhold WC, Chen
AP, Fogli LK, Holbeck SL, Parchment RE, Hollingshead M, Tomaszewski
JE, et al: Phosphorylated fraction of H2AX as a measurement for DNA
damage in cancer cells and potential applications of a novel assay.
PLoS One. 12:e01715822017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kahlert UD, Suwala AK, Koch K, Natsumeda
M, Orr BA, Hayashi M, Maciaczyk J and Eberhart CG: Pharmacologic
Wnt inhibition reduces proliferation, survival, and clonogenicity
of glioblastoma cells. J Neuropathol Exp Neurol. 74:889–900. 2015.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Qi Y, Guo L, Liu Y, Zhao T, Liu X and
Zhang Y: Sevoflurane limits glioma progression by regulating cell
proliferation, apoptosis, migration, and invasion via
miR-218-5p/DEK/β-catenin axis in glioma. Cancer Manag Res.
13:2057–2069. 2021. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chen Z, Chen G and Zhao H: FDPS promotes
glioma growth and macrophage recruitment by regulating CCL20 via
Wnt/β-catenin signalling pathway. J Cell Mol Med. 24:9055–9066.
2020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kaur N, Chettiar S, Rathod S, Rath P,
Muzumdar D, Shaikh ML and Shiras A: Wnt3a mediated activation of
Wnt/β-catenin signaling promotes tumor progression in glioblastoma.
Mol Cell Neurosci. 54:44–57. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Li H, Tong F, Meng R, Peng L, Wang J,
Zhang R and Dong X: E2F1-mediated repression of WNT5A expression
promotes brain metastasis dependent on the ERK1/2 pathway in
EGFR-mutant non-small cell lung cancer. Cell Mol Life Sci.
78:2877–2891. 2021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Pu P, Zhang Z, Kang C, Jiang R, Jia Z,
Wang G and Jiang H: Downregulation of Wnt2 and beta-catenin by
siRNA suppresses malignant glioma cell growth. Cancer Gene Ther.
16:351–361. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Du L, Lee JH, Jiang H, Wang C, Wang S,
Zheng Z, Shao F, Xu D, Xia Y, Li J, et al: β-Catenin induces
transcriptional expression of PD-L1 to promote glioblastoma immune
evasion. J Exp Med. 217:e201911152020. View Article : Google Scholar : PubMed/NCBI
|
48
|
hang J, Cai H, Sun L, Zhan P, Chen M,
Zhang F, Ran Y and Wan J: LGR5, a novel functional glioma stem cell
marker, promotes EMT by activating the Wnt/β-catenin pathway and
predicts poor survival of glioma patients. J Exp Clin Cancer Res.
37:2252018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhang X, Chen L, Wang Y, Ding Y, Peng Z,
Duan L, Ju G, Ren Y and Wang X: Macrophage migration inhibitory
factor promotes proliferation and neuronal differentiation of
neural stem/precursor cells through Wnt/β-catenin signal pathway.
Int J Biol Sci. 9:1108–1120. 2013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan
CW, Wei S, Hao W, Kilgore J, Williams NS, et al: Small
molecule-mediated disruption of Wnt-dependent signaling in tissue
regeneration and cancer. Nat Chem Biol. 5:100–107. 2009. View Article : Google Scholar : PubMed/NCBI
|
51
|
Kierulf-Vieira KS, Sandberg CJ, Grieg Z,
Günther CC, Langmoen IA and Vik-Mo EO: Wnt inhibition is
dysregulated in gliomas and its re-establishment inhibits
proliferation and tumor sphere formation. Exp Cell Res. 340:53–61.
2016. View Article : Google Scholar : PubMed/NCBI
|
52
|
Griveau A, Seano G, Shelton SJ, Kupp R,
Jahangiri A, Obernier K, Krishnan S, Lindberg OR, Yuen TJ, Tien AC,
et al: A glial signature and Wnt7 signaling regulate
glioma-vascular interactions and tumor microenvironment. Cancer
Cell. 33:874–889.e7. 2018. View Article : Google Scholar : PubMed/NCBI
|
53
|
Feng F, Zhao Z, Zhou Y, Cheng Y, Wu X and
Heng X: CUX1 facilitates the development of oncogenic properties
via activating Wnt/β-catenin signaling pathway in glioma. Front Mol
Biosci. 8:7050082021. View Article : Google Scholar : PubMed/NCBI
|
54
|
Dong Z, Zhou L, Han N, Zhang M and Lyu X:
Wnt/β-catenin pathway involvement in ionizing radiation-induced
invasion of U87 glioblastoma cells. Strahlenther Onkol.
191:672–680. 2015. View Article : Google Scholar : PubMed/NCBI
|
55
|
Osuka S, Zhu D, Zhang Z, Li C, Stackhouse
CT, Sampetrean O, Olson JJ, Gillespie GY, Saya H, Willey CD and Van
Meir EG: N-cadherin upregulation mediates adaptive radioresistance
in glioblastoma. J Clin Invest. 131:e1360982021. View Article : Google Scholar : PubMed/NCBI
|