|
1
|
Bou Zerdan M, Ghorayeb T, Saliba F, Allam
S, Bou Zerdan M, Yaghi M, Bilani N, Jaafar R and Nahleh Z: Triple
negative breast cancer: Updates on classification and treatment in
2021. Cancers (Basel). 14:12532022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Li X, Yang J, Peng L, Sahin AA, Huo L,
Ward KC, O'Regan R, Torres MA and Meisel JL: Triple-negative breast
cancer has worse overall survival and cause-specific survival than
non-triple-negative breast cancer. Breast Cancer Res Treat.
161:279–287. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Jhan JR and Andrechek ER: Triple-negative
breast cancer and the potential for targeted therapy.
Pharmacogenomics. 18:1595–1609. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tutt ANJ, Garber JE and Geyer CE Jr:
Adjuvant olaparib in BRCA-mutated breast cancer. Reply. N Engl J
Med. 385:14402021.PubMed/NCBI
|
|
5
|
Yin J, Zhou C, Wang G and Gu J: Treatment
for triple-negative breast cancer: An umbrella review of
meta-analyses. Int J Gen Med. 15:5901–5914. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zagami P and Carey LA: Triple negative
breast cancer: Pitfalls and progress. NPJ Breast Cancer. 8:952022.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Baranova A, Krasnoselskyi M, Starikov V,
Kartashov S, Zhulkevych I, Vlasenko V, Oleshko K, Bilodid O,
Sadchikova M and Vinnyk Y: Triple-negative breast cancer: Current
treatment strategies and factors of negative prognosis. J Med Life.
15:153–161. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pedersen RN, Esen BÖ, Mellemkjær L,
Christiansen P, Ejlertsen B, Lash TL, Nørgaard M and Cronin-Fenton
D: The incidence of breast cancer recurrence 10–32 years after
primary diagnosis. J Natl Cancer Inst. 114:391–399. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Landry I, Sumbly V and Vest M:
Advancements in the treatment of triple-negative breast cancer: A
narrative review of the literature. Cureus.
14:e219702022.PubMed/NCBI
|
|
10
|
Buchta Rosean C, Bostic RR, Ferey JCM,
Feng TY, Azar FN, Tung KS, Dozmorov MG, Smirnova E, Bos PD and
Rutkowski MR: Preexisting commensal dysbiosis is a host-intrinsic
regulator of tissue inflammation and tumor cell dissemination in
hormone receptor-positive breast cancer. Cancer Res. 79:3662–3675.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kim CH: Control of lymphocyte functions by
gut microbiota-derived short-chain fatty acids. Cell Mol Immunol.
18:1161–1171. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rossi T, Vergara D, Fanini F, Maffia M,
Bravaccini S and Pirini F: Microbiota-derived metabolites in tumor
progression and metastasis. Int J Mol Sci. 21:57862020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Thirunavukkarasan M, Wang C, Rao A, Hind
T, Teo YR, Siddiquee AA, Goghari MAI, Kumar AP and Herr DR:
Short-chain fatty acid receptors inhibit invasive phenotypes in
breast cancer cells. PLoS One. 12:e01863342017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Son DS, Lee ES and Adunyah SE: The
antitumor potentials of benzimidazole anthelmintics as repurposing
drugs. Immune Netw. 20:e292020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Bai RY, Staedtke V, Wanjiku T, Rudek MA,
Joshi A, Gallia GL and Riggins GJ: Brain penetration and efficacy
of different mebendazole polymorphs in a mouse brain tumor model.
Clin Cancer Res. 21:3462–3470. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
De Witt M, Gamble A, Hanson D, Markowitz
D, Powell C, Al Dimassi S, Atlas M, Boockvar J, Ruggieri R and
Symons M: Repurposing mebendazole as a replacement for vincristine
for the treatment of brain tumors. Mol Med. 23:50–56. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Bai RY, Staedtke V, Aprhys CM, Gallia GL
and Riggins GJ: Antiparasitic mebendazole shows survival benefit in
2 preclinical models of glioblastoma multiforme. Neuro Oncol.
13:974–982. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhang L, Bochkur Dratver M, Yazal T, Dong
K, Nguyen A, Yu G, Dao A, Bochkur Dratver M, Duhachek-Muggy S, Bhat
K, et al: Mebendazole potentiates radiation therapy in
triple-negative breast cancer. Int J Radiat Oncol Biol Phys.
103:195–207. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Gao P, Dang CV and Watson J: Unexpected
antitumorigenic effect of fenbendazole when combined with
supplementary vitamins. J Am Assoc Lab Anim Sci. 47:37–40.
2008.PubMed/NCBI
|
|
20
|
Choi HS, Ko YS, Jin H, Kang KM, Ha IB,
Jeong H, Song HN, Kim HJ and Jeong BK: Anticancer effect of
benzimidazole derivatives, especially mebendazole, on
triple-negative breast cancer (TNBC) and radiotherapy-resistant
TNBC in vivo and in vitro. Molecules. 26:51182021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Laudisi F, Marônek M, Di Grazia A,
Monteleone G and Stolfi C: Repositioning of anthelmintic drugs for
the treatment of cancers of the digestive system. Int J Mol Sci.
21:49572020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hori A, Imaeda Y, Kubo K and Kusaka M:
Novel benzimidazole derivatives selectively inhibit endothelial
cell growth and suppress angiogenesis in vitro and in vivo. Cancer
Lett. 183:53–60. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Mrkvová Z, Uldrijan S, Pombinho A,
Bartůněk P and Slaninová I: Benzimidazoles downregulate Mdm2 and
MdmX and activate p53 in MdmX overexpressing tumor cells.
Molecules. 24:21522019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhang D and Kanakkanthara A: Beyond the
paclitaxel and vinca alkaloids: Next generation of plant-derived
microtubule-targeting agents with potential anticancer activity.
Cancers (Basel). 12:17212020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Falzone L, Bordonaro R and Libra M:
SnapShot: Cancer chemotherapy. Cell. 186:1816–1816.e1. 2023.
View Article : Google Scholar
|
|
26
|
McGrogan BT, Gilmartin B, Carney DN and
McCann A: Taxanes, microtubules and chemoresistant breast cancer.
Biochim Biophys Acta. 1785:96–132. 2008.PubMed/NCBI
|
|
27
|
Dhyani P, Quispe C, Sharma E, Bahukhandi
A, Sati P, Attri DC, Szopa A, Sharifi-Rad J, Docea AO, Mardare I,
et al: Anticancer potential of alkaloids: A key emphasis to
colchicine, vinblastine, vincristine, vindesine, vinorelbine and
vincamine. Cancer Cell Int. 22:2062022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Singh R, Bal MS, Singla LD and Kaur P:
Detection of anthelmintic resistance in sheep and goat against
fenbendazole by faecal egg count reduction test. J Parasit Dis.
41:463–466. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hennessy DR, Steel JW, Prichard RK and
Lacey E: The effect of co-administration of parbendazole on the
disposition of oxfendazole in sheep. J Vet Pharmacol Ther.
15:10–18. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hennessy DR, Lacey E, Prichard RK and
Steel JW: Potentiation of the anthelmintic activity of oxfendazole
by parbendazole. J Vet Pharmacol Ther. 8:270–275. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gonzalez AE, Codd EE, Horton J, Garcia HH
and Gilman RH: Oxfendazole: A promising agent for the treatment and
control of helminth infections in humans. Expert Rev Anti Infect
Ther. 17:51–56. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Xu D, Tian W, Jiang C, Huang Z and Zheng
S: The anthelmintic agent oxfendazole inhibits cell growth in
non-small cell lung cancer by suppressing c-Src activation. Mol Med
Rep. 19:2921–2926. 2019.PubMed/NCBI
|
|
33
|
Florio R, Veschi S, Di Giacomo V, Pagotto
S, Carradori S, Verginelli F, Cirilli R, Casulli A, Grassadonia A,
Tinari N, et al: The benzimidazole-based anthelmintic parbendazole:
A repurposed drug candidate that synergizes with gemcitabine in
pancreatic cancer. Cancers (Basel). 11:20422019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Libreros S, Garcia-Areas R, Keating P,
Gazaniga N, Robinson P, Humbles A and Iragavarapu-Charyulu VL:
Allergen induced pulmonary inflammation enhances mammary tumor
growth and metastasis: Role of CHI3L1. J Leukoc Biol. 97:929–940.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cai Y, Zhou J and Webb DC: Treatment of
mice with fenbendazole attenuates allergic airways inflammation and
Th2 cytokine production in a model of asthma. Immunol Cell Biol.
87:623–629. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Goff SL and Danforth DN: The role of
immune cells in breast tissue and immunotherapy for the treatment
of breast cancer. Clin Breast Cancer. 21:e63–e73. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Libreros S, Garcia-Areas R and
Iragavarapu-Charyulu V: CHI3L1 plays a role in cancer through
enhanced production of pro-inflammatory/pro-tumorigenic and
angiogenic factors. Immunol Res. 57:99–105. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kim SH, Redvers RP, Chi LH, Ling X, Lucke
AJ, Reid RC, Fairlie DP, Martin ACBM, Anderson RL, Denoyer D and
Pouliot N: Identification of brain metastasis genes and therapeutic
evaluation of histone deacetylase inhibitors in a clinically
relevant model of breast cancer brain metastasis. Dis Model Mech.
11:DMM0348502018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Holliday DL and Speirs V: Choosing the
right cell line for breast cancer research. Breast Cancer Res.
13:2152011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kim JB, Urban K, Cochran E, Lee S, Ang A,
Rice B, Bata A, Campbell K, Coffee R, Gorodinsky A, et al:
Non-invasive detection of a small number of bioluminescent cancer
cells in vivo. PLoS One. 5:e93642010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Erny D, Hrabě de Angelis AL, Jaitin D,
Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T,
Jakobshagen K, Buch T, et al: Host microbiota constantly control
maturation and function of microglia in the CNS. Nat Neurosci.
18:965–977. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Strong P, Clark H and Reid K: Intranasal
application of chitin microparticles down-regulates symptoms of
allergic hypersensitivity to Dermatophagoides pteronyssinus and
Aspergillus fumigatus in murine models of allergy. Clin Exp
Allergy. 32:1794–1800. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Nishiyama A, Tsuji S, Yamashita M,
Henriksen RA, Myrvik QN and Shibata Y: Phagocytosis of
N-acetyl-D-glucosamine particles, a Th1 adjuvant, by RAW 264.7
cells results in MAPK activation and TNF-alpha, but not IL-10,
production. Cell Immunol. 239:103–112. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Workman P, Balmain A, Hickman JA, McNally
NJ, Rohas AM, Mitchison NA, Pierrepoint CG, Raymond R, Rowlatt C,
Stephens TC, et al: UKCCCR guidelines for the welfare of animals in
experimental neoplasia. Lab Anim. 22:195–201. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Montgomery C: Oncologic and toxicologic
research: Alleviation and control of pain and distress in
laboratory animals. Cancer Bull. 42:230–237. 1990.
|
|
46
|
Ullman-Culleré MH and Foltz CJ: Body
condition scoring: A rapid and accurate method for assessing health
status in mice. Lab Anim Sci. 49:319–323. 1999.PubMed/NCBI
|
|
47
|
Isgor C and Watson SJ: Estrogen receptor
alpha and beta mRNA expressions by proliferating and
differentiating cells in the adult rat dentate gyrus and
subventricular zone. Neuroscience. 134:847–856. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Shihan MH, Novo SG, Le Marchand SJ, Wang Y
and Duncan MK: A simple method for quantitating confocal
fluorescent images. Biochem Biophys Rep. 25:1009162021.PubMed/NCBI
|
|
49
|
Han J, Lin K, Sequeira C and Borchers CH:
An isotope-labeled chemical derivatization method for the
quantitation of short-chain fatty acids in human feces by liquid
chromatography-tandem mass spectrometry. Anal Chim Acta. 854:86–94.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Saha S, Day-Walsh P, Shehata E and Kroon
PA: Development and validation of a LC-MS/MS technique for the
analysis of short chain fatty acids in tissues and biological
fluids without derivatisation using isotope labelled internal
standards. Molecules 26: 6444, 2021. https://doi.org/10.3390/molecules26216444
|
|
51
|
Nagatomo R, Kaneko H, Kamatsuki S,
Ichimura-Shimizu M, Ishimaru N, Tsuneyama K and Inoue K:
Short-chain fatty acids profiling in biological samples from a
mouse model of Sjögren's syndrome based on derivatized LC-MS/MS
assay. J Chromatogr B Analyt Technol Biomed Life Sci.
1210:1234322022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Guzmán EA, Pitts TP, Winder PL and Wright
AE: The marine natural product furospinulosin 1 induces apoptosis
in MDA-MB-231 triple negative breast cancer cell spheroids, but not
in cells grown traditionally with longer treatment. Mar Drugs.
19:2492021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Das GC, Holiday D, Gallardo R and Haas C:
Taxol-induced cell cycle arrest and apoptosis: Dose-response
relationship in lung cancer cells of different wild-type p53 status
and under isogenic condition. Cancer Lett. 165:147–153. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Mikhail AS, Eetezadi S and Allen C:
Multicellular tumor spheroids for evaluation of cytotoxicity and
tumor growth inhibitory effects of nanomedicines in vitro: A
comparison of docetaxel-loaded block copolymer micelles and
Taxotere®. PLoS One. 8:e626302013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Adcock AF, Trivedi G, Edmondson R,
Spearman C and Yang L: Three-dimensional (3D) cell cultures in
cell-based assays for in-vitro evaluation of anticancer drugs. J
Anal Bioanal Tech. 6:2472015. View Article : Google Scholar
|
|
56
|
Sazonova EV, Kopeina GS, Imyanitov EN and
Zhivotovsky B: Platinum drugs and taxanes: Can we overcome
resistance? Cell Death Discov. 7:1552021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Mann J, Yang N, Montpetit R, Kirschenman
R, Lemieux H and Goping IS: BAD sensitizes breast cancer cells to
docetaxel with increased mitotic arrest and necroptosis. Sci Rep.
10:3552020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wang TH, Wang HS and Soong YK:
Paclitaxel-induced cell death: Where the cell cycle and apoptosis
come together. Cancer. 88:2619–2628. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yang G, Chen S, Deng B, Tan C, Deng J, Zhu
G, Yin Y and Ren W: Implication of G protein-coupled receptor 43 in
intestinal inflammation: A mini-review. Front Immunol. 9:14342018.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Spagnuolo PA, Hu J, Hurren R, Wang X,
Gronda M, Sukhai MA, Di Meo A, Boss J, Ashali I, Beheshti Zavareh
R, et al: The antihelmintic flubendazole inhibits microtubule
function through a mechanism distinct from vinca alkaloids and
displays preclinical activity in leukemia and myeloma. Blood.
115:4824–4833. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Furtado LFV, de Paiva Bello ACP and Rabelo
ÉML: Benzimidazole resistance in helminths: From problem to
diagnosis. Acta Trop. 162:95–102. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Moudi M, Go R, Yien CYS and Nazre M: Vinca
alkaloids. Int J Prev Med. 4:1231–1235. 2013.PubMed/NCBI
|
|
63
|
Zhou J and Giannakakou P: Targeting
microtubules for cancer chemotherapy. Curr Med Chem Anticancer
Agents. 5:65–71. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Redman E, Whitelaw F, Tait A, Burgess C,
Bartley Y, Skuce PJ, Jackson F and Gilleard JS: The emergence of
resistance to the benzimidazole anthlemintics in parasitic
nematodes of livestock is characterised by multiple independent
hard and soft selective sweeps. PLoS Negl Trop Dis. 9:e00034942015.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lv Y, Ma X, Du Y and Feng J: Understanding
patterns of brain metastasis in triple-negative breast cancer and
exploring potential therapeutic targets. Onco Targets Ther.
14:589–607. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Syriac AK, Nandu NS and Leone JP: Central
nervous system metastases from triple-negative breast cancer:
Current treatments and future prospective. Breast Cancer (Dove Med
Press). 14:1–13. 2022.PubMed/NCBI
|
|
67
|
Dogra N, Kumar A and Mukhopadhyay T:
Fenbendazole acts as a moderate microtubule destabilizing agent and
causes cancer cell death by modulating multiple cellular pathways.
Sci Rep. 8:119262018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Mirzaei R, Afaghi A, Babakhani S, Sohrabi
MR, Hosseini-Fard SR, Babolhavaeji K, Khani Ali Akbari S,
Yousefimashouf R and Karampoor S: Role of microbiota-derived
short-chain fatty acids in cancer development and prevention.
Biomed Pharmacother. 139:1116192021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Feitelson MA, Arzumanyan A, Medhat A and
Spector I: Short-chain fatty acids in cancer pathogenesis. Cancer
Metastasis Rev. 42:677–698. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Dutta J, Tripathi S and Dutta PK: Progress
in antimicrobial activities of chitin, chitosan and its
oligosaccharides: A systematic study needs for food applications.
Food Sci Technol Int. 18:3–34. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Nagatani K, Wang S, Llado V, Lau CW, Li Z,
Mizoguchi A, Nagler CR, Shibata Y, Reinecker HC, Mora JR and
Mizoguchi E: Chitin microparticles for the control of intestinal
inflammation. Inflamm Bowel Dis. 18:1698–1710. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Tedelind S, Westberg F, Kjerrulf M and
Vidal A: Anti-inflammatory properties of the short-chain fatty
acids acetate and propionate: A study with relevance to
inflammatory bowel disease. World J Gastroenterol. 13:2826–2832.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Liu Q, Tian X, Maruyama D, Arjomandi M and
Prakash A: Lung immune tone via gut-lung axis: Gut-derived LPS and
short-chain fatty acids' immunometabolic regulation of lung IL-1β,
FFAR2 and FFAR3 expression. Am J Physiol Lung Cell Mol Physiol.
321:L65–L68. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Logsdon AF, Erickson MA, Rhea EM, Salameh
TS and Banks WA: Gut reactions: How the blood-brain barrier
connects the microbiome and the brain. Exp Biol Med (Maywood).
243:159–165. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Hirschhaeuser F, Menne H, Dittfeld C, West
J, Mueller-Klieser W and Kunz-Schughart LA: Multicellular tumor
spheroids: An underestimated tool is catching up again. J
Biotechnol. 148:3–15. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Edmondson R, Broglie JJ, Adcock AF and
Yang L: Three-dimensional cell culture systems and their
applications in drug discovery and cell-based biosensors. Assay
Drug Dev Technol. 12:207–218. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Riedl A, Schlederer M, Pudelko K, Stadler
M, Walter S, Unterleuthner D, Unger C, Kramer N, Hengstschläger M,
Kenner L, et al: Comparison of cancer cells in 2D vs 3D culture
reveals differences in AKT-mTOR-S6K signaling and drug responses. J
Cell Sci. 130:203–218. 2017.PubMed/NCBI
|
|
78
|
Rahimifard M, Bagheri Z, Hadjighassem M,
Jaktaji RP, Behroodi E, Haghi-Aminjan H, Movahed MA, Latifi H,
Hosseindoost S, Zarghi A and Pourahmad J: Investigation of
anti-cancer effects of new pyrazino[1,2-a]benzimidazole derivatives
on human glioblastoma cells through 2D in vitro model and
3D-printed microfluidic device. Life Sci. 302:1205052022.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhang X, Zhao J, Gao X, Pei D and Gao C:
Anthelmintic drug albendazole arrests human gastric cancer cells at
the mitotic phase and induces apoptosis. Exp Ther Med. 13:595–603.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Liu H, Sun H, Zhang B, Liu S, Deng S, Weng
Z, Zuo B, Yang J and He Y: 18F-FDG PET imaging for
monitoring the early anti-tumor effect of albendazole on
triple-negative breast cancer. Breast Cancer. 27:372–380. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Dogra N and Mukhopadhyay T: Impairment of
the ubiquitin-proteasome pathway by methyl
N-(6-phenylsulfanyl-1H-benzimidazol-2-yl)carbamate leads to a
potent cytotoxic effect in tumor cells: A novel antiproliferative
agent with a potential therapeutic implication. J Biol Chem.
287:30625–30640. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Pinto LC, Mesquita FP, Soares BM, da Silva
EL, Puty B, de Oliveira EHC, Burbano RR and Montenegro RC:
Mebendazole induces apoptosis via C-MYC inactivation in malignant
ascites cell line (AGP01). Toxicol In Vitro. 60:305–312. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chen Q, Li Y, Zhou X and Li R:
Oxibendazole inhibits prostate cancer cell growth. Oncol Lett.
15:2218–2226. 2018.PubMed/NCBI
|
|
84
|
Zhou F, Du J and Wang J: Albendazole
inhibits HIF-1α-dependent glycolysis and VEGF expression in
non-small cell lung cancer cells. Mol Cell Biochem. 428:171–178.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Sung SJ, Kim HK, Hong YK and Joe YA:
Autophagy is a potential target for enhancing the anti-angiogenic
effect of mebendazole in endothelial cells. Biomol Ther (Seoul).
27:117–125. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kralova V, Hanušová V, Caltová K, Špaček
P, Hochmalová M, Skálová L and Rudolf E: Flubendazole and
mebendazole impair migration and epithelial to mesenchymal
transition in oral cell lines. Chem Biol Interact. 293:124–132.
2018. View Article : Google Scholar : PubMed/NCBI
|