Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
February-2024 Volume 51 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2024 Volume 51 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.xlsx
    • Supplementary_Data2.xlsx
Article Open Access

Exploration of anti‑osteosarcoma activity of asiatic acid based on network pharmacology and in vitro experiments

  • Authors:
    • He Pang
    • Hang Wu
    • Zeyu Zhan
    • Tingrui Wu
    • Min Xiang
    • Zhiyan Wang
    • Lijun Song
    • Bo Wei
  • View Affiliations / Copyright

    Affiliations: Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China, Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
    Copyright: © Pang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 33
    |
    Published online on: December 28, 2023
       https://doi.org/10.3892/or.2023.8692
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteosarcomas are malignant bone tumors that typically originate in the epiphyses of the long bones of the extremities in adolescents. Asiatic acid has been reported to possess anti‑inflammatory, neuroprotective, antidiabetic, antitumor and antimicrobial activities. The present study used a combination of network pharmacological prediction and in vitro experimental validation to explore the potential pharmacological mechanism of asiatic acid against osteosarcoma. A total of 78 potential asiatic acid targets in osteosarcoma were identified using databases. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the PI3K/AKT and MAPK signaling pathways are essential in the treatment of osteosarcoma with asiatic acid. Molecular docking revealed binding of asiatic acid to EGFR, Caspase‑3, ESR1, HSP90AA1, IL‑6 and SRC proteins. asiatic acid inhibited proliferation through G2/M cell cycle arrest in osteosarcoma cells. In addition, asiatic acid induced mitochondria‑dependent apoptosis as demonstrated by increases in Bax and VDAC1 expression, and a decrease in Bcl‑2 protein expression. The increased autophagosomes, increased LC3‑II/I ratios and decreased p62 expression in the treatment group indicated that asiatic acid triggered autophagy. In addition, asiatic acid decreased the levels of phosphorylated (p‑)PI3K/PI3K and p‑AKT/AKT, increased reactive oxygen species (ROS) and upregulated the levels of p‑ERK1/2/ERK1/2, p‑p38/p38 and p‑JNK/JNK in osteosarcoma cells. These results demonstrated that asiatic acid inhibited osteosarcoma cells proliferation by inhibiting PI3K/AKT and activating ROS/MAPK signaling pathways, suggesting asiatic acid is a potential agent against osteosarcoma.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Karadurmus N, Sahin U, Bahadir Basgoz B and Demirer T: Is there a role of high dose chemotherapy and autologous stem cell transplantation in the treatment of Ewing's sarcoma and osteosarcomas? J BUON. 23:1235–1241. 2018.PubMed/NCBI

2 

Zhu T, Han J, Yang L, Cai Z, Sun W, Hua Y and Xu J: Immune microenvironment in osteosarcoma: Components, therapeutic strategies and clinical applications. Front Immunol. 13:9075502022. View Article : Google Scholar : PubMed/NCBI

3 

Zheng C, Tang F, Min L, Hornicek F, Duan Z and Tu C: PTEN in osteosarcoma: Recent advances and the therapeutic potential. Biochim Biophys Acta Rev Cancer. 1874:1884052020. View Article : Google Scholar : PubMed/NCBI

4 

Cortini M, Avnet S and Baldini N: Mesenchymal stroma: Role in osteosarcoma progression. Cancer Lett. 405:90–99. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Mutsaers A and Walkley C: Cells of origin in osteosarcoma: Mesenchymal stem cells or osteoblast committed cells? Bone. 62:56–63. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Cascini C and Chiodoni C: The immune landscape of osteosarcoma: Implications for prognosis and treatment response. Cells. 10:16682021. View Article : Google Scholar : PubMed/NCBI

7 

Ghafouri-Fard S, Shirvani-Farsani Z, Hussen B and Taheri M: The critical roles of lncRNAs in the development of osteosarcoma. Biomed Pharmacother. 135:1112172021. View Article : Google Scholar : PubMed/NCBI

8 

Osborne T and Khanna C: A review of the association between osteosarcoma metastasis and protein translation. J Comp Pathol. 146:132–142. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Chen C, Xie L, Ren T, Huang Y, Xu J and Guo W: Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett. 500:1–10. 2021. View Article : Google Scholar : PubMed/NCBI

10 

Prudowsky Z and Yustein J: Recent insights into therapy resistance in osteosarcoma. Cancers (Basel). 13:832020. View Article : Google Scholar : PubMed/NCBI

11 

Berner K, Johannesen TB, Berner A, Haugland HK, Bjerkehagen B, Bøhler PJ and Bruland ØS: Time-trends on incidence and survival in a nationwide and unselected cohort of patients with skeletal osteosarcoma. Acta Oncol. 54:25–33. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Grinberg S, Posta A, Weber K and Wilson R: Limb salvage and reconstruction options in osteosarcoma. Adv Exp Med Biol. 1257:13–29. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Bielack S, Jürgens H, Jundt G, Kevric M, Kühne T, Reichardt P, Zoubek A, Werner M, Winkelmann W and Kotz R: Osteosarcoma: The COSS experience. Cancer Treat Res. 152:289–308. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Bielack S, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K, Kotz R, Salzer-Kuntschik M, Werner M, Winkelmann W, et al: Prognostic factors in high-grade osteosarcoma of the extremities or trunk: An analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 20:776–790. 2002. View Article : Google Scholar : PubMed/NCBI

15 

Kager L, Zoubek A, Kastner U, Kempf-Bielack B, Potratz J, Kotz R, Exner GU, Franzius C, Lang S, Maas R, et al: Skip metastases in osteosarcoma: Experience of the cooperative osteosarcoma study group. J Clin Oncol. 24:1535–1541. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Zhang Y, Lou Y, Wang J, Yu C and Shen W: Research status and molecular mechanism of the traditional chinese medicine and antitumor therapy combined strategy based on tumor microenvironment. Front Immunol. 11:6097052020. View Article : Google Scholar : PubMed/NCBI

17 

Mioc M, Milan A, Malița D, Mioc A, Prodea A, Racoviceanu R, Ghiulai R, Cristea A, Căruntu F and Șoica C: Recent advances regarding the molecular mechanisms of triterpenic acids: A review (Part I). Int J Mol Sci. 23:77402022. View Article : Google Scholar : PubMed/NCBI

18 

Hong G, Zhou L, Han X, Sun P, Chen Z, He W, Tickner J, Chen L, Shi X and Xu J: Asiatic acid inhibits OVX-induced osteoporosis and osteoclastogenesis regulating RANKL-mediated NF-κb and Nfatc1 signaling pathways. Front Pharmacol. 11:3312020. View Article : Google Scholar : PubMed/NCBI

19 

Sycz Z, Tichaczek-Goska D and Wojnicz D: Anti-planktonic and Anti-biofilm properties of pentacyclic triterpenes-asiatic acid and ursolic acid as promising antibacterial future pharmaceuticals. Biomolecules. 12:982022. View Article : Google Scholar : PubMed/NCBI

20 

Songvut P, Chariyavilaskul P, Tantisira M and Khemawoot P: Safety and pharmacokinetics of standardized extract of centella asiatica (ECa 233) Capsules in healthy thai volunteers: A phase 1 clinical study. Planta Med. 85:483–490. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Palmer N and Kaldis P: Less-well known functions of cyclin/CDK complexes. Semin Cell Dev Biol. 107:54–62. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Jirawatnotai S, Dalton S and Wattanapanitch M: Role of cyclins and cyclin-dependent kinases in pluripotent stem cells and their potential as a therapeutic target. Semin Cell Dev Biol. 107:63–71. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Liu W, Jin W, Zhu S, Chen Y and Liu B: Targeting regulated cell death (RCD) with small-molecule compounds in cancer therapy: A revisited review of apoptosis, autophagy-dependent cell death and necroptosis. Drug Discov Today. 27:612–625. 2022. View Article : Google Scholar : PubMed/NCBI

24 

Morana O, Wood W and Gregory C: The apoptosis paradox in cancer. Int J Mol Sci. 23:13282022. View Article : Google Scholar : PubMed/NCBI

25 

Carneiro B and El-Deiry WS: Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 17:395–417. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Fulda S: Targeting extrinsic apoptosis in cancer: Challenges and opportunities. Semin Cell Dev Biol. 39:20–25. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Tan Y, Zhang X, Zhang S, Zhu T, Garg M, Lobie PE and Pandey V: Mitochondria: The metabolic switch of cellular oncogenic transformation. Biochim Biophys Acta Rev Cancer. 1876:1885342021. View Article : Google Scholar : PubMed/NCBI

28 

Noguchi M, Hirata N, Tanaka T, Suizu F, Nakajima H and Chiorini J: Autophagy as a modulator of cell death machinery. Cell Death Dis. 11:5172020. View Article : Google Scholar : PubMed/NCBI

29 

Gerada C and Ryan K: Autophagy, the innate immune response and cancer. Mol Oncol. 14:1913–1929. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Braicu C, Zanoaga O, Zimta AA, Tigu AB, Kilpatrick KL, Bishayee A, Nabavi SM and Berindan-Neagoe I: Natural compounds modulate the crosstalk between apoptosis- and autophagy-regulated signaling pathways: Controlling the uncontrolled expansion of tumor cells. Semin Cancer Biol. 80:218–236. 2022. View Article : Google Scholar : PubMed/NCBI

31 

du Plessis M, Davis T, Loos B, Pretorius E, de Villiers W and Engelbrecht A: Molecular regulation of autophagy in a pro-inflammatory tumour microenvironment: New insight into the role of serum amyloid A. Cytokine Growth Factor Rev. 59:71–83. 2021. View Article : Google Scholar : PubMed/NCBI

32 

Jing Y, Liang W, Liu J, Zhang L, Wei J, Yang J, Zhang Y and Huang Z: Autophagy-mediating microRNAs in cancer chemoresistance. Cell Biol Toxicol. 36:517–536. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Miller D and Thorburn A: Autophagy and organelle homeostasis in cancer. Dev Cell. 56:906–918. 2021. View Article : Google Scholar : PubMed/NCBI

34 

Ning B, Liu Y, Huang T and Wei Y: Autophagy and its role in osteosarcoma. Cancer Med. 12:5676–5687. 2023. View Article : Google Scholar : PubMed/NCBI

35 

Das C, Banerjee I and Mandal M: Pro-survival autophagy: An emerging candidate of tumor progression through maintaining hallmarks of cancer. Semin Cancer Biol. 66:59–74. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Long M and McWilliams T: Monitoring autophagy in cancer: From bench to bedside. Semin Cancer Biol. 66:12–21. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Gupta R, Ambasta R and Pravir K: Autophagy and apoptosis cascade: Which is more prominent in neuronal death? Cell Mol Life Sci. 78:8001–8047. 2021. View Article : Google Scholar : PubMed/NCBI

38 

Liu K, Ren T, Huang Y, Sun K, Bao X, Wang S, Zheng B and Guo W: Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma. Cell Death Dis. 8:e30152017. View Article : Google Scholar : PubMed/NCBI

39 

Hao DC and Xiao P: Network pharmacology: A Rosetta stone for traditional Chinese medicine. Drug Dev Res. 75:299–312. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Stanzione F, Giangreco I and Cole J: Use of molecular docking computational tools in drug discovery. Prog Med Chem. 60:273–343. 2021. View Article : Google Scholar : PubMed/NCBI

41 

Bock FJ and Tait SWG: Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 21:85–100. 2020. View Article : Google Scholar : PubMed/NCBI

42 

42. Mariño G, Niso-Santano M, Baehrecke E and Kroemer G: Self-consumption: The interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 15:81–94. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Su Z, Yang Z, Xu Y, Chen Y and Yu Q: Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer. 14:482015. View Article : Google Scholar : PubMed/NCBI

44 

Ritter J and Bielack S: Osteosarcoma. Ann Oncol. 21 (Suppl 7):vii320–vii325. 2010. View Article : Google Scholar : PubMed/NCBI

45 

A sleeping beauty screen highlights cancer drivers in osteosarcoma. Cancer Discov. 5:6902015. View Article : Google Scholar

46 

Spalato M and Italiano A: The safety of current pharmacotherapeutic strategies for osteosarcoma. Expert Opin Drug Safety. 20:427–438. 2021. View Article : Google Scholar : PubMed/NCBI

47 

Sevelda F, Mayr L, Kubista B, Lötsch D, van Schoonhoven S, Windhager R, Pirker C, Micksche M and Berger W: EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance. J Exp Clin Cancer Res. 34:1342015. View Article : Google Scholar : PubMed/NCBI

48 

Kato S, Lippman S, Flaherty K and Kurzrock R: The conundrum of genetic ‘Drivers’ in benign conditions. J Natl Cancer Inst. 108:djw0362016. View Article : Google Scholar : PubMed/NCBI

49 

Wang W, Zhao HF, Yao TF and Gong H: Advanced development of ErbB family-targeted therapies in osteosarcoma treatment. Invest New Drugs. 37:175–183. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Wan Z, Huang S, Mo F, Yao Y, Liu G, Han Z, Chen M and Zhiyun L: CSN5 controls the growth of osteosarcoma via modulating the EGFR/PI3K/Akt axis. Exp Cell Res. 384:1116462019. View Article : Google Scholar : PubMed/NCBI

51 

Kersting C, Gebert C, Agelopoulos K, Schmidt H, van Diest PJ, Juergens H, Winkelmann W, Kevric M, Gosheger G, Brandt B, et al: Epidermal growth factor receptor expression in high-grade osteosarcomas is associated with a good clinical outcome. Clin Cancer Res. 13:2998–3005. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Wang SL, Zhong GX, Wang XW, Yu FQ, Weng DF, Wang XX and Lin JH: Prognostic significance of the expression of HER family members in primary osteosarcoma. Oncol Lett. 16:2185–2194. 2018.PubMed/NCBI

53 

Yadav P, Yadav R, Jain S and Vaidya A: Caspase-3: A primary target for natural and synthetic compounds for cancer therapy. Chem Biol Drug Des. 98:144–165. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Wang J, Chen C, Chen C, Wu P and Chen WM: Suppression of estrogen receptor alpha inhibits cell proliferation, differentiation and enhances the chemosensitivity of P53-positive U2OS osteosarcoma cell. Int J Mol Sci. 22:112382021. View Article : Google Scholar : PubMed/NCBI

55 

Taipale M, Jarosz D and Lindquist S: HSP90 at the hub of protein homeostasis: Emerging mechanistic insights. Nat Rev Mol Cell Biol. 11:515–528. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Zhang M, Peng Y, Yang Z, Zhang H, Xu C, Liu L, Zhao Q, Wu J, Wang H and Liu J: DAB2IP down-regulates HSP90AA1 to inhibit the malignant biological behaviors of colorectal cancer. BMC Cancer. 22:5612022. View Article : Google Scholar : PubMed/NCBI

57 

Chu S, Liu Y, Zhang L, Liu B and Li L, Shi JZ and Li L: Regulation of survival and chemoresistance by HSP90AA1 in ovarian cancer SKOV3 cells. Mol Biol Rep. 40:1–6. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Xiao X, Wang W, Li Y, Yang D, Li X, Shen C, Liu Y, Ke X, Guo S and Guo Z: HSP90AA1-mediated autophagy promotes drug resistance in osteosarcoma. J Exp Clin Cancer Res. 37:2012018. View Article : Google Scholar : PubMed/NCBI

59 

Szulc-Kielbik I, Kielbik M, Nowak M and Klink M: The implication of IL-6 in the invasiveness and chemoresistance of ovarian cancer cells. Systematic review of its potential role as a biomarker in ovarian cancer patients. Biochim Biophys Acta Rev Cancer. 1876:1886392021. View Article : Google Scholar : PubMed/NCBI

60 

Tzeng HE, Tsai CH, Chang ZL, Su CM, Wang SW, Hwang WL and Tang CH: Interleukin-6 induces vascular endothelial growth factor expression and promotes angiogenesis through apoptosis signal-regulating kinase 1 in human osteosarcoma. Biochem Pharmacol. 85:531–540. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Itoh H, Kadomatsu T, Tanoue H, Yugami M, Miyata K, Endo M, Morinaga J, Kobayashi E, Miyamoto T, Kurahashi R, et al: TET2-dependent IL-6 induction mediated by the tumor microenvironment promotes tumor metastasis in osteosarcoma. Oncogene. 37:2903–2920. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Zhang C, Ma K and Li WY: IL-6 promotes cancer stemness and oncogenicity in U2OS and MG-63 Osteosarcoma Cells by Upregulating the OPN-STAT3 pathway. J Cancer. 10:6511–6525. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Parkin A, Man J, Timpson P and Pajic M: Targeting the complexity of Src signalling in the tumour microenvironment of pancreatic cancer: From mechanism to therapy. FEBS J. 286:3510–3539. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Yang Z, Xie J, Fang J, Lv M, Yang M, Deng Z, Xie Y and Cai L: Nigericin exerts anticancer effects through inhibition of the SRC/STAT3/BCL-2 in osteosarcoma. Biochem Pharmacol. 198:1149382022. View Article : Google Scholar : PubMed/NCBI

65 

Urciuoli E, Coletta I, Rizzuto E, De Vito R, Petrini S, D'Oria V, Pezzullo M, Milano GM, Cozza R, Locatelli F and Peruzzi B: Src nuclear localization and its prognostic relevance in human osteosarcoma. J Cell Physiol. 233:1658–1670. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Zhao G, Gao Z, Zhang Q, Tang XF, Lv YF, Zhang ZS, Zhang Y, Tan QL, Peng DB, Jiang DM and Guo QN: TSSC3 promotes autophagy via inactivating the Src-mediated PI3K/Akt/mTOR pathway to suppress tumorigenesis and metastasis in osteosarcoma, and predicts a favorable prognosis. J Exp Clin Cancer Res. 37:1882018. View Article : Google Scholar : PubMed/NCBI

67 

Klein MJ: Cyclin-dependent kinase inhibition: An opportunity to target protein-protein interactions. Adv Protein Chem Struct Biol. 121:115–141. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Zou T and Lin Z: The involvement of ubiquitination machinery in cell cycle regulation and cancer progression. Int J Mol Sci. 22:57542021. View Article : Google Scholar : PubMed/NCBI

69 

Han C, Wang Z, Chen S, Li L, Xu Y, Kang W, Wei C, Ma H, Wang M and Jin X: Berbamine suppresses the progression of bladder cancer by modulating the ROS/NF-κ B axis. Oxid Med Cell Longev. 2021:88517632021. View Article : Google Scholar : PubMed/NCBI

70 

Fischer M and Müller GJ: Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol. 52:638–662. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Zhang C, Huang C, Yang P, Li C and Li M: Eldecalcitol induces apoptosis and autophagy in human osteosarcoma MG-63 cells by accumulating ROS to suppress the PI3K/Akt/mTOR signaling pathway. Cell Signal. 78:1098412021. View Article : Google Scholar : PubMed/NCBI

72 

Wirries A, Jabari S, Jansen EP, Roth S, Figueroa-Juárez E, Wissniowski TT, Neureiter D, Klieser E, Lechler P, Ruchholtz S, et al: Panobinostat mediated cell death: A novel therapeutic approach for osteosarcoma. Oncotarget. 9:32997–33010. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Mickymaray S, Alfaiz FA, Paramasivam A, Veeraraghavan VP, Periadurai ND, Surapaneni KM and Niu G: Rhaponticin suppresses osteosarcoma through the inhibition of PI3K-Akt-mTOR pathway. Saudi J Biol Sci. 28:3641–3649. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Tung FI, Chen LC, Wang YC, Chen MH, Shueng PW and Liu TY: Using a hybrid radioenhancer to discover tumor cell-targeted treatment for osteosarcoma: An in vitro study. Curr Med Chem. 28:3877–3889. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Burke PJ: Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer. 3:857–870. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Praharaj PP, Naik PP, Panigrahi DP, Bhol CS, Mahapatra KK, Patra S, Sethi G and Bhutia SK: Intricate role of mitochondrial lipid in mitophagy and mitochondrial apoptosis: Its implication in cancer therapeutics. Cell Mol Life Sci. 76:1641–1652. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Gibson CJ and Davids MS: BCL-2 antagonism to target the intrinsic mitochondrial pathway of apoptosis. Clin Cancer Res. 21:5021–5029. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Shoshan-Barmatz V, Shteinfer-Kuzmine A and Verma A: VDAC1 at the intersection of cell metabolism, apoptosis, and diseases. Biomolecules. 10:14852020. View Article : Google Scholar : PubMed/NCBI

79 

Shoshan-Barmatz V, Krelin Y and Chen Q: VDAC1 as a player in mitochondria-mediated apoptosis and target for modulating apoptosis. Curr Med Chem. 24:4435–4446. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Shoshan-Barmatz V, De S and Meir A: The mitochondrial voltage-dependent anion channel 1, Ca2+ transport, apoptosis, and their regulation. Front Oncol. 7:602017. View Article : Google Scholar : PubMed/NCBI

81 

Shoshan-Barmatz V, Krelin Y, Shteinfer-Kuzmine A and Arif T: Voltage-dependent anion channel 1 as an emerging drug target for novel anti-cancer therapeutics. Front Oncol. 7:1542017. View Article : Google Scholar : PubMed/NCBI

82 

Xia H, Green D and Zou W: Autophagy in tumour immunity and therapy. Nat Rev Cancer. 21:281–297. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Levy J, Towers C and Thorburn A: Targeting autophagy in cancer. Nat Rev Cancer. 17:528–542. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Jacquet M, Guittaut M, Fraichard A and Despouy G: The functions of Atg8-family proteins in autophagy and cancer: Linked or unrelated? Autophagy. 17:599–611. 2021. View Article : Google Scholar : PubMed/NCBI

85 

Heckmann BL and Green DR: LC3-associated phagocytosis at a glance. J Cell Sci. 132:2019. View Article : Google Scholar

86 

Moscat J, Karin M and Diaz-Meco MT: p62 in cancer: Signaling adaptor beyond autophagy. Cell. 167:606–609. 2016. View Article : Google Scholar : PubMed/NCBI

87 

He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW and Li B: Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 6:4252021. View Article : Google Scholar : PubMed/NCBI

88 

Zhang J, Yu X, Yan Y, Wang C and Wang WJ: PI3K/Akt signaling in osteosarcoma. Clin Chim Acta. 444:182–192. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Liu M, Liu F, Li YJ, Yin JN, Gao YL, Wang XY, Yang C, Liu JG and Li HJ: Ginsenoside Rg5 inhibits human osteosarcoma cell proliferation and induces cell apoptosis through PI3K/Akt/mTORC1-Related LC3 autophagy pathway. Oxid Med Cell Longev. 2021:50403262021.PubMed/NCBI

90 

Angulo P, Kaushik G, Subramaniam D, Dandawate P, Neville K, Chastain K and Anant S: Natural compounds targeting major cell signaling pathways: A novel paradigm for osteosarcoma therapy. J Hematol Oncol. 10:102017. View Article : Google Scholar : PubMed/NCBI

91 

Khezri MR, Jafari R, Yousefi K and Zolbanin NM: The PI3K/AKT signaling pathway in cancer: Molecular mechanisms and possible therapeutic interventions. Exp Mol Pathol. 127:1047872022. View Article : Google Scholar : PubMed/NCBI

92 

Rezatabar S, Karimian A, Rameshknia V, Parsian H, Majidinia M, Kopi TA, Bishayee A, Sadeghinia A, Yousefi M, Monirialamdari M and Yousefi B: RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J Cell Physiol. 234:14951–14965. 2019. View Article : Google Scholar : PubMed/NCBI

93 

Wagner E and Nebreda AR: Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 9:537–549. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Ding S, Pang ZY, Chen XM, Li Z, Liu XX, Zhai QL, Huang JM and Ruan ZY: Urolithin a attenuates IL-1β-induced inflammatory responses and cartilage degradation via inhibiting the MAPK/NF-κB signaling pathways in rat articular chondrocytes. J Inflamm (Lond). 17:132020. View Article : Google Scholar : PubMed/NCBI

95 

Lv H, Zhen C, Liu J and Shang PJ: β-Phenethyl isothiocyanate induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the MAPK signaling pathway. Oxid Med Cell Longev. 2020:50219832020. View Article : Google Scholar : PubMed/NCBI

96 

Zhu J, Yu W, Liu B, Wang Y, Shao J, Wang J, Xia K, Liang C, Fang W, Zhou C and Tao H: Escin induces caspase-dependent apoptosis and autophagy through the ROS/p38 MAPK signalling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 8:e31132017. View Article : Google Scholar : PubMed/NCBI

97 

Chen X, Han D, Liu T, Huang C, Hu Z, Tan X and Wu S: Asiatic acid improves high-fat-diet-induced osteoporosis in mice via regulating SIRT1/FOXO1 signaling and inhibiting oxidative stress. Histol Histopathol. 37:769–777. 2022.PubMed/NCBI

98 

Huang X, Zuo L, Lv Y, Chen C, Yang Y, Xin H, Li Y and Qian Y: Asiatic acid attenuates myocardial ischemia/reperfusion injury via Akt/GSK-3β/HIF-1α signaling in rat H9c2 cardiomyocytes. Molecules. 21:12482016. View Article : Google Scholar : PubMed/NCBI

99 

Qi Z, Ci X, Huang J, Liu Q, Yu Q, Zhou J and Deng X: Asiatic acid enhances Nrf2 signaling to protect HepG2 cells from oxidative damage through Akt and ERK activation. Biomed Pharmacother. 88:252–259. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Xu Y, Yao J, Zou C, Zhang H, Zhang S, Liu J, Ma G, Jiang P and Zhang W: Asiatic acid protects against hepatic ischemia/reperfusion injury by inactivation of Kupffer cells via PPARγ/NLRP3 inflammasome signaling pathway. Oncotarget. 8:86339–86355. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Dutta S, Chakraborty P, Basak S, Ghosh S, Ghosh N, Chatterjee S, Dewanjee S and Sil PC: Synthesis, characterization, and evaluation of in vitro cytotoxicity and in vivo antitumor activity of asiatic acid-loaded poly lactic-co-glycolic acid nanoparticles: A strategy of treating breast cancer. Life Sci. 307:1208762022. View Article : Google Scholar : PubMed/NCBI

102 

Wu T, Geng J, Guo W, Gao J and Zhu XJ: Asiatic acid inhibits lung cancer cell growth in vitro and in vivo by destroying mitochondria. Acta Pharm Sin B. 7:65–72. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Park B, Bosire K, Lee E, Lee Y and Kim JJ: Asiatic acid induces apoptosis in SK-MEL-2 human melanoma cells. Cancer Lett. 218:81–90. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Pang H, Wu H, Zhan Z, Wu T, Xiang M, Wang Z, Song L and Wei B: Exploration of anti‑osteosarcoma activity of asiatic acid based on network pharmacology and <em>in vitro</em> experiments. Oncol Rep 51: 33, 2024.
APA
Pang, H., Wu, H., Zhan, Z., Wu, T., Xiang, M., Wang, Z. ... Wei, B. (2024). Exploration of anti‑osteosarcoma activity of asiatic acid based on network pharmacology and <em>in vitro</em> experiments. Oncology Reports, 51, 33. https://doi.org/10.3892/or.2023.8692
MLA
Pang, H., Wu, H., Zhan, Z., Wu, T., Xiang, M., Wang, Z., Song, L., Wei, B."Exploration of anti‑osteosarcoma activity of asiatic acid based on network pharmacology and <em>in vitro</em> experiments". Oncology Reports 51.2 (2024): 33.
Chicago
Pang, H., Wu, H., Zhan, Z., Wu, T., Xiang, M., Wang, Z., Song, L., Wei, B."Exploration of anti‑osteosarcoma activity of asiatic acid based on network pharmacology and <em>in vitro</em> experiments". Oncology Reports 51, no. 2 (2024): 33. https://doi.org/10.3892/or.2023.8692
Copy and paste a formatted citation
x
Spandidos Publications style
Pang H, Wu H, Zhan Z, Wu T, Xiang M, Wang Z, Song L and Wei B: Exploration of anti‑osteosarcoma activity of asiatic acid based on network pharmacology and <em>in vitro</em> experiments. Oncol Rep 51: 33, 2024.
APA
Pang, H., Wu, H., Zhan, Z., Wu, T., Xiang, M., Wang, Z. ... Wei, B. (2024). Exploration of anti‑osteosarcoma activity of asiatic acid based on network pharmacology and <em>in vitro</em> experiments. Oncology Reports, 51, 33. https://doi.org/10.3892/or.2023.8692
MLA
Pang, H., Wu, H., Zhan, Z., Wu, T., Xiang, M., Wang, Z., Song, L., Wei, B."Exploration of anti‑osteosarcoma activity of asiatic acid based on network pharmacology and <em>in vitro</em> experiments". Oncology Reports 51.2 (2024): 33.
Chicago
Pang, H., Wu, H., Zhan, Z., Wu, T., Xiang, M., Wang, Z., Song, L., Wei, B."Exploration of anti‑osteosarcoma activity of asiatic acid based on network pharmacology and <em>in vitro</em> experiments". Oncology Reports 51, no. 2 (2024): 33. https://doi.org/10.3892/or.2023.8692
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team