Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
February-2024 Volume 51 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2024 Volume 51 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Roles of Rictor alterations in gastrointestinal tumors (Review)

  • Authors:
    • Ruizhen Cao
    • Shuilong Guo
    • Li Min
    • Peng Li
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
    Copyright: © Cao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 37
    |
    Published online on: January 4, 2024
       https://doi.org/10.3892/or.2024.8696
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Gastrointestinal tumors account for five of the top 10 causes of mortality from all cancers (colorectal, liver, stomach, esophageal and pancreatic cancer). Mammalian target of rapamycin (mTOR) signaling is commonly dysregulated in various human cancers. As a core component of the mTOR complex 2 (mTORC2), Rictor is a key effector molecule of the PI3K/Akt pathway. A high alteration rate of Rictor has been observed in gastrointestinal tumors, and such Rictor alterations are often associated with resistance to chemotherapy and related adverse clinical outcomes. However, the exact roles of Rictor in gastrointestinal tumors remain elusive. The aim of the present study was to critically discuss the following: i) Mutation and biological characteristics of Rictor in tumors with a detailed overview of Rictor in cell proliferation, angiogenesis, apoptosis, autophagy and drug resistance; ii) the role of Rictor in tumors of the digestive system, particularly colorectal, hepatobiliary, gastric, esophageal and pancreatic cancer and cholangiocarcinoma; and iii) the current status and prospects of targeted therapy for Rictor by inhibiting Akt activation. Despite the growing realization of the importance of Rictor/mTORC2 in cancer, the underlying mechanistic details remain poorly understood; this needs to change in order for the development of efficient targeted therapies and re‑sensitization of therapy‑resistant cancers to be made possible.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Yang L, Ying X, Liu S, Lyu G, Xu Z, Zhang X, Li H, Li Q, Wang N and Ji J: Gastric cancer: Epidemiology, risk factors and prevention strategies. Chin J Cancer Res. 32:695–704. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Lu L, Mullins CS, Schafmayer C, Zeißig S and Linnebacher M: A global assessment of recent trends in gastrointestinal cancer and lifestyle-associated risk factors. Cancer Commun (Lond). 41:1137–1151. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Hou J, He Z, Liu T, Chen D, Wang B, Wen Q and Zheng X: Evolution of molecular targeted cancer therapy: Mechanisms of drug resistance and novel opportunities identified by CRISPR-Cas9 Screening. Front Oncol. 12:7550532022. View Article : Google Scholar : PubMed/NCBI

5 

Zhao D, Jiang M, Zhang X and Hou H: The role of Rictor amplification in targeted therapy and drug resistance. Mol Med. 26:202020. View Article : Google Scholar : PubMed/NCBI

6 

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al: The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2:401–404. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Bian Y, Wang Z, Xu J, Zhao W, Cao H and Zhang Z: Elevated Rictor expression is associated with tumor progression and poor prognosis in patients with gastric cancer. Biochem Biophys Res Commun. 464:534–540. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Wang LF, Chen HJ, Yu JL, Qi J, Lin XH and Zou ZW: Expression of Rictor and mTOR in colorectal cancer and their clinical significance. Nan Fang Yi Ke Da Xue Xue Bao. 36:396–400. 2016.(In Chinese). PubMed/NCBI

9 

Jiang WJ, Feng RX, Liu JT, Fan LL, Wang H and Sun GP: RICTOR expression in esophageal squamous cell carcinoma and its clinical significance. Med Oncol. 34:322017. View Article : Google Scholar : PubMed/NCBI

10 

Beauchamp EM and Platanias LC: The evolution of the TOR pathway and its role in cancer. Oncogene. 32:3923–3932. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Murugan AK: mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol. 59:92–111. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Gaubitz C, Prouteau M, Kusmider B and Loewith R: TORC2 structure and function. Trends Biochem Sci. 41:532–545. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P and Sabatini DM: Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 14:1296–1302. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Zhou P, Zhang N, Nussinov R and Ma B: Defining the domain arrangement of the mammalian target of rapamycin complex component rictor protein. J Comput Biol. 22:876–886. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Wang MC, Wu AG, Huang YZ, Shao GL, Ji SF, Wang RW, Yuan HJ, Fan XL, Zheng LH and Jiao QL: Autophagic regulation of cell growth by altered expression of Beclin 1 in triple-negative breast cancer. Int J Clin Exp Med. 8:7049–7058. 2015.PubMed/NCBI

16 

Sui H, Shi C, Yan Z and Li H: Combination of erlotinib and a PARP inhibitor inhibits growth of A2780 tumor xenografts due to increased autophagy. Drug Des Devel Ther. 9:3183–3190. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Fan H, Jiang M, Li B, He Y, Huang C, Luo D, Xu H, Yang L and Zhou J: MicroRNA-let-7a regulates cell autophagy by targeting Rictor in gastric cancer cell lines MGC-803 and SGC-7901. Oncol Rep. 39:1207–1214. 2018.PubMed/NCBI

18 

Seo SU, Woo SM, Lee HS, Kim SH, Min KJ and Kwon TK: mTORC1/2 inhibitor and curcumin induce apoptosis through lysosomal membrane permeabilization-mediated autophagy. Oncogene. 37:5205–5220. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Liu Y, Sun Y and Zhao A: MicroRNA-134 suppresses cell proliferation in gastric cancer cells via targeting of GOLPH3. Oncol Rep. 37:2441–2448. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Sarbassov DD, Guertin DA, Ali SM and Sabatini DM: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Hresko RC and Mueckler M: mTOR. Rictor is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem. 280:40406–40416. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Yuan TL and Cantley LC: PI3K pathway alterations in cancer: Variations on a theme. Oncogene. 27:5497–5510. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Treins C, Warne PH, Magnuson MA, Pende M and Downward J: Rictor is a novel target of p70 S6 kinase-1. Oncogene. 29:1003–1016. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Lang F, Strutz-Seebohm N, Seebohm G and Lang UE: Significance of SGK1 in the regulation of neuronal function. J Physiol. 588:3349–3354. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Leong ML, Maiyar AC, Kim B, O'Keeffe BA and Firestone GL: Expression of the serum- and glucocorticoid-inducible protein kinase, Sgk, is a cell survival response to multiple types of environmental stress stimuli in mammary epithelial cells. J Biol Chem. 278:5871–5882. 2003. View Article : Google Scholar : PubMed/NCBI

26 

García-Martínez Juan M and Alessi Dario R: mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J. 416:375–385. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Zhao L, Zhu L, Oh YT, Qian G, Chen Z and Sun SY: Rictor, an essential component of mTOR complex 2, undergoes caspase-mediated cleavage during apoptosis induced by multiple stimuli. Apoptosis. 26:338–347. 2021. View Article : Google Scholar : PubMed/NCBI

28 

Wen FF, Li XY, Li YY, He S, Xu XY, Liu YH, Liu L and Wu SH: Expression of Raptor and Rictor and their relationships with angiogenesis in colorectal cancer. Neoplasma. 67:501–508. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Cao RZ, Min L, Liu S, Tian RY, Jiang HY, Liu J, Shao LL, Cheng R, Zhu ST, Guo SL and Li P: Rictor activates Cav 1 through the Akt signaling pathway to inhibit the apoptosis of gastric cancer cells. Front Oncol. 11:6414532021. View Article : Google Scholar : PubMed/NCBI

30 

Liu H, Zang H, Kong J and Gong L: In vivo and impact of miRNA-153 on the suppression of cell growth apoptosis through mTORC2 signaling pathway in breast cancer. J Recept Signal Transduct Res. 42:390–398. 2022. View Article : Google Scholar : PubMed/NCBI

31 

Hou B, Liu S, Li E and Jiang X: Different role of raptor and rictor in regulating Rasfonin-Induced autophagy and apoptosis in renal carcinoma cells. Chem Biodivers. 17:e20007432020. View Article : Google Scholar : PubMed/NCBI

32 

Lu Z, Shi X, Gong F, Li S, Wang Y, Ren Y, Zhang M, Yu B, Li Y, Zhao W, et al: Rictor/mTORC2 affects tumorigenesis and therapeutic efficacy of mTOR inhibitors in esophageal squamous cell carcinoma. Acta Pharm Sin B. 10:1004–1019. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Wang F, Lou X, Zou Y, Hu D, Liu J, Ning J, Jiao Y, Zhang Z, Yang F, Fan L, et al: Overexpression of Rictor protein and Rictor-H. pylori interaction has impact on tumor progression and prognosis in patients with gastric cancer. Folia Histochem Cytobiol. 58:96–107. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Wang S, Amato KR, Song W, Youngblood V, Lee K, Boothby M, Brantley-Sieders DM and Chen J: Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways. Mol Cell Biol. 35:1299–1313. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Liang X, Sun R, Zhao X, Zhang Y, Gu Q, Dong X, Zhang D, Sun J and Sun B: Rictor regulates the vasculogenic mimicry of melanoma via the Akt-MMP-2/9 pathway. J Cell Mol Med. 21:3579–3591. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Guan B, Wu K, Zeng J, Xu S, Mu L, Gao Y, Wang K, Ma Z, Tian J, Shi Q, et al: Tumor-suppressive microRNA-218 inhibits tumor angiogenesis via targeting the mTOR component Rictor in prostate cancer. Oncotarget. 8:8162–8172. 2027. View Article : Google Scholar

37 

Dormond O, Contreras AG, Meijer E, Datta D and Flynn E: CD40-induced signaling in human endothelial cells results in mTORC2- and Akt-dependent expression of vascular endothelial growth factor in vitro and in vivo. J Immunol. 181:8088–8095. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Alizadeh AM, Shiri S and Farsinejad S: Metastasis review: From bench to bedside. Tumour Biol. 35:8483–8523. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ and Sabatini DM: Ablation in mice of the mTORC components raptor, Rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell. 11:859–871. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Hua H, Kong Q, Zhang H, Wang J, Luo T and Jiang Y: Targeting mTOR for cancer therapy. J Hematol Oncol. 12:712019. View Article : Google Scholar : PubMed/NCBI

41 

Agarwal NK, Chen CH, Cho H, Boulbès DR, Spooner E and Sarbassov DD: Rictor regulates cell migration by suppressing RhoGDI2. Oncogene. 32:2521–2526. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Agarwal NK, Kazyken D and Sarbassov dos D: Rictor encounters RhoGDI2: The second pilot is taking a lead. Small GTPases. 4:102–105. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Savukaitytė A, Gudoitytė G, Bartnykaitė A, Ugenskienė R and Juozaitytė E: siRNA knockdown of REDD1 facilitates aspirin-mediated dephosphorylation of mTORC1 target 4E-BP1 in MDA-MB-468 human breast cancer cell line. Cancer Manag Res. 13:1123–1133. 2021. View Article : Google Scholar : PubMed/NCBI

44 

Wei F, Zhang Y, Geng L, Zhang P, Wang G and Liu Y: mTOR inhibition induces EGFR feedback activation in association with its resistance to human pancreatic cancer. Int J Mol Sci. 16:3267–3282. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Lang SA, Hackl C, Moser C, Fichtner-Feigl S, Koehl GE, Schlitt HJ, Geissler EK and Stoeltzing O: Implication of Rictor in the mTOR inhibitor-mediated induction of insulin-like growth factor-I receptor (IGF-IR) and human epidermal growth factor receptor-2 (HER2) expression in gastrointestinal cancer cells. Biochim Biophys Acta. 1803:435–442. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Yin Y, Hua H, Li M, Liu S, Kong Q, Shao T, Wang J, Luo Y, Wang Q, Luo T, et al: mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of Mtor. Cell Res. 26:46–65. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Hossain MS, Karuniawati H, Jairoun AA, Urbi Z, Ooi J, John A, Lim YC, Kibria KMK, Mohiuddin AKM, Ming LC, et al: Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers (Basel). 14:17322022. View Article : Google Scholar : PubMed/NCBI

48 

Bellier J, Nokin MJ, Caprasse M, Tiamiou A, Blomme A, Scheijen JL, Koopmansch B, MacKay GM, Chiavarina B, Costanza B, et al: Methylglyoxal scavengers resensitize KRAS-Mutated colorectal tumors to cetuximab. Cell Rep. 30:1400–1416.e6. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Shuhua W, Chenbo S, Yangyang L, Xiangqian G, Shuang H, Tangyue L and Dong T: Autophagy-related genes Raptor, Rictor, and Beclin 1 expression and relationship with multidrug resistance in colorectal carcinoma. Hum Pathol. 46:1752–1759. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Wei Y, Tang X, Ren Y, Yang Y, Song F, Fu J, Liu S, Yu M, Chen J, Wang S, et al: An RNA-RNA crosstalk network involving HMGB1 and RICTOR facilitates hepatocellular carcinoma tumorigenesis by promoting glutamine metabolism and impedes immunotherapy by PD-L1+ exosomes activity. Signal Transduct Target Ther. 6:4212021. View Article : Google Scholar : PubMed/NCBI

51 

Reyes-Gordillo K, Shah R, Arellanes-Robledo J, Cheng Y, Ibrahim J and Tuma PL: Akt1 and Akt2 isoforms play distinct roles in regulating the development of inflammation and fibrosis associated with alcoholic liver disease. Cells. 8:13372019. View Article : Google Scholar : PubMed/NCBI

52 

Guri Y, Colombi M, Dazert E, Hindupur SK, Roszik J, Moes S, Jenoe P, Heim MH, Riezman I, Riezman H and Hall MN: mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell. 32:807–823.e12. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Dong X, Feng M, Yang H, Liu H, Guo H, Gao X, Liu Y, Liu R, Zhang N, Chen R and Kong R: Rictor promotes cell migration and actin polymerization through regulating ABLIM1 phosphorylation in Hepatocellular Carcinoma. Int J Biol Sci. 16:2835–2852. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Hu J, Che L, Li L, Pilo MG, Cigliano A, Ribback S, Li X, Latte G, Mela M, Evert M, et al: Co-activation of Akt and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice. Sci Rep. 6:204842016. View Article : Google Scholar : PubMed/NCBI

55 

Villanueva A, Chiang DY, Newell P, Peix J, Thung S, Alsinet C, Tovar V, Roayaie S, Minguez B, Sole M, et al: Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology. 135:1972–1983. 1983.e1–e11. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Xu Z, Xu M, Liu P, Zhang S, Shang R, Qiao Y, Che L, Ribback S, Cigliano A, Evert K, et al: The mTORC2-Akt1 Cascade Is Crucial for c-Myc to Promote Hepatocarcinogenesis in Mice and Humans. Hepatology. 70:1600–1613. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Lin XM, Hu L, Gu J, Wang RY, Li L, Tang J, Zhang BH, Yan XZ, Zhu YJ, Hu CL, et al: Choline Kinase α mediates interactions between the epidermal growth factor receptor and mechanistic target of rapamycin complex 2 in hepatocellular carcinoma cells to promote drug resistance and xenograft tumor progression. Gastroenterology. 152:1187–1202. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Joechle K, Guenzle J, Hellerbrand C, Strnad P, Cramer T, Neumann UP and Lang SA: Role of mammalian target of rapamycin complex 2 in primary and secondary liver cancer. World J Gastrointest Oncol. 13:1632–1647. 2021. View Article : Google Scholar : PubMed/NCBI

59 

Yokoi K, Kobayashi A, Motoyama H, Kitazawa M, Shimizu A, Notake T, Yokoyama T, Matsumura T, Takeoka M and Miyagawa SI: Survival pathway of cholangiocarcinoma via Akt/mTOR signaling to escape RAF/MEK/ERK pathway inhibition by sorafenib. Oncol Rep. 39:843–850. 2018.PubMed/NCBI

60 

Hou G, Zhao Q, Zhang M, Fan T, Liu M, Shi X, Ren Y, Wang Y, Zhou J and Lu Z: Down-regulation of Rictor enhances cell sensitivity to PI3K inhibitor LY294002 by blocking mTORC2-medicated phosphorylation of Akt/PRAS40 in esophageal squamous cell carcinoma. Biomed Pharmacother. 106:1348–1356. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Kim ST, Kim SY, Klempner SJ, Yoon J, Kim N, Ahn S, Bang H, Kim KM, Park W, Park SH, et al: Rapamycin-insensitive companion of mTOR (RICTOR) amplification defines a subset of advanced gastric cancer and is sensitive to AZD2014-mediated mTORC1/2 inhibition. Ann Oncol. 28:547–554. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Schmidt KM, Hellerbrand C, Ruemmele P, Michalski CW, Kong B, Kroemer A, Hackl C, Schlitt HJ, Geissler EK and Lang SA: Inhibition of mTORC2 component Rictor impairs tumor growth in pancreatic cancer models. Oncotarget. 8:24491–24505. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Mpilla GB, Uddin MH, Al-Hallak MN, Aboukameel A, Li Y, Kim SH, Beydoun R, Dyson G, Baloglu E, Senapedis WT, et al: PAK4-NAMPT dual inhibition sensitizes pancreatic neuroendocrine tumors to everolimus. Mol Cancer Ther. 20:1836–1845. 2021. View Article : Google Scholar : PubMed/NCBI

65 

Zhao Y, Schoeps B, Yao D, Zhang Z, Schuck K, Tissen V, Jäger C, Schlitter AM, van der Kammen R, Ludwig C, et al: mTORC1 and mTORC2 Converge on the Arp2/3 complex to promote Kras-induced Acinar-to-ductal metaplasia and early pancreatic carcinogenesis. Gastroenterology. 160:1755–1770.e17. 2021. View Article : Google Scholar : PubMed/NCBI

66 

Zhang X, Chu J, Sun H, Zhao D, Ma B, Xue D, Zhang W and Li Z: MiR-155 aggravates impaired autophagy of pancreatic acinar cells through targeting Rictor. Acta Biochim Biophys Sin (Shanghai). 52:192–199. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Elia A, Henry-Grant R, Adiseshiah C, Marboeuf C, Buckley RJ, Clemens MJ, Mudan S and Pyronnet S: Implication of 4E-BP1 protein dephosphorylation and accumulation in pancreatic cancer cell death induced by combined gemcitabine and TRAIL. Cell Death Dis. 8:32042017. View Article : Google Scholar : PubMed/NCBI

68 

Eng CP, Sehgal SN and Vézina C: Activity of rapamycin (AY-22,989) against transplanted tumors. J Antibiot (Tokyo). 37:1231–1237. 1984. View Article : Google Scholar : PubMed/NCBI

69 

Chiarini F, Evangelisti C, McCubrey JA and Martelli AM: Current treatment strategies for inhibiting Mtor in cancer. Trends Pharmacol Sci. 36:124–35. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Wu SH, Bi JF, Cloughesy T, Cavenee WK and Mischel PS: Emerging function of mTORC2 as a core regulator in Glioblastoma: Metabolic reprogramming and drug resistance. Cancer Biol Med. 11:255–263. 2014.PubMed/NCBI

71 

Masui K, Harachi M, Cavenee WK, Mischel PS and Shibata N: mTOR Complex 2 is an integrator of cancer metabolism and epigenetics. Cancer Lett. 478:1–7. 2020. View Article : Google Scholar : PubMed/NCBI

72 

Zhou HY and Huang SL: Current development of the second generation of mTOR inhibitors as anticancer agents. Chin J Cancer. 31:8–18. 2012.PubMed/NCBI

73 

Hu Y, Zhang K, Zhu X, Zheng X, Wang C, Niu X, Jiang T, Ji X, Zhao W, Pang L, et al: Synergistic inhibition of drug-resistant colon cancer growth with PI3K/mTOR dual inhibitor BEZ235 and Nano-emulsioned paclitaxel via reducing multidrug resistance and promoting apoptosis. Int J Nanomedicine. 16:2173–2186. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Hermanowicz JM, Kalaska B, Pawlak K, Sieklucka B, Miklosz J, Mojzych M and Pawlak D: Preclinical toxicity and safety of MM-129-First-in-Class BTK/PD-L1 inhibitor as a potential candidate against colon cancer. Pharmaceutics. 13:12222021. View Article : Google Scholar : PubMed/NCBI

75 

Foley TM, Payne SN, Pasch CA, Yueh AE, Van De Hey DR, Korkos DP, Clipson L, Maher ME, Matkowskyj KA, Newton MA and Deming DA: APC dual PI3K/mTOR inhibition in colorectal cancers with and mutations. Mol Cancer Res. 15:317–327. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Lou J, Lv JX, Zhang YP and Liu ZJ: OSI-027 inhibits the tumorigenesis of colon cancer through mediation of c-Myc/FOXO3a/PUMA axis. Cell Biol Int. 46:1204–1214. 2022. View Article : Google Scholar : PubMed/NCBI

77 

Wang H, Liu Y, Ding J, Huang Y, Liu J, Liu N, Ao Y, Hong Y, Wang L, Zhang L, et al: Targeting mTOR suppressed colon cancer growth through 4EBP1/eIF4E/PUMA pathway. Cancer Gene Ther. 27:448–460. 2020. View Article : Google Scholar : PubMed/NCBI

78 

Chang GR, Kuo CY, Tsai MY, Lin WL, Lin TC, Liao HJ, Chen CH and Wang YC: Anti-cancer effects of zotarolimus combined with 5-fluorouracil treatment in HCT-116 colorectal cancer-bearing BALB/c Nude Mice. Molecules. 26:46832021. View Article : Google Scholar : PubMed/NCBI

79 

Rashid MM, Lee H and Jung BH: Evaluation of the antitumor effects of PP242 in a colon cancer xenograft mouse model using comprehensive metabolomics and lipidomics. Sci Rep. 10:175232020. View Article : Google Scholar : PubMed/NCBI

80 

Wang L, Zhu YR, Wang S and Zhao S: Autophagy inhibition sensitizes WYE-354-induced anti-colon cancer activity in vitro and in vivo. Tumor Biol. 37:11743–11752. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Chen Y, Lee CH, Tseng BY, Tsai YH, Tsai HW, Yao CL and Tseng SH: AZD8055 exerts antitumor effects on colon cancer cells by inhibiting mTOR and Cell-cycle Progression. Anticancer Res. 38:1445–1454. 2018.PubMed/NCBI

82 

Jin ZZ, Wang W, Fang DL and Jin YJ: mTOR inhibition sensitizes ONC201-induced anti-colorectal cancer cell activity. Biochem Biophys Res Commun. 478:1515–1520. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Nguyen DQ, Hoang DH, Nelson M, Nigam L, Nguyen VTT, Zhang L, Pham TKT, Ho HD, Nguyen DDT, Lam TQ, et al: Requirement of GTP binding for TIF-90-regulated ribosomal RNA synthesis and oncogenic activities in human colon cancer cells. J Cell Physiol. 235:7567–7579. 2020. View Article : Google Scholar : PubMed/NCBI

84 

Reita D, Bour C, Benbrika R, Groh A, Pencreach E, Guérin E and Guenot D: Synergistic Anti-tumor effect of mTOR inhibitors with irinotecan on colon cancer cells. Cancers (Basel). 11:15812019. View Article : Google Scholar : PubMed/NCBI

85 

Wang Y, Miao X, Jiang Y, Wu Z, Zhu X, Liu H, Wu X, Cai J, Ding X and Gong W: The synergistic antitumor effect of IL-6 neutralization with NVP-BEZ235 in hepatocellular carcinoma. Cell Death Dis. 13:1462022. View Article : Google Scholar : PubMed/NCBI

86 

Narahara S, Watanabe T, Nagaoka K, Fujimoto N, Furuta Y, Tanaka K, Tokunaga T, Kawasaki T, Yoshimaru Y, Setoyama H, et al: Clusterin and related scoring index as potential early predictors of response to sorafenib in hepatocellular carcinoma. Hepatol Commun. 6:1198–1212. 2022. View Article : Google Scholar : PubMed/NCBI

87 

Cao W, Liu X, Zhang Y, Li A, Xie Y, Zhou S, Song L, Xu R, Ma Y, Cai S and Tang X: BEZ235 increases the sensitivity of hepatocellular carcinoma to sorafenib by inhibiting PI3K/Akt/mTOR and inducing autophagy. Biomed Res Int. 2021:55563062021. View Article : Google Scholar : PubMed/NCBI

88 

Liang Y, Xie C, Li A, Huo Z, Wu B, Cai S, Cao W, Ma Y, Xu R, Jiang Z, et al: Anti-GPC3 Antibody-Conjugated BEZ235 loaded polymeric nanoparticles (Ab-BEZ235-NP) enhances radiosensitivity in hepatocellular carcinoma cells by inhibition of DNA double-strand break repair. J Biomed Nanotechnol. 16:446–455. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Xie Z, Wang J, Liu M, Chen D, Qiu C and Sun K: CC-223 blocks mTORC1/C2 activation and inhibits human hepatocellular carcinoma cells in vitro and in vivo. PLoS One. 12:e01732522017. View Article : Google Scholar : PubMed/NCBI

90 

Choi HJ, Park JH, Kim OH, Kim KH, Hong HE, Seo H and Kim SJ: Combining Everolimus and Ku0063794 Promotes apoptosis of hepatocellular carcinoma cells via reduced autophagy resulting from diminished expression of miR-4790-3p. Int J Mol Sci. 22:28592021. View Article : Google Scholar : PubMed/NCBI

91 

Yongxi T, Haijun H, Jiaping Z, Guoliang S and Hongying P: Autophagy inhibition sensitizes KU-0063794-mediated anti-HepG2 hepatocellular carcinoma cell activity in vitro and in vivo. Biochem Biophys Res Commun. 465:494–500. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Zhen MC, Wang FQ, Wu SF, Zhao YL, Liu PG and Yin ZY: Identification of mTOR as a primary resistance factor of the IAP antagonist AT406 in hepatocellular carcinoma cells. Oncotarget. 8:9466–9475. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Kaneya Y, Takata H, Wada R, Kure S, Ishino K, Kudo M, Kondo R, Taniai N, Ohashi R, Yoshida H and Naito Z: Inhibitor for protein disulfide-isomerase family A member 3 enhances the antiproliferative effect of inhibitor for mechanistic target of rapamycin in liver cancer: An study on combination treatment with everolimus and 16F16. Oncol Lett. 21:282021. View Article : Google Scholar : PubMed/NCBI

94 

Navarro-Villarán E, de la Cruz-Ojeda P, Contreras L, González R, Negrete M, Rodríguez-Hernández MA, Marín-Gómez LM, Álamo-Martínez JM, Calvo A, Gómez-Bravo MA, et al: Molecular pathways leading to induction of cell death and anti-proliferative properties by tacrolimus and mTOR inhibitors in liver cancer cells. Cell Physiol Biochem. 54:457–473. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Zhang S, Song X, Cao D, Xu Z, Fan B, Che L, Hu J, Chen B, Dong M, Pilo MG, et al: Pan-mTOR inhibitor MLN0128 is effective against intrahepatic cholangiocarcinoma in mice. J Hepatol. 67:1194–1203. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Jee HY, Lee YG, Lee S, Elvira R, Seo HE, Lee JY, Han J and Lee K: Activation of ERK and p38 reduces AZD8055-mediated inhibition of protein synthesis in hepatocellular carcinoma HepG2 cell line. Int J Mol Sci. 22:118242021. View Article : Google Scholar : PubMed/NCBI

97 

Patra T, Meyer K, Ray RB, Kanda T and Ray R: Akt inhibitor augments anti-proliferative efficacy of a dual mTORC1/2 inhibitor by FOXO3a activation in p53 mutated hepatocarcinoma cells. Cell Death Dis. 12:10732021. View Article : Google Scholar : PubMed/NCBI

98 

Liu M, Gu P, Guo W and Fan X: C6 ceramide sensitizes the anti-hepatocellular carcinoma (HCC) activity by AZD-8055, a novel mTORC1/2 dual inhibitor. Tumor Biol. 37:11039–11048. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Peng X, Zhang D, Li Z, Fu M and Liu H: mTOR inhibition sensitizes human hepatocellular carcinoma cells to resminostat. Biochem Biophys Res Commun. 477:556–562. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Weber H, Leal P, Stein S, Kunkel H, García P, Bizama C, Espinoza JA, Riquelme I, Nervi B, Araya JC, et al: Rapamycin and WYE-354 suppress human gallbladder cancer xenografts in mice. Oncotarget. 6:31877–31888. 2015. View Article : Google Scholar : PubMed/NCBI

101 

Li Q, Mou LJ, Tao L, Chen W, Sun XT, Xia XF, Wu XY and Shi XL: Inhibition of mTOR suppresses human gallbladder carcinoma cell proliferation and enhances the cytotoxicity of 5-fluorouracil by downregulating MDR1 expression. Eur Rev Med Pharmacol Sci. 20:1699–1706. 2016.PubMed/NCBI

102 

Mohri D, Ijichi H, Miyabayashi K, Takahashi R, Kudo Y, Sasaki T, Asaoka Y, Tanaka Y, Ikenoue T, Tateishi K, et al: A potent therapeutics for gallbladder cancer by combinatorial inhibition of the MAPK and mTOR signaling networks. J Gastroenterol. 51:711–721. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Yokoyama D, Hisamori S, Deguchi Y, Nishigori T, Okabe H, Kanaya S, Manaka D, Kadokawa Y, Hata H, Minamiguchi S, et al: PTEN is a predictive biomarker of trastuzumab resistance and prognostic factor in HER2-overexpressing gastroesophageal adenocarcinoma. Sci Rep. 11:90132021. View Article : Google Scholar : PubMed/NCBI

104 

Gao F, Li R, Wei PF, Ou L, Li M, Bai Y, Luo WJ and Fan Z: Synergistic anticancer effects of everolimus (RAD001) and Rhein on gastric cancer cells via phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. Bioengineered. 13:6332–6342. 2022. View Article : Google Scholar : PubMed/NCBI

105 

Xu E, Zhu H, Wang F, Miao J, Du S, Zheng C, Wang X, Li Z, Xu F, Xia X and Guan W: OSI-027 alleviates Oxaliplatin Chemoresistance in gastric cancer cells by suppressing P-gp induction. Curr Mol Med. 21:922–930. 2021. View Article : Google Scholar : PubMed/NCBI

106 

Xing X, Zhang L, Wen X, Wang X, Cheng X, Du H, Hu Y, Li L, Dong B, Li Z and Ji J: PP242 suppresses cell proliferation, metastasis, and angiogenesis of gastric cancer through inhibition of the PI3K/Akt/mTOR pathway. Anticancer Drugs. 25:1129–1140. 2014. View Article : Google Scholar : PubMed/NCBI

107 

Zaidi AH, Kosovec JE, Matsui D, Omstead AN, Raj M, Rao RR, Biederman RWW, Finley GG, Landreneau RJ, Kelly RJ and Jobe BA: PI3K/mTOR dual inhibitor, LY3023414, demonstrates potent antitumor efficacy against esophageal adenocarcinoma in a rat model. Ann Surg. 266:91–98. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Du W, Gao A, Herman JG, Wang L, Zhang L, Jiao S and Guo M: Methylation of NRN1 is a novel synthetic lethal marker of PI3K-Akt-mTOR and ATR inhibitors in esophageal cancer. Cancer Sci. 112:2870–2883. 2021. View Article : Google Scholar : PubMed/NCBI

109 

Hou H, Zhao H, Yu X, Cong P, Zhou Y, Jiang Y and Cheng Y: METTL3 promotes the proliferation and invasion of esophageal cancer cells partly through Akt signaling pathway. Pathol Res Pract. 216:1530872020. View Article : Google Scholar : PubMed/NCBI

110 

Lu Z, Zhang Y, Xu Y, Wei H, Zhao W, Wang P, Li Y and Hou G: mTOR inhibitor PP242 increases antitumor activity of sulforaphane by blocking Akt/mTOR pathway in esophageal squamous cell carcinoma. Mol Biol Rep. 49:451–461. 2022. View Article : Google Scholar : PubMed/NCBI

111 

Chen B, Xu M, Zhang H, Xu MZ, Wang XJ, Tang QH and Tang JY: The Antipancreatic cancer activity of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2. DNA Cell Biol. 34:610–617. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Huang B, Wang J, Chen Q, Qu C, Zhang J, Chen E, Zhang Y, Wang Y, Ni L and Liang T: Gemcitabine enhances OSI-027 cytotoxicity by upregulation of miR-663a in pancreatic ductal adenocarcinoma cells. Am J Transl Res. 11:473–485. 2019.PubMed/NCBI

113 

Zhi X, Chen W, Xue F, Liang C, Chen BW, Zhou Y, Wen L, Hu L, Shen J, Bai X and Liang T: OSI-027 inhibits pancreatic ductal adenocarcinoma cell proliferation and enhances the therapeutic effect of gemcitabine both in vitro and in vivo. Oncotarget. 6:26230–26241. 2015. View Article : Google Scholar : PubMed/NCBI

114 

Soares HP, Ni Y, Kisfalvi K, Sinnett-Smith J and Rozengurt E: Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells. PLoS One. 8:e572892013. View Article : Google Scholar : PubMed/NCBI

115 

Peng T and Dou QP: Everolimus inhibits growth of gemcitabine-resistant pancreatic cancer cells via induction of caspase-dependent apoptosis and G2/M arrest. J Cell Biochem. 118:2722–2730. 2017. View Article : Google Scholar : PubMed/NCBI

116 

Hofmann BT, Picksak AS, Kwiatkowski M, Grupp K, Jücker M, Bachmann K, Mercanoglu B, Izbicki JR, Kahlert C, Bockhorn M, et al: Truncated O-GalNAc glycans impact on fundamental signaling pathways in pancreatic cancer. Glycobiology. Aug 18–2021.(Epub ahead of print). doi: 10.1093/glycob/cwab088. View Article : Google Scholar : PubMed/NCBI

117 

Zhu J, Lv J, Chen J, Zhang X and Ji Y: Down-regulated microRNA-223 or elevated ZIC1 inhibits the development of pancreatic cancer via inhibiting PI3K/Akt/mTOR signaling pathway activation. Cell Cycle. 19:2851–2865. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Lewis CS, Elnakat Thomas H, Orr-Asman MA, Green LC, Boody RE, Matiash K, Karve A, Hisada YM, Davis HW, Qi X, et al: mTOR kinase inhibition reduces tissue factor expression and growth of pancreatic neuroendocrine tumors. J Thromb Haemost. 17:169–182. 2019. View Article : Google Scholar : PubMed/NCBI

119 

Conway JRW, Warren SC, Herrmann D, Murphy KJ, Cazet AS, Vennin C, Shearer RF, Killen MJ, Magenau A, Mélénec P, et al: Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Rep. 23:3312–3326. 2018. View Article : Google Scholar : PubMed/NCBI

120 

Sakamoto Y, Yamagishi S, Tanizawa Y, Tajimi M, Okusaka T and Ojima H: PI3K-mTOR pathway identified as a potential therapeutic target in biliary tract cancer using a newly established patient-derived cell panel assay. Jpn J Clin Oncol. 48:396–399. 2018. View Article : Google Scholar : PubMed/NCBI

121 

Joechle K, Jumaa H, Thriene K, Hellerbrand C, Kulemann B, Fichtner-Feigl S, Lang SA and Guenzle J: Dual inhibition of mTORC1/2 reduces migration of cholangiocarcinoma cells by regulation of matrixmetalloproteinases. Front Cell Dev Biol. 9:7859792021. View Article : Google Scholar : PubMed/NCBI

122 

Buzzoni R, Pusceddu S, Bajetta E, De Braud F, Platania M, Iannacone C, Cantore M, Mambrini A, Bertolini A, Alabiso O, et al: Activity and safety of RAD001 (everolimus) in patients affected by biliary tract cancer progressing after prior chemotherapy: A phase II ITMO study. Ann Oncol. 25:1597–1603. 2014. View Article : Google Scholar : PubMed/NCBI

123 

Ewald F, Grabinski N, Grottke A, Windhorst S, Nörz D, Carstensen L, Staufer K, Hofmann BT, Diehl F, David K, et al: Combined targeting of Akt and mTOR using MK-2206 and RAD001 is synergistic in the treatment of cholangiocarcinoma. Int J Cancer. 133:2065–2076. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Rodon J, Dienstmann R, Serra V and Tabernero J: Development of PI3K inhibitors: Lessons learned from early clinical trials. Nat Rev Clin Oncol. 10:143–153. 2013. View Article : Google Scholar : PubMed/NCBI

125 

Stuttfeld E, Aylett CH, Imseng S, Boehringer D, Scaiola A, Sauer E, Hall MN, Maier T and Ban N: Architecture of the human mTORC2 core complex. Elife. 7:e331012018. View Article : Google Scholar : PubMed/NCBI

126 

Benavides-Serrato A, Lee J, Holmes B, Landon KA, Bashir T, Jung ME, Lichtenstein A and Gera J: Specific blockade of Rictor-mTOR association inhibits mTORC2 activity and is cytotoxic in glioblastoma. PLoS One. 12:e01765992017. View Article : Google Scholar : PubMed/NCBI

127 

Werfel TA, Wang S, Jackson MA, Kavanaugh TE, Joly MM, Lee LH, Hicks DJ, Sanchez V, Ericsson PG, Kilchrist KV, et al: Selective mTORC2 inhibitor therapeutically blocks breast cancer cell growth and survival. Cancer Res. 78:1845–1858. 2018. View Article : Google Scholar : PubMed/NCBI

128 

Waldner M, Fantus D, Solari M and Thomson AW: New perspectives on mTOR inhibitors (rapamycin, rapalogs and TORKinibs) in transplantation. Br J Clin Pharmacol. 82:1158–1170. 2016. View Article : Google Scholar : PubMed/NCBI

129 

Yang C and Malarkannan S: Transcriptional regulation of NK cell development by mTOR complexes. Front Cell Dev Biol. 8:5660902020. View Article : Google Scholar : PubMed/NCBI

130 

Yang W, Gorentla B, Zhong XP and Shin J: mTOR and its tight regulation for iNKT cell development and effector function. Mol Immunol. 68:536–545. 2015. View Article : Google Scholar : PubMed/NCBI

131 

Singh Y, Garden OA, Lang F and Cobb BS: MicroRNA-15b/16 enhances the induction of regulatory T cells by regulating the expression of Rictor and mTOR. J Immunol. 195:5667–5677. 2015. View Article : Google Scholar : PubMed/NCBI

132 

Moore KN, Hong DS, Patel MR, Pant S, Ulahannan SV, Jones S, Meric-Bernstam F, Wang JS, Aljumaily R, Hamilton EP, et al: A Phase 1b trial of prexasertib in combination with Standard-of-Care agents in advanced or metastatic cancer. Target Oncol. 16:569–589. 2021. View Article : Google Scholar : PubMed/NCBI

133 

Zhu AX, Kudo M, Assenat E, Cattan S, Kang YK, Lim HY, Poon RT, Blanc JF, Vogel A, Chen CL, et al: Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: The EVOLVE-1 randomized clinical trial. JAMA. 312:57–67. 2014. View Article : Google Scholar : PubMed/NCBI

134 

Geissler EK, Schnitzbauer AA, Zülke C, Lamby PE, Proneth A, Duvoux C, Burra P, Jauch KW, Rentsch M, Ganten TM, et al: Sirolimus use in liver transplant recipients with hepatocellular carcinoma: A randomized, multicenter, open-label phase 3 trial. Transplantation. 100:116–125. 2016. View Article : Google Scholar : PubMed/NCBI

135 

Chung V, Frankel P, Lim D, Yeon C, Leong L, Chao J, Ruel N, Luevanos E, Koehler S, Chung S, et al: Phase Ib trial of mFOLFOX6 and Everolimus (NSC-733504) in patients with metastatic gastroesophageal adenocarcinoma. Oncology. 90:307–312. 2016. View Article : Google Scholar : PubMed/NCBI

136 

Joka M, Boeck S, Zech CJ, Seufferlein T, Wichert Gv, Licht T, Krause A, Jauch KW, Heinemann V and Bruns CJ: Combination of antiangiogenic therapy using the mTOR-inhibitor everolimus and low-dose chemotherapy for locally advanced and/or metastatic pancreatic cancer: A dose-finding study. Anticancer Drugs. 25:1095–1101. 2014. View Article : Google Scholar : PubMed/NCBI

137 

Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, et al: Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res. 69:6232–6240. 2009. View Article : Google Scholar : PubMed/NCBI

138 

Xiao Y, Liu P, Wei J, Zhang X, Guo J and Lin Y: Recent progress in targeted therapy for non-small cell lung cancer. Front Pharmacol. 14:11255472023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Cao R, Guo S, Min L and Li P: Roles of Rictor alterations in gastrointestinal tumors (Review). Oncol Rep 51: 37, 2024.
APA
Cao, R., Guo, S., Min, L., & Li, P. (2024). Roles of Rictor alterations in gastrointestinal tumors (Review). Oncology Reports, 51, 37. https://doi.org/10.3892/or.2024.8696
MLA
Cao, R., Guo, S., Min, L., Li, P."Roles of Rictor alterations in gastrointestinal tumors (Review)". Oncology Reports 51.2 (2024): 37.
Chicago
Cao, R., Guo, S., Min, L., Li, P."Roles of Rictor alterations in gastrointestinal tumors (Review)". Oncology Reports 51, no. 2 (2024): 37. https://doi.org/10.3892/or.2024.8696
Copy and paste a formatted citation
x
Spandidos Publications style
Cao R, Guo S, Min L and Li P: Roles of Rictor alterations in gastrointestinal tumors (Review). Oncol Rep 51: 37, 2024.
APA
Cao, R., Guo, S., Min, L., & Li, P. (2024). Roles of Rictor alterations in gastrointestinal tumors (Review). Oncology Reports, 51, 37. https://doi.org/10.3892/or.2024.8696
MLA
Cao, R., Guo, S., Min, L., Li, P."Roles of Rictor alterations in gastrointestinal tumors (Review)". Oncology Reports 51.2 (2024): 37.
Chicago
Cao, R., Guo, S., Min, L., Li, P."Roles of Rictor alterations in gastrointestinal tumors (Review)". Oncology Reports 51, no. 2 (2024): 37. https://doi.org/10.3892/or.2024.8696
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team