|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Yang L, Ying X, Liu S, Lyu G, Xu Z, Zhang
X, Li H, Li Q, Wang N and Ji J: Gastric cancer: Epidemiology, risk
factors and prevention strategies. Chin J Cancer Res. 32:695–704.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lu L, Mullins CS, Schafmayer C, Zeißig S
and Linnebacher M: A global assessment of recent trends in
gastrointestinal cancer and lifestyle-associated risk factors.
Cancer Commun (Lond). 41:1137–1151. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hou J, He Z, Liu T, Chen D, Wang B, Wen Q
and Zheng X: Evolution of molecular targeted cancer therapy:
Mechanisms of drug resistance and novel opportunities identified by
CRISPR-Cas9 Screening. Front Oncol. 12:7550532022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhao D, Jiang M, Zhang X and Hou H: The
role of Rictor amplification in targeted therapy and drug
resistance. Mol Med. 26:202020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bian Y, Wang Z, Xu J, Zhao W, Cao H and
Zhang Z: Elevated Rictor expression is associated with tumor
progression and poor prognosis in patients with gastric cancer.
Biochem Biophys Res Commun. 464:534–540. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wang LF, Chen HJ, Yu JL, Qi J, Lin XH and
Zou ZW: Expression of Rictor and mTOR in colorectal cancer and
their clinical significance. Nan Fang Yi Ke Da Xue Xue Bao.
36:396–400. 2016.(In Chinese). PubMed/NCBI
|
|
9
|
Jiang WJ, Feng RX, Liu JT, Fan LL, Wang H
and Sun GP: RICTOR expression in esophageal squamous cell carcinoma
and its clinical significance. Med Oncol. 34:322017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Beauchamp EM and Platanias LC: The
evolution of the TOR pathway and its role in cancer. Oncogene.
32:3923–3932. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Murugan AK: mTOR: Role in cancer,
metastasis and drug resistance. Semin Cancer Biol. 59:92–111. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gaubitz C, Prouteau M, Kusmider B and
Loewith R: TORC2 structure and function. Trends Biochem Sci.
41:532–545. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sarbassov DD, Ali SM, Kim DH, Guertin DA,
Latek RR, Erdjument-Bromage H, Tempst P and Sabatini DM: Rictor, a
novel binding partner of mTOR, defines a rapamycin-insensitive and
raptor-independent pathway that regulates the cytoskeleton. Curr
Biol. 14:1296–1302. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhou P, Zhang N, Nussinov R and Ma B:
Defining the domain arrangement of the mammalian target of
rapamycin complex component rictor protein. J Comput Biol.
22:876–886. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wang MC, Wu AG, Huang YZ, Shao GL, Ji SF,
Wang RW, Yuan HJ, Fan XL, Zheng LH and Jiao QL: Autophagic
regulation of cell growth by altered expression of Beclin 1 in
triple-negative breast cancer. Int J Clin Exp Med. 8:7049–7058.
2015.PubMed/NCBI
|
|
16
|
Sui H, Shi C, Yan Z and Li H: Combination
of erlotinib and a PARP inhibitor inhibits growth of A2780 tumor
xenografts due to increased autophagy. Drug Des Devel Ther.
9:3183–3190. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fan H, Jiang M, Li B, He Y, Huang C, Luo
D, Xu H, Yang L and Zhou J: MicroRNA-let-7a regulates cell
autophagy by targeting Rictor in gastric cancer cell lines MGC-803
and SGC-7901. Oncol Rep. 39:1207–1214. 2018.PubMed/NCBI
|
|
18
|
Seo SU, Woo SM, Lee HS, Kim SH, Min KJ and
Kwon TK: mTORC1/2 inhibitor and curcumin induce apoptosis through
lysosomal membrane permeabilization-mediated autophagy. Oncogene.
37:5205–5220. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Liu Y, Sun Y and Zhao A: MicroRNA-134
suppresses cell proliferation in gastric cancer cells via targeting
of GOLPH3. Oncol Rep. 37:2441–2448. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sarbassov DD, Guertin DA, Ali SM and
Sabatini DM: Phosphorylation and regulation of Akt/PKB by the
rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hresko RC and Mueckler M: mTOR. Rictor is
the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J
Biol Chem. 280:40406–40416. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yuan TL and Cantley LC: PI3K pathway
alterations in cancer: Variations on a theme. Oncogene.
27:5497–5510. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Treins C, Warne PH, Magnuson MA, Pende M
and Downward J: Rictor is a novel target of p70 S6 kinase-1.
Oncogene. 29:1003–1016. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lang F, Strutz-Seebohm N, Seebohm G and
Lang UE: Significance of SGK1 in the regulation of neuronal
function. J Physiol. 588:3349–3354. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Leong ML, Maiyar AC, Kim B, O'Keeffe BA
and Firestone GL: Expression of the serum- and
glucocorticoid-inducible protein kinase, Sgk, is a cell survival
response to multiple types of environmental stress stimuli in
mammary epithelial cells. J Biol Chem. 278:5871–5882. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
García-Martínez Juan M and Alessi Dario R:
mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation
and activation of serum- and glucocorticoid-induced protein kinase
1 (SGK1). Biochem J. 416:375–385. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhao L, Zhu L, Oh YT, Qian G, Chen Z and
Sun SY: Rictor, an essential component of mTOR complex 2, undergoes
caspase-mediated cleavage during apoptosis induced by multiple
stimuli. Apoptosis. 26:338–347. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wen FF, Li XY, Li YY, He S, Xu XY, Liu YH,
Liu L and Wu SH: Expression of Raptor and Rictor and their
relationships with angiogenesis in colorectal cancer. Neoplasma.
67:501–508. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cao RZ, Min L, Liu S, Tian RY, Jiang HY,
Liu J, Shao LL, Cheng R, Zhu ST, Guo SL and Li P: Rictor activates
Cav 1 through the Akt signaling pathway to inhibit the apoptosis of
gastric cancer cells. Front Oncol. 11:6414532021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Liu H, Zang H, Kong J and Gong L: In vivo
and impact of miRNA-153 on the suppression of cell growth apoptosis
through mTORC2 signaling pathway in breast cancer. J Recept Signal
Transduct Res. 42:390–398. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hou B, Liu S, Li E and Jiang X: Different
role of raptor and rictor in regulating Rasfonin-Induced autophagy
and apoptosis in renal carcinoma cells. Chem Biodivers.
17:e20007432020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lu Z, Shi X, Gong F, Li S, Wang Y, Ren Y,
Zhang M, Yu B, Li Y, Zhao W, et al: Rictor/mTORC2 affects
tumorigenesis and therapeutic efficacy of mTOR inhibitors in
esophageal squamous cell carcinoma. Acta Pharm Sin B. 10:1004–1019.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang F, Lou X, Zou Y, Hu D, Liu J, Ning J,
Jiao Y, Zhang Z, Yang F, Fan L, et al: Overexpression of Rictor
protein and Rictor-H. pylori interaction has impact on tumor
progression and prognosis in patients with gastric cancer. Folia
Histochem Cytobiol. 58:96–107. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wang S, Amato KR, Song W, Youngblood V,
Lee K, Boothby M, Brantley-Sieders DM and Chen J: Regulation of
endothelial cell proliferation and vascular assembly through
distinct mTORC2 signaling pathways. Mol Cell Biol. 35:1299–1313.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liang X, Sun R, Zhao X, Zhang Y, Gu Q,
Dong X, Zhang D, Sun J and Sun B: Rictor regulates the vasculogenic
mimicry of melanoma via the Akt-MMP-2/9 pathway. J Cell Mol Med.
21:3579–3591. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Guan B, Wu K, Zeng J, Xu S, Mu L, Gao Y,
Wang K, Ma Z, Tian J, Shi Q, et al: Tumor-suppressive microRNA-218
inhibits tumor angiogenesis via targeting the mTOR component Rictor
in prostate cancer. Oncotarget. 8:8162–8172. 2027. View Article : Google Scholar
|
|
37
|
Dormond O, Contreras AG, Meijer E, Datta D
and Flynn E: CD40-induced signaling in human endothelial cells
results in mTORC2- and Akt-dependent expression of vascular
endothelial growth factor in vitro and in vivo. J Immunol.
181:8088–8095. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Alizadeh AM, Shiri S and Farsinejad S:
Metastasis review: From bench to bedside. Tumour Biol.
35:8483–8523. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Guertin DA, Stevens DM, Thoreen CC, Burds
AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ and Sabatini DM:
Ablation in mice of the mTORC components raptor, Rictor, or mLST8
reveals that mTORC2 is required for signaling to Akt-FOXO and
PKCalpha, but not S6K1. Dev Cell. 11:859–871. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hua H, Kong Q, Zhang H, Wang J, Luo T and
Jiang Y: Targeting mTOR for cancer therapy. J Hematol Oncol.
12:712019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Agarwal NK, Chen CH, Cho H, Boulbès DR,
Spooner E and Sarbassov DD: Rictor regulates cell migration by
suppressing RhoGDI2. Oncogene. 32:2521–2526. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Agarwal NK, Kazyken D and Sarbassov dos D:
Rictor encounters RhoGDI2: The second pilot is taking a lead. Small
GTPases. 4:102–105. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Savukaitytė A, Gudoitytė G, Bartnykaitė A,
Ugenskienė R and Juozaitytė E: siRNA knockdown of REDD1 facilitates
aspirin-mediated dephosphorylation of mTORC1 target 4E-BP1 in
MDA-MB-468 human breast cancer cell line. Cancer Manag Res.
13:1123–1133. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wei F, Zhang Y, Geng L, Zhang P, Wang G
and Liu Y: mTOR inhibition induces EGFR feedback activation in
association with its resistance to human pancreatic cancer. Int J
Mol Sci. 16:3267–3282. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lang SA, Hackl C, Moser C, Fichtner-Feigl
S, Koehl GE, Schlitt HJ, Geissler EK and Stoeltzing O: Implication
of Rictor in the mTOR inhibitor-mediated induction of insulin-like
growth factor-I receptor (IGF-IR) and human epidermal growth factor
receptor-2 (HER2) expression in gastrointestinal cancer cells.
Biochim Biophys Acta. 1803:435–442. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yin Y, Hua H, Li M, Liu S, Kong Q, Shao T,
Wang J, Luo Y, Wang Q, Luo T, et al: mTORC2 promotes type I
insulin-like growth factor receptor and insulin receptor activation
through the tyrosine kinase activity of Mtor. Cell Res. 26:46–65.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hossain MS, Karuniawati H, Jairoun AA,
Urbi Z, Ooi J, John A, Lim YC, Kibria KMK, Mohiuddin AKM, Ming LC,
et al: Colorectal cancer: A review of carcinogenesis, global
epidemiology, current challenges, risk factors, preventive and
treatment strategies. Cancers (Basel). 14:17322022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Bellier J, Nokin MJ, Caprasse M, Tiamiou
A, Blomme A, Scheijen JL, Koopmansch B, MacKay GM, Chiavarina B,
Costanza B, et al: Methylglyoxal scavengers resensitize
KRAS-Mutated colorectal tumors to cetuximab. Cell Rep.
30:1400–1416.e6. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Shuhua W, Chenbo S, Yangyang L, Xiangqian
G, Shuang H, Tangyue L and Dong T: Autophagy-related genes Raptor,
Rictor, and Beclin 1 expression and relationship with multidrug
resistance in colorectal carcinoma. Hum Pathol. 46:1752–1759. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wei Y, Tang X, Ren Y, Yang Y, Song F, Fu
J, Liu S, Yu M, Chen J, Wang S, et al: An RNA-RNA crosstalk network
involving HMGB1 and RICTOR facilitates hepatocellular carcinoma
tumorigenesis by promoting glutamine metabolism and impedes
immunotherapy by PD-L1+ exosomes activity. Signal Transduct Target
Ther. 6:4212021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Reyes-Gordillo K, Shah R,
Arellanes-Robledo J, Cheng Y, Ibrahim J and Tuma PL: Akt1 and Akt2
isoforms play distinct roles in regulating the development of
inflammation and fibrosis associated with alcoholic liver disease.
Cells. 8:13372019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Guri Y, Colombi M, Dazert E, Hindupur SK,
Roszik J, Moes S, Jenoe P, Heim MH, Riezman I, Riezman H and Hall
MN: mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell.
32:807–823.e12. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Dong X, Feng M, Yang H, Liu H, Guo H, Gao
X, Liu Y, Liu R, Zhang N, Chen R and Kong R: Rictor promotes cell
migration and actin polymerization through regulating ABLIM1
phosphorylation in Hepatocellular Carcinoma. Int J Biol Sci.
16:2835–2852. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hu J, Che L, Li L, Pilo MG, Cigliano A,
Ribback S, Li X, Latte G, Mela M, Evert M, et al: Co-activation of
Akt and c-Met triggers rapid hepatocellular carcinoma development
via the mTORC1/FASN pathway in mice. Sci Rep. 6:204842016.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Villanueva A, Chiang DY, Newell P, Peix J,
Thung S, Alsinet C, Tovar V, Roayaie S, Minguez B, Sole M, et al:
Pivotal role of mTOR signaling in hepatocellular carcinoma.
Gastroenterology. 135:1972–1983. 1983.e1–e11. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Xu Z, Xu M, Liu P, Zhang S, Shang R, Qiao
Y, Che L, Ribback S, Cigliano A, Evert K, et al: The mTORC2-Akt1
Cascade Is Crucial for c-Myc to Promote Hepatocarcinogenesis in
Mice and Humans. Hepatology. 70:1600–1613. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lin XM, Hu L, Gu J, Wang RY, Li L, Tang J,
Zhang BH, Yan XZ, Zhu YJ, Hu CL, et al: Choline Kinase α mediates
interactions between the epidermal growth factor receptor and
mechanistic target of rapamycin complex 2 in hepatocellular
carcinoma cells to promote drug resistance and xenograft tumor
progression. Gastroenterology. 152:1187–1202. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Joechle K, Guenzle J, Hellerbrand C,
Strnad P, Cramer T, Neumann UP and Lang SA: Role of mammalian
target of rapamycin complex 2 in primary and secondary liver
cancer. World J Gastrointest Oncol. 13:1632–1647. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yokoi K, Kobayashi A, Motoyama H, Kitazawa
M, Shimizu A, Notake T, Yokoyama T, Matsumura T, Takeoka M and
Miyagawa SI: Survival pathway of cholangiocarcinoma via Akt/mTOR
signaling to escape RAF/MEK/ERK pathway inhibition by sorafenib.
Oncol Rep. 39:843–850. 2018.PubMed/NCBI
|
|
60
|
Hou G, Zhao Q, Zhang M, Fan T, Liu M, Shi
X, Ren Y, Wang Y, Zhou J and Lu Z: Down-regulation of Rictor
enhances cell sensitivity to PI3K inhibitor LY294002 by blocking
mTORC2-medicated phosphorylation of Akt/PRAS40 in esophageal
squamous cell carcinoma. Biomed Pharmacother. 106:1348–1356. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kim ST, Kim SY, Klempner SJ, Yoon J, Kim
N, Ahn S, Bang H, Kim KM, Park W, Park SH, et al:
Rapamycin-insensitive companion of mTOR (RICTOR) amplification
defines a subset of advanced gastric cancer and is sensitive to
AZD2014-mediated mTORC1/2 inhibition. Ann Oncol. 28:547–554. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Schmidt KM, Hellerbrand C, Ruemmele P,
Michalski CW, Kong B, Kroemer A, Hackl C, Schlitt HJ, Geissler EK
and Lang SA: Inhibition of mTORC2 component Rictor impairs tumor
growth in pancreatic cancer models. Oncotarget. 8:24491–24505.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Mpilla GB, Uddin MH, Al-Hallak MN,
Aboukameel A, Li Y, Kim SH, Beydoun R, Dyson G, Baloglu E,
Senapedis WT, et al: PAK4-NAMPT dual inhibition sensitizes
pancreatic neuroendocrine tumors to everolimus. Mol Cancer Ther.
20:1836–1845. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhao Y, Schoeps B, Yao D, Zhang Z, Schuck
K, Tissen V, Jäger C, Schlitter AM, van der Kammen R, Ludwig C, et
al: mTORC1 and mTORC2 Converge on the Arp2/3 complex to promote
Kras-induced Acinar-to-ductal metaplasia and early pancreatic
carcinogenesis. Gastroenterology. 160:1755–1770.e17. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang X, Chu J, Sun H, Zhao D, Ma B, Xue
D, Zhang W and Li Z: MiR-155 aggravates impaired autophagy of
pancreatic acinar cells through targeting Rictor. Acta Biochim
Biophys Sin (Shanghai). 52:192–199. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Elia A, Henry-Grant R, Adiseshiah C,
Marboeuf C, Buckley RJ, Clemens MJ, Mudan S and Pyronnet S:
Implication of 4E-BP1 protein dephosphorylation and accumulation in
pancreatic cancer cell death induced by combined gemcitabine and
TRAIL. Cell Death Dis. 8:32042017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Eng CP, Sehgal SN and Vézina C: Activity
of rapamycin (AY-22,989) against transplanted tumors. J Antibiot
(Tokyo). 37:1231–1237. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chiarini F, Evangelisti C, McCubrey JA and
Martelli AM: Current treatment strategies for inhibiting Mtor in
cancer. Trends Pharmacol Sci. 36:124–35. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wu SH, Bi JF, Cloughesy T, Cavenee WK and
Mischel PS: Emerging function of mTORC2 as a core regulator in
Glioblastoma: Metabolic reprogramming and drug resistance. Cancer
Biol Med. 11:255–263. 2014.PubMed/NCBI
|
|
71
|
Masui K, Harachi M, Cavenee WK, Mischel PS
and Shibata N: mTOR Complex 2 is an integrator of cancer metabolism
and epigenetics. Cancer Lett. 478:1–7. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhou HY and Huang SL: Current development
of the second generation of mTOR inhibitors as anticancer agents.
Chin J Cancer. 31:8–18. 2012.PubMed/NCBI
|
|
73
|
Hu Y, Zhang K, Zhu X, Zheng X, Wang C, Niu
X, Jiang T, Ji X, Zhao W, Pang L, et al: Synergistic inhibition of
drug-resistant colon cancer growth with PI3K/mTOR dual inhibitor
BEZ235 and Nano-emulsioned paclitaxel via reducing multidrug
resistance and promoting apoptosis. Int J Nanomedicine.
16:2173–2186. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hermanowicz JM, Kalaska B, Pawlak K,
Sieklucka B, Miklosz J, Mojzych M and Pawlak D: Preclinical
toxicity and safety of MM-129-First-in-Class BTK/PD-L1 inhibitor as
a potential candidate against colon cancer. Pharmaceutics.
13:12222021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Foley TM, Payne SN, Pasch CA, Yueh AE, Van
De Hey DR, Korkos DP, Clipson L, Maher ME, Matkowskyj KA, Newton MA
and Deming DA: APC dual PI3K/mTOR inhibition in colorectal cancers
with and mutations. Mol Cancer Res. 15:317–327. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lou J, Lv JX, Zhang YP and Liu ZJ: OSI-027
inhibits the tumorigenesis of colon cancer through mediation of
c-Myc/FOXO3a/PUMA axis. Cell Biol Int. 46:1204–1214. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wang H, Liu Y, Ding J, Huang Y, Liu J, Liu
N, Ao Y, Hong Y, Wang L, Zhang L, et al: Targeting mTOR suppressed
colon cancer growth through 4EBP1/eIF4E/PUMA pathway. Cancer Gene
Ther. 27:448–460. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chang GR, Kuo CY, Tsai MY, Lin WL, Lin TC,
Liao HJ, Chen CH and Wang YC: Anti-cancer effects of zotarolimus
combined with 5-fluorouracil treatment in HCT-116 colorectal
cancer-bearing BALB/c Nude Mice. Molecules. 26:46832021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Rashid MM, Lee H and Jung BH: Evaluation
of the antitumor effects of PP242 in a colon cancer xenograft mouse
model using comprehensive metabolomics and lipidomics. Sci Rep.
10:175232020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wang L, Zhu YR, Wang S and Zhao S:
Autophagy inhibition sensitizes WYE-354-induced anti-colon cancer
activity in vitro and in vivo. Tumor Biol. 37:11743–11752. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Chen Y, Lee CH, Tseng BY, Tsai YH, Tsai
HW, Yao CL and Tseng SH: AZD8055 exerts antitumor effects on colon
cancer cells by inhibiting mTOR and Cell-cycle Progression.
Anticancer Res. 38:1445–1454. 2018.PubMed/NCBI
|
|
82
|
Jin ZZ, Wang W, Fang DL and Jin YJ: mTOR
inhibition sensitizes ONC201-induced anti-colorectal cancer cell
activity. Biochem Biophys Res Commun. 478:1515–1520. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Nguyen DQ, Hoang DH, Nelson M, Nigam L,
Nguyen VTT, Zhang L, Pham TKT, Ho HD, Nguyen DDT, Lam TQ, et al:
Requirement of GTP binding for TIF-90-regulated ribosomal RNA
synthesis and oncogenic activities in human colon cancer cells. J
Cell Physiol. 235:7567–7579. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Reita D, Bour C, Benbrika R, Groh A,
Pencreach E, Guérin E and Guenot D: Synergistic Anti-tumor effect
of mTOR inhibitors with irinotecan on colon cancer cells. Cancers
(Basel). 11:15812019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang Y, Miao X, Jiang Y, Wu Z, Zhu X, Liu
H, Wu X, Cai J, Ding X and Gong W: The synergistic antitumor effect
of IL-6 neutralization with NVP-BEZ235 in hepatocellular carcinoma.
Cell Death Dis. 13:1462022. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Narahara S, Watanabe T, Nagaoka K,
Fujimoto N, Furuta Y, Tanaka K, Tokunaga T, Kawasaki T, Yoshimaru
Y, Setoyama H, et al: Clusterin and related scoring index as
potential early predictors of response to sorafenib in
hepatocellular carcinoma. Hepatol Commun. 6:1198–1212. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Cao W, Liu X, Zhang Y, Li A, Xie Y, Zhou
S, Song L, Xu R, Ma Y, Cai S and Tang X: BEZ235 increases the
sensitivity of hepatocellular carcinoma to sorafenib by inhibiting
PI3K/Akt/mTOR and inducing autophagy. Biomed Res Int.
2021:55563062021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Liang Y, Xie C, Li A, Huo Z, Wu B, Cai S,
Cao W, Ma Y, Xu R, Jiang Z, et al: Anti-GPC3 Antibody-Conjugated
BEZ235 loaded polymeric nanoparticles (Ab-BEZ235-NP) enhances
radiosensitivity in hepatocellular carcinoma cells by inhibition of
DNA double-strand break repair. J Biomed Nanotechnol. 16:446–455.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Xie Z, Wang J, Liu M, Chen D, Qiu C and
Sun K: CC-223 blocks mTORC1/C2 activation and inhibits human
hepatocellular carcinoma cells in vitro and in vivo. PLoS One.
12:e01732522017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Choi HJ, Park JH, Kim OH, Kim KH, Hong HE,
Seo H and Kim SJ: Combining Everolimus and Ku0063794 Promotes
apoptosis of hepatocellular carcinoma cells via reduced autophagy
resulting from diminished expression of miR-4790-3p. Int J Mol Sci.
22:28592021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yongxi T, Haijun H, Jiaping Z, Guoliang S
and Hongying P: Autophagy inhibition sensitizes KU-0063794-mediated
anti-HepG2 hepatocellular carcinoma cell activity in vitro and in
vivo. Biochem Biophys Res Commun. 465:494–500. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhen MC, Wang FQ, Wu SF, Zhao YL, Liu PG
and Yin ZY: Identification of mTOR as a primary resistance factor
of the IAP antagonist AT406 in hepatocellular carcinoma cells.
Oncotarget. 8:9466–9475. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Kaneya Y, Takata H, Wada R, Kure S, Ishino
K, Kudo M, Kondo R, Taniai N, Ohashi R, Yoshida H and Naito Z:
Inhibitor for protein disulfide-isomerase family A member 3
enhances the antiproliferative effect of inhibitor for mechanistic
target of rapamycin in liver cancer: An study on combination
treatment with everolimus and 16F16. Oncol Lett. 21:282021.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Navarro-Villarán E, de la Cruz-Ojeda P,
Contreras L, González R, Negrete M, Rodríguez-Hernández MA,
Marín-Gómez LM, Álamo-Martínez JM, Calvo A, Gómez-Bravo MA, et al:
Molecular pathways leading to induction of cell death and
anti-proliferative properties by tacrolimus and mTOR inhibitors in
liver cancer cells. Cell Physiol Biochem. 54:457–473. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhang S, Song X, Cao D, Xu Z, Fan B, Che
L, Hu J, Chen B, Dong M, Pilo MG, et al: Pan-mTOR inhibitor MLN0128
is effective against intrahepatic cholangiocarcinoma in mice. J
Hepatol. 67:1194–1203. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Jee HY, Lee YG, Lee S, Elvira R, Seo HE,
Lee JY, Han J and Lee K: Activation of ERK and p38 reduces
AZD8055-mediated inhibition of protein synthesis in hepatocellular
carcinoma HepG2 cell line. Int J Mol Sci. 22:118242021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Patra T, Meyer K, Ray RB, Kanda T and Ray
R: Akt inhibitor augments anti-proliferative efficacy of a dual
mTORC1/2 inhibitor by FOXO3a activation in p53 mutated
hepatocarcinoma cells. Cell Death Dis. 12:10732021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Liu M, Gu P, Guo W and Fan X: C6 ceramide
sensitizes the anti-hepatocellular carcinoma (HCC) activity by
AZD-8055, a novel mTORC1/2 dual inhibitor. Tumor Biol.
37:11039–11048. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Peng X, Zhang D, Li Z, Fu M and Liu H:
mTOR inhibition sensitizes human hepatocellular carcinoma cells to
resminostat. Biochem Biophys Res Commun. 477:556–562. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Weber H, Leal P, Stein S, Kunkel H, García
P, Bizama C, Espinoza JA, Riquelme I, Nervi B, Araya JC, et al:
Rapamycin and WYE-354 suppress human gallbladder cancer xenografts
in mice. Oncotarget. 6:31877–31888. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Li Q, Mou LJ, Tao L, Chen W, Sun XT, Xia
XF, Wu XY and Shi XL: Inhibition of mTOR suppresses human
gallbladder carcinoma cell proliferation and enhances the
cytotoxicity of 5-fluorouracil by downregulating MDR1 expression.
Eur Rev Med Pharmacol Sci. 20:1699–1706. 2016.PubMed/NCBI
|
|
102
|
Mohri D, Ijichi H, Miyabayashi K,
Takahashi R, Kudo Y, Sasaki T, Asaoka Y, Tanaka Y, Ikenoue T,
Tateishi K, et al: A potent therapeutics for gallbladder cancer by
combinatorial inhibition of the MAPK and mTOR signaling networks. J
Gastroenterol. 51:711–721. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yokoyama D, Hisamori S, Deguchi Y,
Nishigori T, Okabe H, Kanaya S, Manaka D, Kadokawa Y, Hata H,
Minamiguchi S, et al: PTEN is a predictive biomarker of trastuzumab
resistance and prognostic factor in HER2-overexpressing
gastroesophageal adenocarcinoma. Sci Rep. 11:90132021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Gao F, Li R, Wei PF, Ou L, Li M, Bai Y,
Luo WJ and Fan Z: Synergistic anticancer effects of everolimus
(RAD001) and Rhein on gastric cancer cells via
phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt)/mammalian
target of rapamycin (mTOR) pathway. Bioengineered. 13:6332–6342.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Xu E, Zhu H, Wang F, Miao J, Du S, Zheng
C, Wang X, Li Z, Xu F, Xia X and Guan W: OSI-027 alleviates
Oxaliplatin Chemoresistance in gastric cancer cells by suppressing
P-gp induction. Curr Mol Med. 21:922–930. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Xing X, Zhang L, Wen X, Wang X, Cheng X,
Du H, Hu Y, Li L, Dong B, Li Z and Ji J: PP242 suppresses cell
proliferation, metastasis, and angiogenesis of gastric cancer
through inhibition of the PI3K/Akt/mTOR pathway. Anticancer Drugs.
25:1129–1140. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zaidi AH, Kosovec JE, Matsui D, Omstead
AN, Raj M, Rao RR, Biederman RWW, Finley GG, Landreneau RJ, Kelly
RJ and Jobe BA: PI3K/mTOR dual inhibitor, LY3023414, demonstrates
potent antitumor efficacy against esophageal adenocarcinoma in a
rat model. Ann Surg. 266:91–98. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Du W, Gao A, Herman JG, Wang L, Zhang L,
Jiao S and Guo M: Methylation of NRN1 is a novel synthetic lethal
marker of PI3K-Akt-mTOR and ATR inhibitors in esophageal cancer.
Cancer Sci. 112:2870–2883. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Hou H, Zhao H, Yu X, Cong P, Zhou Y, Jiang
Y and Cheng Y: METTL3 promotes the proliferation and invasion of
esophageal cancer cells partly through Akt signaling pathway.
Pathol Res Pract. 216:1530872020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Lu Z, Zhang Y, Xu Y, Wei H, Zhao W, Wang
P, Li Y and Hou G: mTOR inhibitor PP242 increases antitumor
activity of sulforaphane by blocking Akt/mTOR pathway in esophageal
squamous cell carcinoma. Mol Biol Rep. 49:451–461. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Chen B, Xu M, Zhang H, Xu MZ, Wang XJ,
Tang QH and Tang JY: The Antipancreatic cancer activity of OSI-027,
a potent and selective inhibitor of mTORC1 and mTORC2. DNA Cell
Biol. 34:610–617. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Huang B, Wang J, Chen Q, Qu C, Zhang J,
Chen E, Zhang Y, Wang Y, Ni L and Liang T: Gemcitabine enhances
OSI-027 cytotoxicity by upregulation of miR-663a in pancreatic
ductal adenocarcinoma cells. Am J Transl Res. 11:473–485.
2019.PubMed/NCBI
|
|
113
|
Zhi X, Chen W, Xue F, Liang C, Chen BW,
Zhou Y, Wen L, Hu L, Shen J, Bai X and Liang T: OSI-027 inhibits
pancreatic ductal adenocarcinoma cell proliferation and enhances
the therapeutic effect of gemcitabine both in vitro and in vivo.
Oncotarget. 6:26230–26241. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Soares HP, Ni Y, Kisfalvi K, Sinnett-Smith
J and Rozengurt E: Different patterns of Akt and ERK feedback
activation in response to rapamycin, active-site mTOR inhibitors
and metformin in pancreatic cancer cells. PLoS One. 8:e572892013.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Peng T and Dou QP: Everolimus inhibits
growth of gemcitabine-resistant pancreatic cancer cells via
induction of caspase-dependent apoptosis and G2/M
arrest. J Cell Biochem. 118:2722–2730. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Hofmann BT, Picksak AS, Kwiatkowski M,
Grupp K, Jücker M, Bachmann K, Mercanoglu B, Izbicki JR, Kahlert C,
Bockhorn M, et al: Truncated O-GalNAc glycans impact on fundamental
signaling pathways in pancreatic cancer. Glycobiology. Aug
18–2021.(Epub ahead of print). doi: 10.1093/glycob/cwab088.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zhu J, Lv J, Chen J, Zhang X and Ji Y:
Down-regulated microRNA-223 or elevated ZIC1 inhibits the
development of pancreatic cancer via inhibiting PI3K/Akt/mTOR
signaling pathway activation. Cell Cycle. 19:2851–2865. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Lewis CS, Elnakat Thomas H, Orr-Asman MA,
Green LC, Boody RE, Matiash K, Karve A, Hisada YM, Davis HW, Qi X,
et al: mTOR kinase inhibition reduces tissue factor expression and
growth of pancreatic neuroendocrine tumors. J Thromb Haemost.
17:169–182. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Conway JRW, Warren SC, Herrmann D, Murphy
KJ, Cazet AS, Vennin C, Shearer RF, Killen MJ, Magenau A, Mélénec
P, et al: Intravital imaging to monitor therapeutic response in
moving hypoxic regions resistant to PI3K pathway targeting in
pancreatic cancer. Cell Rep. 23:3312–3326. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Sakamoto Y, Yamagishi S, Tanizawa Y,
Tajimi M, Okusaka T and Ojima H: PI3K-mTOR pathway identified as a
potential therapeutic target in biliary tract cancer using a newly
established patient-derived cell panel assay. Jpn J Clin Oncol.
48:396–399. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Joechle K, Jumaa H, Thriene K, Hellerbrand
C, Kulemann B, Fichtner-Feigl S, Lang SA and Guenzle J: Dual
inhibition of mTORC1/2 reduces migration of cholangiocarcinoma
cells by regulation of matrixmetalloproteinases. Front Cell Dev
Biol. 9:7859792021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Buzzoni R, Pusceddu S, Bajetta E, De Braud
F, Platania M, Iannacone C, Cantore M, Mambrini A, Bertolini A,
Alabiso O, et al: Activity and safety of RAD001 (everolimus) in
patients affected by biliary tract cancer progressing after prior
chemotherapy: A phase II ITMO study. Ann Oncol. 25:1597–1603. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Ewald F, Grabinski N, Grottke A, Windhorst
S, Nörz D, Carstensen L, Staufer K, Hofmann BT, Diehl F, David K,
et al: Combined targeting of Akt and mTOR using MK-2206 and RAD001
is synergistic in the treatment of cholangiocarcinoma. Int J
Cancer. 133:2065–2076. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Rodon J, Dienstmann R, Serra V and
Tabernero J: Development of PI3K inhibitors: Lessons learned from
early clinical trials. Nat Rev Clin Oncol. 10:143–153. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Stuttfeld E, Aylett CH, Imseng S,
Boehringer D, Scaiola A, Sauer E, Hall MN, Maier T and Ban N:
Architecture of the human mTORC2 core complex. Elife. 7:e331012018.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Benavides-Serrato A, Lee J, Holmes B,
Landon KA, Bashir T, Jung ME, Lichtenstein A and Gera J: Specific
blockade of Rictor-mTOR association inhibits mTORC2 activity and is
cytotoxic in glioblastoma. PLoS One. 12:e01765992017. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Werfel TA, Wang S, Jackson MA, Kavanaugh
TE, Joly MM, Lee LH, Hicks DJ, Sanchez V, Ericsson PG, Kilchrist
KV, et al: Selective mTORC2 inhibitor therapeutically blocks breast
cancer cell growth and survival. Cancer Res. 78:1845–1858. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Waldner M, Fantus D, Solari M and Thomson
AW: New perspectives on mTOR inhibitors (rapamycin, rapalogs and
TORKinibs) in transplantation. Br J Clin Pharmacol. 82:1158–1170.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Yang C and Malarkannan S: Transcriptional
regulation of NK cell development by mTOR complexes. Front Cell Dev
Biol. 8:5660902020. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Yang W, Gorentla B, Zhong XP and Shin J:
mTOR and its tight regulation for iNKT cell development and
effector function. Mol Immunol. 68:536–545. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Singh Y, Garden OA, Lang F and Cobb BS:
MicroRNA-15b/16 enhances the induction of regulatory T cells by
regulating the expression of Rictor and mTOR. J Immunol.
195:5667–5677. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Moore KN, Hong DS, Patel MR, Pant S,
Ulahannan SV, Jones S, Meric-Bernstam F, Wang JS, Aljumaily R,
Hamilton EP, et al: A Phase 1b trial of prexasertib in combination
with Standard-of-Care agents in advanced or metastatic cancer.
Target Oncol. 16:569–589. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Zhu AX, Kudo M, Assenat E, Cattan S, Kang
YK, Lim HY, Poon RT, Blanc JF, Vogel A, Chen CL, et al: Effect of
everolimus on survival in advanced hepatocellular carcinoma after
failure of sorafenib: The EVOLVE-1 randomized clinical trial. JAMA.
312:57–67. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Geissler EK, Schnitzbauer AA, Zülke C,
Lamby PE, Proneth A, Duvoux C, Burra P, Jauch KW, Rentsch M, Ganten
TM, et al: Sirolimus use in liver transplant recipients with
hepatocellular carcinoma: A randomized, multicenter, open-label
phase 3 trial. Transplantation. 100:116–125. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Chung V, Frankel P, Lim D, Yeon C, Leong
L, Chao J, Ruel N, Luevanos E, Koehler S, Chung S, et al: Phase Ib
trial of mFOLFOX6 and Everolimus (NSC-733504) in patients with
metastatic gastroesophageal adenocarcinoma. Oncology. 90:307–312.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Joka M, Boeck S, Zech CJ, Seufferlein T,
Wichert Gv, Licht T, Krause A, Jauch KW, Heinemann V and Bruns CJ:
Combination of antiangiogenic therapy using the mTOR-inhibitor
everolimus and low-dose chemotherapy for locally advanced and/or
metastatic pancreatic cancer: A dose-finding study. Anticancer
Drugs. 25:1095–1101. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Yu K, Toral-Barza L, Shi C, Zhang WG,
Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, et al:
Biochemical, cellular, and in vivo activity of novel
ATP-competitive and selective inhibitors of the mammalian target of
rapamycin. Cancer Res. 69:6232–6240. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Xiao Y, Liu P, Wei J, Zhang X, Guo J and
Lin Y: Recent progress in targeted therapy for non-small cell lung
cancer. Front Pharmacol. 14:11255472023. View Article : Google Scholar : PubMed/NCBI
|