|
1
|
Arora T, Mullangi S and Lekkala MR:
Ovarian Cancer. StatPearls StatPearls Publishing; Treasure Island:
2023
|
|
2
|
Kuroki L and Guntupalli SR: Treatment of
epithelial ovarian cancer. BMJ. 371:m37732020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zheng RS, Zhang SW, Sun KX, Chen R, Wang
SM, Li L, Zeng HM, Wei WW and He J: Cancer statistics in China,
2016. Zhonghua Zhong Liu Za Zhi. 45:212–220. 2023.(In Chinese).
PubMed/NCBI
|
|
4
|
Siegel RL, Miller KD, Wagle NS and Jemal
A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Penny SM: Ovarian Cancer: An Overview.
Radiol Technol. 91:561–575. 2020.PubMed/NCBI
|
|
6
|
Myers JA and Miller JS: Exploring the NK
cell platform for cancer immunotherapy. Nat Rev Clin Oncol.
18:85–100. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Becker PS, Suck G, Nowakowska P, Ullrich
E, Seifried E, Bader P, Tonn T and Seidl C: Selection and expansion
of natural killer cells for NK cell-based immunotherapy. Cancer
Immunol Immunother. 65:477–484. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Geller MA, Knorr DA, Hermanson DA, Pribyl
L, Bendzick L, McCullar V, Miller JS and Kaufman DS:
Intraperitoneal delivery of human natural killer cells for
treatment of ovarian cancer in a mouse xenograft model.
Cytotherapy. 15:1297–1306. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lotzová E, Savary CA, Freedman RS, Edwards
CL and Wharton JT: Recombinant IL-2-activated NK cells mediate LAK
activity against ovarian cancer. Int J Cancer. 42:225–231. 1988.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
da Silva RF, Petta CA, Derchain SF, Alici
E and Guimarães F: Up-regulation of DNAM-1 and NKp30, associated
with improvement of NK cells activation after long-term culture of
mononuclear cells from patients with ovarian neoplasia. Human
Immunol. 75:777–784. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Pandey V, Oyer JL, Igarashi RY, Gitto SB,
Copik AJ and Altomare DA: Anti-ovarian tumor response of donor
peripheral blood mononuclear cells is due to infiltrating cytotoxic
NK cells. Oncotarget. 7:7318–7328. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ma S, Caligiuri MA and Yu J: Harnessing
IL-15 signaling to potentiate NK cell-mediated cancer
immunotherapy. Trends Immunol. 43:833–847. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hoogstad-van Evert JS, Cany J, van den
Brand D, Oudenampsen M, Brock R, Torensma R, Bekkers RL, Jansen JH,
Massuger LF and Dolstra H: Umbilical cord blood CD34+
progenitor-derived NK cells efficiently kill ovarian cancer
spheroids and intraperitoneal tumors in
NOD/SCID/IL2Rgnull mice. Oncoimmunology. 6:e13206302017.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wilson EB, El-Jawhari JJ, Neilson AL, Hall
GD, Melcher AA, Meade JL and Cook GP: Human tumour immune evasion
via TGF-β blocks NK cell activation but not survival allowing
therapeutic restoration of Anti-Tumour activity. PLoS One.
6:e228422011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Uppendahl LD, Felices M, Bendzick L, Ryan
C, Kodal B, Hinderlie P, Boylan KLM, Skubitz APN, Miller JS and
Geller MA: Cytokine-induced memory-like natural killer cells have
enhanced function, proliferation, and in vivo expansion against
ovarian cancer cells. Gynecol Oncol. 153:149–157. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Van der Meer JMR, Maas RJA, Guldevall K,
Klarenaar K, de Jonge PKJD, Evert JSH, van der Waart AB, Cany J,
Safrit JT, Lee JH, et al: IL-15 superagonist N-803 improves IFNγ
production and killing of leukemia and ovarian cancer cells by
CD34+ progenitor-derived NK cells. Cancer Immunol
Immunother. 70:1305–1321. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Felices M, Chu S, Kodal B, Bendzick L,
Ryan C, Lenvik AJ, Boylan KLM, Wong HC, Skubitz APN, Miller JS and
Geller MA: IL-15 super-agonist (ALT-803) enhances natural killer
(NK) cell function against ovarian cancer. Gynecol Oncol.
145:453–461. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hoogstad-van Evert JS, Maas RJ, van der
Meer J, Cany J, van der Steen S, Jansen JH, Miller JS, Bekkers R,
Hobo W, Massuger L and Dolstra H: Peritoneal NK cells are
responsive to IL-15 and percentages are correlated with outcome in
advanced ovarian cancer patients. Oncotarget. 9:34810–34820. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Vallera DA, Ferrone S, Kodal B, Hinderlie
P, Bendzick L, Ettestad B, Hallstrom C, Zorko NA, Rao A, Fujioka N,
et al: NK-Cell-Mediated targeting of various solid tumors using a
B7-H3 Tri-Specific killer Engager in vitro and in vivo. Cancers
(Basel). 12:26592020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Benencia F, Courrèges MC, Conejo-García
JR, Mohamed-Hadley A, Zhang L, Buckanovich RJ, Carroll R, Fraser N
and Coukos G: HSV oncolytic therapy upregulates
interferon-inducible Chemokines and recruits immune effector cells
in ovarian cancer. Mol Ther. 12:789–802. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kim JE, Cho HS, Yang HS, Jung DJ, Hong SW,
Hung CF, Lee WJ and Kim D: Depletion of ascorbic acid impairs NK
cell activity against ovarian cancer in a mouse model.
Immunobiology. 217:873–881. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Colotta F, Rambaldi A, Colombo N, Tabacchi
L, Introna M and Mantovani A: Effect of a streptococcal preparation
(OK432) on natural killer activity of tumour-associated lymphoid
cells in human ovarian carcinoma and on lysis of fresh ovarian
tumour cells. Br J Cancer. 48:515–525. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chuang CM, Monie A, Wu A, Mao CP and Hung
CF: Treatment with LL-37 peptide enhances antitumor effects induced
by CpG oligodeoxynucleotides against ovarian cancer. Hum Gene Ther.
20:303–313. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Choi SH, Kim HJ, Park JD, Ko ES, Lee M,
Lee DK, Choi JH, Jang HJ, Kim I, Jung HY, et al: Chemical priming
of natural killer cells with branched polyethylenimine for cancer
immunotherapy. J Immunother Cancer. 10:e0049642022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chung YM, Khan PP, Wang H, Tsai WB, Qiao
Y, Yu B, Larrick JW and Hu MC: Sensitizing tumors to anti-PD-1
therapy by promoting NK and CD8+ T cells via pharmacological
activation of FOXO3. J Immunother Cancer. 9:e0027722021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kikuchi Y, Oomori K, Kizawa I and Kato K:
Augmented natural killer activity in ovarian cancer patients
treated with cimetidine. Eur J Cancer Clin Oncol. 22:1037–1043.
1986. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Barua A, Bradaric MJ, Bitterman P,
Abramowicz JS, Sharma S, Basu S, Lopez H and Bahr JM: Dietary
supplementation of Ashwagandha (Withania somnifera, Dunal) enhances
NK cell function in ovarian tumors in the laying hen model of
spontaneous ovarian cancer. Am J Reprod Immunol. 70:538–550. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Neo SY, Siew YY, Yew HC, He Y, Poh KL,
Tsai YC, Ng SL, Tan WX, Chong TI, Lim CSE, et al: Effects of Leea
indica leaf extracts and its phytoconstituents on natural killer
cell-mediated cytotoxicity in human ovarian cancer. BMC Complement
Med Ther. 23:792023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yunusova NV, Stakheyeva MN, Molchanov SV,
Afanas'ev SG, Tsydenova AA, Kolomiets LA and Cherdyntseva NV:
Functional activity of natural killer cells in biological fluids in
patients with colorectal and ovarian cancers. Cent Eur J Immunol.
43:26–32. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lutgendorf SK, Sood AK, Anderson B, McGinn
S, Maiseri H, Dao M, Sorosky JI, De Geest K, Ritchie J and Lubaroff
DM: Social support, psychological distress, and natural killer cell
activity in ovarian cancer. J Clin Oncol. 23:7105–7113. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chen M, Li Y, Wu Y, Xie S, Ma J, Yue J, Lv
R, Tian Z, Fang F and Xiao W: Anti-Tumor activity of expanded
PBMC-Derived NK cells by feeder-free protocol in ovarian cancer.
Cancers. 13:58662021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Nham T, Poznanski SM, Fan IY, Shenouda MM,
Chew MV, Lee AJ, Vahedi F, Karimi Y, Butcher M, Lee DA, et al: Ex
vivo-expanded NK cells from blood and ascites of ovarian cancer
patients are cytotoxic against autologous primary ovarian cancer
cells. Cancer Immunol Immunother. 67:575–587. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hermanson DL, Bendzick L, Pribyl L,
McCullar V, Vogel RI, Miller JS, Geller MA and Kaufman DS: Induced
Pluripotent stem Cell-Derived natural killer cells for treatment of
ovarian cancer. Stem Cells. 34:93–101. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cheng M, Ma J, Chen Y, Zhang J, Zhao W,
Zhang J, Wei H, Ling B, Sun R and Tian Z: Establishment,
characterization, and successful adaptive therapy against human
tumors of NKG cell, a new human NK cell line. Cell Transplant.
20:1731–1746. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Klapdor R, Wang S, Morgan MA, Zimmermann
K, Hachenberg J, Büning H, Dörk T, Hillemanns P and Schambach A: NK
Cell-Mediated eradication of ovarian cancer cells with a novel
chimeric antigen receptor directed against CD44. Biomedicines.
9:13392021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Klapdor R, Wang S, Hacker U, Büning H,
Morgan M, Dörk T, Hillemanns P and Schambach A: Improved killing of
ovarian cancer stem cells by combining a novel chimeric antigen
Receptor-Based immunotherapy and chemotherapy. Hum Gene Ther.
28:886–896. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Klapdor R, Wang S, Morgan M, Dörk T,
Hacker U, Hillemanns P, Büning H and Schambach A: Characterization
of a Novel Third-Generation Anti-CD24-CAR against ovarian cancer.
Int J Mol Sci. 20:6602019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Cao B, Liu M, Wang L, Liang B, Feng Y,
Chen X, Shi Y, Zhang J, Ye X, Tian Y, et al: Use of chimeric
antigen receptor NK-92 cells to target mesothelin in ovarian
cancer. Biochem Biophys Res Commun. 524:96–102. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ao X, Yang Y, Li W, Tan Y, Guo W, Ao L, He
X, Wu X, Xia J, Xu X and Guo J: Anti-αFR CAR-engineered NK-92 cells
display potent cytotoxicity against αFR-positive ovarian cancer. J
Immunother. 42:284–296. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Jan CI, Huang SW, Canoll P, Bruce JN, Lin
YC, Pan CM, Lu HM, Chiu SC and Cho DY: Targeting human leukocyte
antigen G with chimeric antigen receptors of natural killer cells
convert immunosuppression to ablate solid tumors. J Immunother
Cancer. 9:e0030502021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Li Y, Hermanson DL, Moriarity BS and
Kaufman DS: Human iPSC-Derived natural killer cells engineered with
chimeric antigen receptors enhance Anti-tumor activity. Cell Stem
Cell. 23:181–192.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ueda T, Kumagai A, Iriguchi S, Yasui Y,
Miyasaka T, Nakagoshi K, Nakane K, Saito K, Takahashi M, Sasaki A,
et al: Non-clinical efficacy, safety and stable clinical cell
processing of induced pluripotent stem cell-derived anti-glypican-3
chimeric antigen receptor-expressing natural killer/innate lymphoid
cells. Cancer Sci. 111:1478–1490. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ng YY, Tay JCK and Wang S: CXCR1
Expression to Improve Anti-cancer efficacy of intravenously
injected CAR-NK cells in mice with peritoneal xenografts. Mol Ther
Oncolytics. 16:75–85. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gubbels JA, Felder M, Horibata S, Belisle
JA, Kapur A, Holden H, Petrie S, Migneault M, Rancourt C, Connor JP
and Patankar MS: MUC16 provides immune protection by inhibiting
synapse formation between NK and ovarian tumor cells. Mol Cancer.
9:112010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fraser CC, Jia B, Hu G, Al Johani LI,
Fritz-Klaus R, Ham JD, Fichorova RN, Elias KM, Cramer DW, Patankar
MS and Chen J: Ovarian Cancer Ascites Inhibits Transcriptional
Activation of NK Cells Partly through CA125. J Immunol.
208:2227–2238. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang D, Saga Y, Mizukami H, Sato N, Nonaka
H, Fujiwara H, Takei Y, Machida S, Takikawa O, Ozawa K and Suzuki
M: Indoleamine-2,3-dioxygenase, an immunosuppressive enzyme that
inhibits natural killer cell function, as a useful target for
ovarian cancer therapy. Int J Oncol. 40:929–934. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Raja R, Wu C, Bassoy EY, Rubino TE Jr,
Utagawa EC, Magtibay PM, Butler KA and Curtis M: PP4 inhibition
sensitizes ovarian cancer to NK cell-mediated cytotoxicity via
STAT1 activation and inflammatory signaling. J Immunother Cancer.
10:e0050262022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Gonzalez VD, Huang YW, Delgado-Gonzalez A,
Chen SY, Donoso K, Sachs K, Gentles AJ, Allard GM, Kolahi KS,
Howitt BE, et al: High-grade serous ovarian tumor cells modulate NK
cell function to create an immune-tolerant microenvironment. Cell
Rep. 36:1096322021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Maas RJ, Hoogstad-van Evert JS, Van der
Meer JM, Mekers V, Rezaeifard S, Korman AJ, de Jonge PK, Cany J,
Woestenenk R, Schaap NP, et al: TIGIT blockade enhances
functionality of peritoneal NK cells with altered expression of
DNAM-1/TIGIT/CD96 checkpoint molecules in ovarian cancer.
Oncoimmunology. 9:18432472020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cichocki F, Valamehr B, Bjordahl R, Zhang
B, Rezner B, Rogers P, Gaidarova S, Moreno S, Tuininga K, Dougherty
P, et al: GSK3 inhibition drives maturation of NK cells and
enhances their antitumor activity. Cancer Res. 77:5664–5675. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hahne JC, Kurz A, Meyer SR, Dietl J, Engel
JB and Honig A: Anti-tumour activity of phosphoinositide-3-kinase
antagonist AEZS-126 in models of ovarian cancer. Arch Gynecol
Obstet. 291:131–141. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lin A, Yan WH, Xu HH, Gan MF, Cai JF, Zhu
M and Zhou MY: HLA-G expression in human ovarian carcinoma
counteracts NK cell function. Ann Oncol. 18:1804–1809. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chava S, Bugide S, Edwards YJK and Gupta
R: Disruptor of telomeric silencing 1-like promotes ovarian cancer
tumor growth by stimulating pro-tumorigenic metabolic pathways and
blocking apoptosis. Oncogenesis. 10:482021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang X, Liu W, Zhuang D, Hong S and Chen
J: Sestrin2 and sestrin3 suppress NK-92 cell-mediated cytotoxic
activity on ovarian cancer cells through AMPK and mTORC1 signaling.
Oncotarget. 8:90132–90143. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Diener C, Keller A and Meese E: Emerging
concepts of miRNA therapeutics: From cells to clinic. Trends Genet.
38:613–626. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Deng M, Wu D, Zhang Y, Jin Z and Miao J:
MiR-29c downregulates tumor-expressed B7-H3 to mediate the
antitumor NK-cell functions in ovarian cancer. Gynecol Oncol.
162:190–199. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Feng S, Sun H and Zhu W: MiR-92
overexpression suppresses immune cell function in ovarian cancer
via LATS2/YAP1/PD-L1 pathway. Clin Transl Oncol. 23:450–458. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wang J, Zhu M, Zhou X, Wang T, Xi Y, Jing
Z and Xi W: MiR-140-3p inhibits natural killer cytotoxicity to
human ovarian cancer via targeting MAPK1. J Biosci. 45:662020.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Dou J, Wang Y, Wang J, Zhao F, Li Y, Cao
M, Hu W, Hu K, He XF, Chu L, et al: Antitumor efficacy induced by
human ovarian cancer cells secreting IL-21 alone or combination
with GM-CSF cytokines in nude mice model. Immunobiology.
214:483–492. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yeung TL, Tsai CC, Leung CS, Au Yeung CL,
Thompson MS, Lu KH, Freedman RS, Birrer MJ, Wong KK, Mok SC, et al:
ISG15 Promotes ERK1 ISGylation, CD8+ T cell activation and
suppresses ovarian cancer progression. Cancers (Basel). 10:4642018.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Labani-Motlagh A, Israelsson P, Ottander
U, Lundin E, Nagaev I, Nagaeva O, Dehlin E, Baranov V and
Mincheva-Nilsson L: Differential expression of ligands for NKG2D
and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes
and its influence on NK cell cytotoxicity. Tumour Biol.
37:5455–5466. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Koh J, Lee SB, Park H, Lee HJ, Cho NH and
Kim J: Susceptibility of CD24(+) ovarian cancer cells to
anti-cancer drugs and natural killer cells. Biochem Biophys Res
Commun. 427:373–378. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Leung EYL, Ennis DP, Kennedy PR, Hansell
C, Dowson S, Farquharson M, Spiliopoulou P, Nautiyal J, McNamara S,
Carlin LM, et al: NK cells augment oncolytic adenovirus
cytotoxicity in ovarian cancer. Mol Ther Oncolytics. 16:289–301.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
van Vloten JP, Matuszewska K, Minow MAA,
Minott JA, Santry LA, Pereira M, Stegelmeier AA, McAusland TM,
Klafuric EM, Karimi K, et al: Oncolytic Orf virus licenses NK cells
via cDC1 to activate innate and adaptive antitumor mechanisms and
extends survival in a murine model of late-stage ovarian cancer. J
Immunother Cancer. 10:e0043352022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhu H, Blum RH, Bjordahl R, Gaidarova S,
Rogers P, Lee TT, Abujarour R, Bonello GB, Wu J, Tsai PF, et al:
Pluripotent stem cell-derived NK cells with high-affinity
noncleavable CD16a mediate improved antitumor activity. Blood.
135:399–410. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Mallmann-Gottschalk N, Sax Y, Kimmig R,
Lang S and Brandau S: EGFR-Specific tyrosine kinase inhibitor
modifies NK Cell-Mediated antitumoral activity against ovarian
cancer cells. Int J Mol Sci. 20:46932019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gottschalk N, Kimmig R, Lang S, Singh M
and Brandau S: Anti-epidermal growth factor receptor (EGFR)
antibodies overcome resistance of ovarian cancer cells to targeted
therapy and natural cytotoxicity. Int J Mol Sci. 13:12000–12016.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Oyer JL, Gitto SB, Altomare DA and Copik
AJ: PD-L1 blockade enhances anti-tumor efficacy of NK cells.
Oncoimmunology. 7:e15098192018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhou Y, Cheng Z, Zhu H, Feng D, Zhao W,
Ling B, Wei H and Tian Z: Stable suppression of HER-2 gene
expression using siRNA increases the lysis of human ovarian
carcinoma cells mediated by NK-92 cell line. Oncol Rep.
20:1425–1431. 2008.PubMed/NCBI
|
|
70
|
Van der Meer JMR, de Jonge P, van der
Waart AB, Geerlings AC, Moonen JP, Brummelman J, de Klein J,
Vermeulen MC, Maas RJA, Schaap NPM, et al: CD34+
progenitor-derived NK cell and gemcitabine combination therapy
increases killing of ovarian cancer cells in
NOD/SCID/IL2Rgnull mice. Oncoimmunology. 10:19810492021.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Siew YY, Neo SY, Yew HC, Lim SW, Ng YC,
Lew SM, Seetoh WG, Seow SV and Koh HL: Oxaliplatin regulates
expression of stress ligands in ovarian cancer cells and modulates
their susceptibility to natural killer cell-mediated cytotoxicity.
Int Immunol. 27:621–632. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Choi SH, Jung D, Kim KY, An HJ and Park
KS: Combined use of cisplatin plus natural killer cells overcomes
immunoresistance of cisplatin resistant ovarian cancer. Biochem
Biophys Res Commun. 563:40–46. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Li G, Nikkhoi SK and Hatefi A: Stem
cell-assisted enzyme/prodrug therapy makes drug-resistant ovarian
cancer cells vulnerable to natural killer cells through
upregulation of NKG2D ligands. Med Oncol. 40:1102023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liang Y, Duan L, Lu J and Xia J:
Engineering exosomes for targeted drug delivery. Theranostics.
11:3183–3195. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Luo H, Zhou Y, Zhang J, Zhang Y, Long S,
Lin X, Yang A, Duan J, Yang N, Yang Z, et al: NK cell-derived
exosomes enhance the anti-tumor effects against ovarian cancer by
delivering cisplatin and reactivating NK cell functions. Front
Immunol. 13:10876892022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yoon H, Kim A and Jang H:
Immunotherapeutic approaches in ovarian cancer. Curr Issues Mol
Biol. 45:1233–1249. 2023. View Article : Google Scholar : PubMed/NCBI
|