Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
March-2024 Volume 51 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2024 Volume 51 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Enhancing the therapeutic efficacy of NK cells in the treatment of ovarian cancer (Review)

  • Authors:
    • Yuzhu Hou
    • Xiujun Zhao
    • Xiaoqian Nie
  • View Affiliations / Copyright

    Affiliations: Department of Gynecology, Qingdao Eighth People's Hospital, Qingdao, Shandong 266000, P.R. China
    Copyright: © Hou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 50
    |
    Published online on: January 26, 2024
       https://doi.org/10.3892/or.2024.8709
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ovarian cancer is a prevalent gynecological malignancy associated with a high mortality rate and a low 5‑year survival rate. Typically, >70% of patients present with an advanced stage of the disease, resulting in a high number of ovarian cancer‑associated deaths worldwide. Over the past decade, adoptive cellular immunotherapy has been investigated in clinical trials, and the results have led to the increased use in cancer treatment. Natural killer (NK) cells are cytotoxic lymphoid cells that recognize and lyse transformed cells, thereby impeding tumor growth. Thus, NK cells exhibit potential as a form of immunotherapy in the treatment of cancer. However, some patients with ovarian cancer treated with NK cells have experienced unsatisfactory outcomes. Therefore, further optimization of NK cells is required to increase the number of patients achieving long‑term remission. In the present review article, studies focusing on improving NK cell function were systematically summarized, and innovative strategies that augment the anticancer properties of NK cells were proposed.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Arora T, Mullangi S and Lekkala MR: Ovarian Cancer. StatPearls StatPearls Publishing; Treasure Island: 2023

2 

Kuroki L and Guntupalli SR: Treatment of epithelial ovarian cancer. BMJ. 371:m37732020. View Article : Google Scholar : PubMed/NCBI

3 

Zheng RS, Zhang SW, Sun KX, Chen R, Wang SM, Li L, Zeng HM, Wei WW and He J: Cancer statistics in China, 2016. Zhonghua Zhong Liu Za Zhi. 45:212–220. 2023.(In Chinese). PubMed/NCBI

4 

Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI

5 

Penny SM: Ovarian Cancer: An Overview. Radiol Technol. 91:561–575. 2020.PubMed/NCBI

6 

Myers JA and Miller JS: Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 18:85–100. 2021. View Article : Google Scholar : PubMed/NCBI

7 

Becker PS, Suck G, Nowakowska P, Ullrich E, Seifried E, Bader P, Tonn T and Seidl C: Selection and expansion of natural killer cells for NK cell-based immunotherapy. Cancer Immunol Immunother. 65:477–484. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Geller MA, Knorr DA, Hermanson DA, Pribyl L, Bendzick L, McCullar V, Miller JS and Kaufman DS: Intraperitoneal delivery of human natural killer cells for treatment of ovarian cancer in a mouse xenograft model. Cytotherapy. 15:1297–1306. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Lotzová E, Savary CA, Freedman RS, Edwards CL and Wharton JT: Recombinant IL-2-activated NK cells mediate LAK activity against ovarian cancer. Int J Cancer. 42:225–231. 1988. View Article : Google Scholar : PubMed/NCBI

10 

da Silva RF, Petta CA, Derchain SF, Alici E and Guimarães F: Up-regulation of DNAM-1 and NKp30, associated with improvement of NK cells activation after long-term culture of mononuclear cells from patients with ovarian neoplasia. Human Immunol. 75:777–784. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Pandey V, Oyer JL, Igarashi RY, Gitto SB, Copik AJ and Altomare DA: Anti-ovarian tumor response of donor peripheral blood mononuclear cells is due to infiltrating cytotoxic NK cells. Oncotarget. 7:7318–7328. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Ma S, Caligiuri MA and Yu J: Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol. 43:833–847. 2022. View Article : Google Scholar : PubMed/NCBI

13 

Hoogstad-van Evert JS, Cany J, van den Brand D, Oudenampsen M, Brock R, Torensma R, Bekkers RL, Jansen JH, Massuger LF and Dolstra H: Umbilical cord blood CD34+ progenitor-derived NK cells efficiently kill ovarian cancer spheroids and intraperitoneal tumors in NOD/SCID/IL2Rgnull mice. Oncoimmunology. 6:e13206302017. View Article : Google Scholar : PubMed/NCBI

14 

Wilson EB, El-Jawhari JJ, Neilson AL, Hall GD, Melcher AA, Meade JL and Cook GP: Human tumour immune evasion via TGF-β blocks NK cell activation but not survival allowing therapeutic restoration of Anti-Tumour activity. PLoS One. 6:e228422011. View Article : Google Scholar : PubMed/NCBI

15 

Uppendahl LD, Felices M, Bendzick L, Ryan C, Kodal B, Hinderlie P, Boylan KLM, Skubitz APN, Miller JS and Geller MA: Cytokine-induced memory-like natural killer cells have enhanced function, proliferation, and in vivo expansion against ovarian cancer cells. Gynecol Oncol. 153:149–157. 2019. View Article : Google Scholar : PubMed/NCBI

16 

Van der Meer JMR, Maas RJA, Guldevall K, Klarenaar K, de Jonge PKJD, Evert JSH, van der Waart AB, Cany J, Safrit JT, Lee JH, et al: IL-15 superagonist N-803 improves IFNγ production and killing of leukemia and ovarian cancer cells by CD34+ progenitor-derived NK cells. Cancer Immunol Immunother. 70:1305–1321. 2021. View Article : Google Scholar : PubMed/NCBI

17 

Felices M, Chu S, Kodal B, Bendzick L, Ryan C, Lenvik AJ, Boylan KLM, Wong HC, Skubitz APN, Miller JS and Geller MA: IL-15 super-agonist (ALT-803) enhances natural killer (NK) cell function against ovarian cancer. Gynecol Oncol. 145:453–461. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Hoogstad-van Evert JS, Maas RJ, van der Meer J, Cany J, van der Steen S, Jansen JH, Miller JS, Bekkers R, Hobo W, Massuger L and Dolstra H: Peritoneal NK cells are responsive to IL-15 and percentages are correlated with outcome in advanced ovarian cancer patients. Oncotarget. 9:34810–34820. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Vallera DA, Ferrone S, Kodal B, Hinderlie P, Bendzick L, Ettestad B, Hallstrom C, Zorko NA, Rao A, Fujioka N, et al: NK-Cell-Mediated targeting of various solid tumors using a B7-H3 Tri-Specific killer Engager in vitro and in vivo. Cancers (Basel). 12:26592020. View Article : Google Scholar : PubMed/NCBI

20 

Benencia F, Courrèges MC, Conejo-García JR, Mohamed-Hadley A, Zhang L, Buckanovich RJ, Carroll R, Fraser N and Coukos G: HSV oncolytic therapy upregulates interferon-inducible Chemokines and recruits immune effector cells in ovarian cancer. Mol Ther. 12:789–802. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Kim JE, Cho HS, Yang HS, Jung DJ, Hong SW, Hung CF, Lee WJ and Kim D: Depletion of ascorbic acid impairs NK cell activity against ovarian cancer in a mouse model. Immunobiology. 217:873–881. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Colotta F, Rambaldi A, Colombo N, Tabacchi L, Introna M and Mantovani A: Effect of a streptococcal preparation (OK432) on natural killer activity of tumour-associated lymphoid cells in human ovarian carcinoma and on lysis of fresh ovarian tumour cells. Br J Cancer. 48:515–525. 1983. View Article : Google Scholar : PubMed/NCBI

23 

Chuang CM, Monie A, Wu A, Mao CP and Hung CF: Treatment with LL-37 peptide enhances antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer. Hum Gene Ther. 20:303–313. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Choi SH, Kim HJ, Park JD, Ko ES, Lee M, Lee DK, Choi JH, Jang HJ, Kim I, Jung HY, et al: Chemical priming of natural killer cells with branched polyethylenimine for cancer immunotherapy. J Immunother Cancer. 10:e0049642022. View Article : Google Scholar : PubMed/NCBI

25 

Chung YM, Khan PP, Wang H, Tsai WB, Qiao Y, Yu B, Larrick JW and Hu MC: Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3. J Immunother Cancer. 9:e0027722021. View Article : Google Scholar : PubMed/NCBI

26 

Kikuchi Y, Oomori K, Kizawa I and Kato K: Augmented natural killer activity in ovarian cancer patients treated with cimetidine. Eur J Cancer Clin Oncol. 22:1037–1043. 1986. View Article : Google Scholar : PubMed/NCBI

27 

Barua A, Bradaric MJ, Bitterman P, Abramowicz JS, Sharma S, Basu S, Lopez H and Bahr JM: Dietary supplementation of Ashwagandha (Withania somnifera, Dunal) enhances NK cell function in ovarian tumors in the laying hen model of spontaneous ovarian cancer. Am J Reprod Immunol. 70:538–550. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Neo SY, Siew YY, Yew HC, He Y, Poh KL, Tsai YC, Ng SL, Tan WX, Chong TI, Lim CSE, et al: Effects of Leea indica leaf extracts and its phytoconstituents on natural killer cell-mediated cytotoxicity in human ovarian cancer. BMC Complement Med Ther. 23:792023. View Article : Google Scholar : PubMed/NCBI

29 

Yunusova NV, Stakheyeva MN, Molchanov SV, Afanas'ev SG, Tsydenova AA, Kolomiets LA and Cherdyntseva NV: Functional activity of natural killer cells in biological fluids in patients with colorectal and ovarian cancers. Cent Eur J Immunol. 43:26–32. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Lutgendorf SK, Sood AK, Anderson B, McGinn S, Maiseri H, Dao M, Sorosky JI, De Geest K, Ritchie J and Lubaroff DM: Social support, psychological distress, and natural killer cell activity in ovarian cancer. J Clin Oncol. 23:7105–7113. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Chen M, Li Y, Wu Y, Xie S, Ma J, Yue J, Lv R, Tian Z, Fang F and Xiao W: Anti-Tumor activity of expanded PBMC-Derived NK cells by feeder-free protocol in ovarian cancer. Cancers. 13:58662021. View Article : Google Scholar : PubMed/NCBI

32 

Nham T, Poznanski SM, Fan IY, Shenouda MM, Chew MV, Lee AJ, Vahedi F, Karimi Y, Butcher M, Lee DA, et al: Ex vivo-expanded NK cells from blood and ascites of ovarian cancer patients are cytotoxic against autologous primary ovarian cancer cells. Cancer Immunol Immunother. 67:575–587. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Hermanson DL, Bendzick L, Pribyl L, McCullar V, Vogel RI, Miller JS, Geller MA and Kaufman DS: Induced Pluripotent stem Cell-Derived natural killer cells for treatment of ovarian cancer. Stem Cells. 34:93–101. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Cheng M, Ma J, Chen Y, Zhang J, Zhao W, Zhang J, Wei H, Ling B, Sun R and Tian Z: Establishment, characterization, and successful adaptive therapy against human tumors of NKG cell, a new human NK cell line. Cell Transplant. 20:1731–1746. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Klapdor R, Wang S, Morgan MA, Zimmermann K, Hachenberg J, Büning H, Dörk T, Hillemanns P and Schambach A: NK Cell-Mediated eradication of ovarian cancer cells with a novel chimeric antigen receptor directed against CD44. Biomedicines. 9:13392021. View Article : Google Scholar : PubMed/NCBI

36 

Klapdor R, Wang S, Hacker U, Büning H, Morgan M, Dörk T, Hillemanns P and Schambach A: Improved killing of ovarian cancer stem cells by combining a novel chimeric antigen Receptor-Based immunotherapy and chemotherapy. Hum Gene Ther. 28:886–896. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Klapdor R, Wang S, Morgan M, Dörk T, Hacker U, Hillemanns P, Büning H and Schambach A: Characterization of a Novel Third-Generation Anti-CD24-CAR against ovarian cancer. Int J Mol Sci. 20:6602019. View Article : Google Scholar : PubMed/NCBI

38 

Cao B, Liu M, Wang L, Liang B, Feng Y, Chen X, Shi Y, Zhang J, Ye X, Tian Y, et al: Use of chimeric antigen receptor NK-92 cells to target mesothelin in ovarian cancer. Biochem Biophys Res Commun. 524:96–102. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Ao X, Yang Y, Li W, Tan Y, Guo W, Ao L, He X, Wu X, Xia J, Xu X and Guo J: Anti-αFR CAR-engineered NK-92 cells display potent cytotoxicity against αFR-positive ovarian cancer. J Immunother. 42:284–296. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Jan CI, Huang SW, Canoll P, Bruce JN, Lin YC, Pan CM, Lu HM, Chiu SC and Cho DY: Targeting human leukocyte antigen G with chimeric antigen receptors of natural killer cells convert immunosuppression to ablate solid tumors. J Immunother Cancer. 9:e0030502021. View Article : Google Scholar : PubMed/NCBI

41 

Li Y, Hermanson DL, Moriarity BS and Kaufman DS: Human iPSC-Derived natural killer cells engineered with chimeric antigen receptors enhance Anti-tumor activity. Cell Stem Cell. 23:181–192.e5. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Ueda T, Kumagai A, Iriguchi S, Yasui Y, Miyasaka T, Nakagoshi K, Nakane K, Saito K, Takahashi M, Sasaki A, et al: Non-clinical efficacy, safety and stable clinical cell processing of induced pluripotent stem cell-derived anti-glypican-3 chimeric antigen receptor-expressing natural killer/innate lymphoid cells. Cancer Sci. 111:1478–1490. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Ng YY, Tay JCK and Wang S: CXCR1 Expression to Improve Anti-cancer efficacy of intravenously injected CAR-NK cells in mice with peritoneal xenografts. Mol Ther Oncolytics. 16:75–85. 2020. View Article : Google Scholar : PubMed/NCBI

44 

Gubbels JA, Felder M, Horibata S, Belisle JA, Kapur A, Holden H, Petrie S, Migneault M, Rancourt C, Connor JP and Patankar MS: MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells. Mol Cancer. 9:112010. View Article : Google Scholar : PubMed/NCBI

45 

Fraser CC, Jia B, Hu G, Al Johani LI, Fritz-Klaus R, Ham JD, Fichorova RN, Elias KM, Cramer DW, Patankar MS and Chen J: Ovarian Cancer Ascites Inhibits Transcriptional Activation of NK Cells Partly through CA125. J Immunol. 208:2227–2238. 2022. View Article : Google Scholar : PubMed/NCBI

46 

Wang D, Saga Y, Mizukami H, Sato N, Nonaka H, Fujiwara H, Takei Y, Machida S, Takikawa O, Ozawa K and Suzuki M: Indoleamine-2,3-dioxygenase, an immunosuppressive enzyme that inhibits natural killer cell function, as a useful target for ovarian cancer therapy. Int J Oncol. 40:929–934. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Raja R, Wu C, Bassoy EY, Rubino TE Jr, Utagawa EC, Magtibay PM, Butler KA and Curtis M: PP4 inhibition sensitizes ovarian cancer to NK cell-mediated cytotoxicity via STAT1 activation and inflammatory signaling. J Immunother Cancer. 10:e0050262022. View Article : Google Scholar : PubMed/NCBI

48 

Gonzalez VD, Huang YW, Delgado-Gonzalez A, Chen SY, Donoso K, Sachs K, Gentles AJ, Allard GM, Kolahi KS, Howitt BE, et al: High-grade serous ovarian tumor cells modulate NK cell function to create an immune-tolerant microenvironment. Cell Rep. 36:1096322021. View Article : Google Scholar : PubMed/NCBI

49 

Maas RJ, Hoogstad-van Evert JS, Van der Meer JM, Mekers V, Rezaeifard S, Korman AJ, de Jonge PK, Cany J, Woestenenk R, Schaap NP, et al: TIGIT blockade enhances functionality of peritoneal NK cells with altered expression of DNAM-1/TIGIT/CD96 checkpoint molecules in ovarian cancer. Oncoimmunology. 9:18432472020. View Article : Google Scholar : PubMed/NCBI

50 

Cichocki F, Valamehr B, Bjordahl R, Zhang B, Rezner B, Rogers P, Gaidarova S, Moreno S, Tuininga K, Dougherty P, et al: GSK3 inhibition drives maturation of NK cells and enhances their antitumor activity. Cancer Res. 77:5664–5675. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Hahne JC, Kurz A, Meyer SR, Dietl J, Engel JB and Honig A: Anti-tumour activity of phosphoinositide-3-kinase antagonist AEZS-126 in models of ovarian cancer. Arch Gynecol Obstet. 291:131–141. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Lin A, Yan WH, Xu HH, Gan MF, Cai JF, Zhu M and Zhou MY: HLA-G expression in human ovarian carcinoma counteracts NK cell function. Ann Oncol. 18:1804–1809. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Chava S, Bugide S, Edwards YJK and Gupta R: Disruptor of telomeric silencing 1-like promotes ovarian cancer tumor growth by stimulating pro-tumorigenic metabolic pathways and blocking apoptosis. Oncogenesis. 10:482021. View Article : Google Scholar : PubMed/NCBI

54 

Wang X, Liu W, Zhuang D, Hong S and Chen J: Sestrin2 and sestrin3 suppress NK-92 cell-mediated cytotoxic activity on ovarian cancer cells through AMPK and mTORC1 signaling. Oncotarget. 8:90132–90143. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Diener C, Keller A and Meese E: Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet. 38:613–626. 2022. View Article : Google Scholar : PubMed/NCBI

56 

Deng M, Wu D, Zhang Y, Jin Z and Miao J: MiR-29c downregulates tumor-expressed B7-H3 to mediate the antitumor NK-cell functions in ovarian cancer. Gynecol Oncol. 162:190–199. 2021. View Article : Google Scholar : PubMed/NCBI

57 

Feng S, Sun H and Zhu W: MiR-92 overexpression suppresses immune cell function in ovarian cancer via LATS2/YAP1/PD-L1 pathway. Clin Transl Oncol. 23:450–458. 2021. View Article : Google Scholar : PubMed/NCBI

58 

Wang J, Zhu M, Zhou X, Wang T, Xi Y, Jing Z and Xi W: MiR-140-3p inhibits natural killer cytotoxicity to human ovarian cancer via targeting MAPK1. J Biosci. 45:662020. View Article : Google Scholar : PubMed/NCBI

59 

Dou J, Wang Y, Wang J, Zhao F, Li Y, Cao M, Hu W, Hu K, He XF, Chu L, et al: Antitumor efficacy induced by human ovarian cancer cells secreting IL-21 alone or combination with GM-CSF cytokines in nude mice model. Immunobiology. 214:483–492. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Yeung TL, Tsai CC, Leung CS, Au Yeung CL, Thompson MS, Lu KH, Freedman RS, Birrer MJ, Wong KK, Mok SC, et al: ISG15 Promotes ERK1 ISGylation, CD8+ T cell activation and suppresses ovarian cancer progression. Cancers (Basel). 10:4642018. View Article : Google Scholar : PubMed/NCBI

61 

Labani-Motlagh A, Israelsson P, Ottander U, Lundin E, Nagaev I, Nagaeva O, Dehlin E, Baranov V and Mincheva-Nilsson L: Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity. Tumour Biol. 37:5455–5466. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Koh J, Lee SB, Park H, Lee HJ, Cho NH and Kim J: Susceptibility of CD24(+) ovarian cancer cells to anti-cancer drugs and natural killer cells. Biochem Biophys Res Commun. 427:373–378. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Leung EYL, Ennis DP, Kennedy PR, Hansell C, Dowson S, Farquharson M, Spiliopoulou P, Nautiyal J, McNamara S, Carlin LM, et al: NK cells augment oncolytic adenovirus cytotoxicity in ovarian cancer. Mol Ther Oncolytics. 16:289–301. 2020. View Article : Google Scholar : PubMed/NCBI

64 

van Vloten JP, Matuszewska K, Minow MAA, Minott JA, Santry LA, Pereira M, Stegelmeier AA, McAusland TM, Klafuric EM, Karimi K, et al: Oncolytic Orf virus licenses NK cells via cDC1 to activate innate and adaptive antitumor mechanisms and extends survival in a murine model of late-stage ovarian cancer. J Immunother Cancer. 10:e0043352022. View Article : Google Scholar : PubMed/NCBI

65 

Zhu H, Blum RH, Bjordahl R, Gaidarova S, Rogers P, Lee TT, Abujarour R, Bonello GB, Wu J, Tsai PF, et al: Pluripotent stem cell-derived NK cells with high-affinity noncleavable CD16a mediate improved antitumor activity. Blood. 135:399–410. 2020. View Article : Google Scholar : PubMed/NCBI

66 

Mallmann-Gottschalk N, Sax Y, Kimmig R, Lang S and Brandau S: EGFR-Specific tyrosine kinase inhibitor modifies NK Cell-Mediated antitumoral activity against ovarian cancer cells. Int J Mol Sci. 20:46932019. View Article : Google Scholar : PubMed/NCBI

67 

Gottschalk N, Kimmig R, Lang S, Singh M and Brandau S: Anti-epidermal growth factor receptor (EGFR) antibodies overcome resistance of ovarian cancer cells to targeted therapy and natural cytotoxicity. Int J Mol Sci. 13:12000–12016. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Oyer JL, Gitto SB, Altomare DA and Copik AJ: PD-L1 blockade enhances anti-tumor efficacy of NK cells. Oncoimmunology. 7:e15098192018. View Article : Google Scholar : PubMed/NCBI

69 

Zhou Y, Cheng Z, Zhu H, Feng D, Zhao W, Ling B, Wei H and Tian Z: Stable suppression of HER-2 gene expression using siRNA increases the lysis of human ovarian carcinoma cells mediated by NK-92 cell line. Oncol Rep. 20:1425–1431. 2008.PubMed/NCBI

70 

Van der Meer JMR, de Jonge P, van der Waart AB, Geerlings AC, Moonen JP, Brummelman J, de Klein J, Vermeulen MC, Maas RJA, Schaap NPM, et al: CD34+ progenitor-derived NK cell and gemcitabine combination therapy increases killing of ovarian cancer cells in NOD/SCID/IL2Rgnull mice. Oncoimmunology. 10:19810492021. View Article : Google Scholar : PubMed/NCBI

71 

Siew YY, Neo SY, Yew HC, Lim SW, Ng YC, Lew SM, Seetoh WG, Seow SV and Koh HL: Oxaliplatin regulates expression of stress ligands in ovarian cancer cells and modulates their susceptibility to natural killer cell-mediated cytotoxicity. Int Immunol. 27:621–632. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Choi SH, Jung D, Kim KY, An HJ and Park KS: Combined use of cisplatin plus natural killer cells overcomes immunoresistance of cisplatin resistant ovarian cancer. Biochem Biophys Res Commun. 563:40–46. 2021. View Article : Google Scholar : PubMed/NCBI

73 

Li G, Nikkhoi SK and Hatefi A: Stem cell-assisted enzyme/prodrug therapy makes drug-resistant ovarian cancer cells vulnerable to natural killer cells through upregulation of NKG2D ligands. Med Oncol. 40:1102023. View Article : Google Scholar : PubMed/NCBI

74 

Liang Y, Duan L, Lu J and Xia J: Engineering exosomes for targeted drug delivery. Theranostics. 11:3183–3195. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Luo H, Zhou Y, Zhang J, Zhang Y, Long S, Lin X, Yang A, Duan J, Yang N, Yang Z, et al: NK cell-derived exosomes enhance the anti-tumor effects against ovarian cancer by delivering cisplatin and reactivating NK cell functions. Front Immunol. 13:10876892022. View Article : Google Scholar : PubMed/NCBI

76 

Yoon H, Kim A and Jang H: Immunotherapeutic approaches in ovarian cancer. Curr Issues Mol Biol. 45:1233–1249. 2023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Hou Y, Zhao X and Nie X: Enhancing the therapeutic efficacy of NK cells in the treatment of ovarian cancer (Review). Oncol Rep 51: 50, 2024.
APA
Hou, Y., Zhao, X., & Nie, X. (2024). Enhancing the therapeutic efficacy of NK cells in the treatment of ovarian cancer (Review). Oncology Reports, 51, 50. https://doi.org/10.3892/or.2024.8709
MLA
Hou, Y., Zhao, X., Nie, X."Enhancing the therapeutic efficacy of NK cells in the treatment of ovarian cancer (Review)". Oncology Reports 51.3 (2024): 50.
Chicago
Hou, Y., Zhao, X., Nie, X."Enhancing the therapeutic efficacy of NK cells in the treatment of ovarian cancer (Review)". Oncology Reports 51, no. 3 (2024): 50. https://doi.org/10.3892/or.2024.8709
Copy and paste a formatted citation
x
Spandidos Publications style
Hou Y, Zhao X and Nie X: Enhancing the therapeutic efficacy of NK cells in the treatment of ovarian cancer (Review). Oncol Rep 51: 50, 2024.
APA
Hou, Y., Zhao, X., & Nie, X. (2024). Enhancing the therapeutic efficacy of NK cells in the treatment of ovarian cancer (Review). Oncology Reports, 51, 50. https://doi.org/10.3892/or.2024.8709
MLA
Hou, Y., Zhao, X., Nie, X."Enhancing the therapeutic efficacy of NK cells in the treatment of ovarian cancer (Review)". Oncology Reports 51.3 (2024): 50.
Chicago
Hou, Y., Zhao, X., Nie, X."Enhancing the therapeutic efficacy of NK cells in the treatment of ovarian cancer (Review)". Oncology Reports 51, no. 3 (2024): 50. https://doi.org/10.3892/or.2024.8709
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team