You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE and Grandis JR: Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 6:922020. View Article : Google Scholar : PubMed/NCBI | |
|
Marur S, D'Souza G, Westra WH and Forastiere AA: HPV-associated head and neck cancer: A virus-related cancer epidemic. Lancet Oncol. 11:781–789. 2010. View Article : Google Scholar | |
|
Cipriano A, Milite C, Feoli A, Viviano M, Pepe G, Campiglia P, Sarno G, Picaud S, Imaide S, Makukhin N, et al: Discovery of Benzo[d]imidazole-6-sulfonamides as Bromodomain and Extra-Terminal Domain (BET) Inhibitors with Selectivity for the First Bromodomain. ChemMedChem. 17:e2022003432022. View Article : Google Scholar : PubMed/NCBI | |
|
Liang Y, Tian J and Wu T: BRD4 in physiology and pathology: ‘BET’ on its partners. Bioessays. 43:e21001802021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu B, Liu X, Han L, Chen X, Wu X, Wu J, Yan D, Wang Y, Liu S, Shan L, et al: BRD4-directed super-enhancer organization of transcription repression programs links to chemotherapeutic efficacy in breast cancer. Proc Natl Acad Sci USA. 119:e21091331192022. View Article : Google Scholar : PubMed/NCBI | |
|
Sakamaki JI, Wilkinson S, Hahn M, Tasdemir N, O'Prey J, Clark W, Hedley A, Nixon C, Long JS, New M, et al: Bromodomain protein BRD4 is a transcriptional repressor of autophagy and lysosomal function. Mol Cell. 66:517–532.e9. 2017. View Article : Google Scholar | |
|
Hu J, Pan D, Li G, Chen K and Hu X: Regulation of programmed cell death by Brd4. Cell Death Dis. 13:10592022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu N, Ling R, Tang X, Yu Y, Zhou Y and Chen D: Post-Translational modifications of BRD4: Therapeutic targets for tumor. Front Oncol. 12:8477012022. View Article : Google Scholar | |
|
Abedin SM, Boddy CS and Munshi HG: BET inhibitors in the treatment of hematologic malignancies: Current insights and future prospects. Onco Targets Ther. 9:5943–5953. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lu T, Lu W and Luo C: A patent review of BRD4 inhibitors (2013–2019). Expert Opin Ther Pat. 30:57–81. 2020. View Article : Google Scholar | |
|
French CA: NUT Carcinoma: Clinicopathologic features, pathogenesis, and treatment. Pathol Int. 68:583–595. 2018. View Article : Google Scholar | |
|
Dey A, Yang W, Gegonne A, Nishiyama A, Pan R, Yagi R, Grinberg A, Finkelman FD, Pfeifer K, Zhu J, et al: BRD4 directs hematopoietic stem cell development and modulates macrophage inflammatory responses. EMBO J. 38:e1002932019. View Article : Google Scholar : PubMed/NCBI | |
|
Houzelstein D, Bullock SL, Lynch DE, Grigorieva EF, Wilson VA and Beddington RS: Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol Cell Biol. 22:3794–3802. 2002. View Article : Google Scholar | |
|
Gonzales-Cope M, Sidoli S, Bhanu NV, Won KJ and Garcia BA: Histone H4 acetylation and the epigenetic reader Brd4 are critical regulators of pluripotency in embryonic stem cells. BMC Genomics. 17:952016. View Article : Google Scholar : PubMed/NCBI | |
|
Devaiah BN, Case-Borden C, Gegonne A, Hsu CH, Chen Q, Meerzaman D, Dey A, Ozato K and Singer DS: BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin. Nat Struct Mol Biol. 23:540–548. 2016. View Article : Google Scholar | |
|
Devaiah BN, Gegonne A and Singer DS: Bromodomain 4: A cellular swiss army knife. J Leukoc Biol. 100:679–686. 2016. View Article : Google Scholar | |
|
Devaiah BN, Lewis BA, Cherman N, Hewitt MC, Albrecht BK, Robey PG, Ozato K, Sims RJ III and Singer DS: BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc Natl Acad Sci USA. 109:6927–6932. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Jha RK, Levens D and Kouzine F: Mechanical determinants of chromatin topology and gene expression. Nucleus. 13:94–115. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kanno T, Kanno Y, LeRoy G, Campos E, Sun HW, Brooks SR, Vahedi G, Heightman TD, Garcia BA, Reinberg D, et al: BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat Struct Mol Biol. 21:1047–1057. 2014. View Article : Google Scholar | |
|
Farina A, Hattori M, Qin J, Nakatani Y, Minato N and Ozato K: Bromodomain protein Brd4 binds to GTPase-activating SPA-1, modulating its activity and subcellular localization. Mol Cell Biol. 24:9059–9069. 2004. View Article : Google Scholar | |
|
You J, Li Q, Wu C, Kim J, Ottinger M and Howley PM: Regulation of aurora B expression by the bromodomain protein Brd4. Mol Cell Biol. 29:5094–5103. 2009. View Article : Google Scholar | |
|
Wang R, Cao XJ, Kulej K, Liu W, Ma T, MacDonald M, Chiang CM, Garcia BA and You J: Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma. Proc Natl Acad Sci USA. 114:E5352–E5361. 2017.PubMed/NCBI | |
|
Wu Y, Wang Y, Diao P, Zhang W, Li J, Ge H, Song Y, Li Z, Wang D, Liu L, et al: Therapeutic targeting of BRD4 in head neck squamous cell carcinoma. Theranostics. 9:1777–1793. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu SY, Lee CF, Lai HT, Yu CT, Lee JE, Zuo H, Tsai SY, Tsai MJ, Ge K, Wan Y, et al: Opposing functions of BRD4 isoforms in breast cancer. Mol Cell. 78:1114–1132.e10. 2020. View Article : Google Scholar | |
|
Drumond-Bock AL and Bieniasz M: The role of distinct BRD4 isoforms and their contribution to high-grade serous ovarian carcinoma pathogenesis. Mol Cancer. 20:1452021. View Article : Google Scholar : PubMed/NCBI | |
|
White ME, Fenger JM and Carson WE III: Emerging roles of and therapeutic strategies targeting BRD4 in cancer. Cell Immunol. 337:48–53. 2019. View Article : Google Scholar | |
|
Donati B, Lorenzini E and Ciarrocchi A: BRD4 and Cancer: Going beyond transcriptional regulation. Mol Cancer. 17:1642018. View Article : Google Scholar : PubMed/NCBI | |
|
Shu S, Lin CY, He HH, Witwicki RM, Tabassum DP, Roberts JM, Janiszewska M, Huh SJ, Liang Y, Ryan J, et al: Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 529:413–417. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hamad M, Ali A and Muhammad JS: BRD4 regulates the induction and maintenance of cancer stem cells in squamous cell carcinoma. Stem Cell Investig. 9:62022. View Article : Google Scholar : PubMed/NCBI | |
|
Pagliarini R, Shao W and Sellers WR: Oncogene addiction: Pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Rep. 16:280–296. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang Q, Lin Y, Li J, Kang T, Tao M, et al: Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell. 25:210–225. 2014. View Article : Google Scholar | |
|
Andrieu G, Tran AH, Strissel KJ and Denis GV: BRD4 regulates breast cancer dissemination through Jagged1/Notch1 signaling. Cancer Res. 76:6555–6567. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Samani K, Raj Sharma U, Raj Sharma A, Pm M and V S: Role of BRD4 in cancer-A review. J Diagnostic Pathol Oncolo. 5:128–134. 2020. View Article : Google Scholar | |
|
Shorstova T, Foulkes WD and Witcher M: Achieving clinical success with BET inhibitors as anti-cancer agents. Br J Cancer. 124:1478–1490. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tan Y, Wang L, Du Y, Liu X, Chen Z, Weng X, Guo J, Chen H, Wang M and Wang X: Inhibition of BRD4 suppresses tumor growth in prostate cancer via the enhancement of FOXO1 expression. Int J Oncol. 53:2503–2517. 2018. | |
|
Wang J, Quan Y, Lv J, Gong S and Dong D: BRD4 promotes glioma cell stemness via enhancing miR-142-5p-mediated activation of Wnt/β-catenin signaling. Environ Toxicol. 35:368–376. 2020. View Article : Google Scholar | |
|
Nantajit D, Presta L, Sauter T and Tavassoli M: EGFR-induced suppression of HPV E6/E7 is mediated by microRNA-9-5p silencing of BRD4 protein in HPV-positive head and neck squamous cell carcinoma. Cell Death Dis. 13:9212022. View Article : Google Scholar : PubMed/NCBI | |
|
Schmitt A, Grimm M, Kreienkamp N, Junge H, Labisch J, Schuhknecht L, Schonfeld C, Gorsch ES, Tibello A, Menck K, et al: BRD4 inhibition sensitizes diffuse large B-cell lymphoma cells to ferroptosis. Blood. 142:1143–1155. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Stathis A, Zucca E, Bekradda M, Gomez-Roca C, Delord JP, de La Motte Rouge T, Uro-Coste E, de Braud F, Pelosi G and French CA: Clinical response of carcinomas harboring the BRD4-NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 6:492–500. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Guo X, Zhuo R, Tao Y, Liang W, Yang R, Chen Y, Cao H, Jia S, Yu J, et al: BRD4 inhibitor MZ1 exerts anti-cancer effects by targeting MYCN and MAPK signaling in neuroblastoma. Biochem Biophys Res Commun. 604:63–69. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zong D, Gu J, Cavalcante GC, Yao W, Zhang G, Wang S, Owonikoko TK, He X and Sun SY: BRD4 levels determine the response of human lung cancer cells to BET degraders that potently induce apoptosis through suppression of Mcl-1. Cancer Res. 80:2380–2393. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bauer K, Berghoff AS, Preusser M, Heller G, Zielinski CC, Valent P and Grunt TW: Degradation of BRD4-a promising treatment approach not only for hematologic but also for solid cancer. Am J Cancer Res. 11:530–545. 2021.PubMed/NCBI | |
|
Sun Y, Han J, Wang Z, Li X, Sun Y and Hu Z: Safety and efficacy of bromodomain and Extra-Terminal inhibitors for the treatment of hematological malignancies and solid tumors: A systematic study of clinical trials. Front Pharmacol. 11:6210932020. View Article : Google Scholar | |
|
Floyd SR, Pacold ME, Huang Q, Clarke SM, Lam FC, Cannell IG, Bryson BD, Rameseder J, Lee MJ, Blake EJ, et al: The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature. 498:246–250. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ni M, Li J, Zhao H, Xu F, Cheng J, Yu M, Ke G and Wu X: BRD4 inhibition sensitizes cervical cancer to radiotherapy by attenuating DNA repair. Oncogene. 40:2711–2724. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lam FC, Kong YW, Huang Q, Vu Han TL, Maffa AD, Kasper EM and Yaffe MB: BRD4 prevents the accumulation of R-loops and protects against transcription-replication collision events and DNA damage. Nat Commun. 11:40832020. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Baek G, Ramanand SG, Sharp A, Gao Y, Yuan W, Welti J, Rodrigues DN, Dolling D, Figueiredo I, et al: BRD4 promotes DNA repair and mediates the formation of TMPRSS2-ERG gene rearrangements in prostate cancer. Cell Rep. 22:796–808. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sun C, Yin J, Fang Y, Chen J, Jeong KJ, Chen X, Vellano CP, Ju Z, Zhao W, Zhang D, et al: BRD4 inhibition is synthetic lethal with PARP inhibitors through the induction of homologous recombination deficiency. Cancer Cell. 33:401–416.e8. 2018. View Article : Google Scholar | |
|
Barrows JK, Lin B, Quaas CE, Fullbright G, Wallace EN and Long DT: BRD4 promotes resection and homology-directed repair of DNA double-strand breaks. Nat Commun. 13:30162022. View Article : Google Scholar : PubMed/NCBI | |
|
Takashima Y, Kikuchi E, Kikuchi J, Suzuki M, Kikuchi H, Maeda M, Shoji T, Furuta M, Kinoshita I, Dosaka-Akita H, et al: Bromodomain and extraterminal domain inhibition synergizes with WEE1-inhibitor AZD1775 effect by impairing nonhomologous end joining and enhancing DNA damage in nonsmall cell lung cancer. Int J Cancer. 146:1114–1124. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tan YF, Wang M, Chen ZY, Wang L and Liu XH: Inhibition of BRD4 prevents proliferation and epithelial-mesenchymal transition in renal cell carcinoma via NLRP3 inflammasome-induced pyroptosis. Cell Death Dis. 11:2392020. View Article : Google Scholar : PubMed/NCBI | |
|
Miller AL, Fehling SC, Garcia PL, Gamblin TL, Council LN, van Waardenburg R, Yang ES, Bradner JE and Yoon KJ: The BET inhibitor JQ1 attenuates double-strand break repair and sensitizes models of pancreatic ductal adenocarcinoma to PARP inhibitors. EBioMedicine. 44:419–430. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
He DD, Shang XY, Wang N, Wang GX, He KY, Wang L and Han ZG: BRD4 inhibition induces synthetic lethality in ARID2-deficient hepatocellular carcinoma by increasing DNA damage. Oncogene. 41:1397–1409. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Gao L, Zhou H, Shi C, Zhang X, Zhang D and Liu H: High expression level of BRD4 is associated with a poor prognosis and immune infiltration in esophageal squamous cell carcinoma. Dig Dis Sci. 68:2997–3008. 2023. View Article : Google Scholar | |
|
Liao YF, Wu YB, Long X, Zhu SQ, Jin C, Xu JJ and Ding JY: High level of BRD4 promotes non-small cell lung cancer progression. Oncotarget. 7:9491–9500. 2016. View Article : Google Scholar | |
|
Burcher KM, Faucheux AT, Lantz JW, Wilson HL, Abreu A, Salafian K, Patel MJ, Song AH, Petro RM, Lycan T Jr, et al: Prevalence of DNA repair gene mutations in blood and tumor tissue and impact on prognosis and treatment in HNSCC. Cancers (Basel). 13:31182021. View Article : Google Scholar : PubMed/NCBI | |
|
Moeller BJ, Yordy JS, Williams MD, Giri U, Raju U, Molkentine DP, Byers LA, Heymach JV, Story MD, Lee JJ, et al: DNA repair biomarker profiling of head and neck cancer: Ku80 expression predicts locoregional failure and death following radiotherapy. Clin Cancer Res. 17:2035–2043. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Mahjabeen I, Ali K, Zhou X and Kayani MA: Deregulation of base excision repair gene expression and enhanced proliferation in head and neck squamous cell carcinoma. Tumour Biol. 35:5971–5983. 2014. View Article : Google Scholar | |
|
Bold IT, Specht AK, Droste CF, Zielinski A, Meyer F, Clauditz TS, Munscher A, Werner S, Rothkamm K, Petersen C, et al: DNA damage response during replication correlates with CIN70 score and determines survival in HNSCC patients. Cancers (Basel). 13:11942021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Lai Y, Pan J, Saeed M, Li S, Zhou H, Jiang X, Gao J, Zhu Y, Yu H, et al: PROTAC Prodrug-Integrated nanosensitizer for potentiating radiation therapy of cancer. Adv Mater. e23141322024.doi: 10.1002/adma.202314132 (Epub ahead of print). View Article : Google Scholar | |
|
Wang J, Wang Y, Mei H, Yin Z, Geng Y, Zhang T, Wu G and Lin Z: The BET bromodomain inhibitor JQ1 radiosensitizes non-small cell lung cancer cells by upregulating p21. Cancer Lett. 391:141–151. 2017. View Article : Google Scholar | |
|
Garcia PL, Miller AL, Zeng L, van Waardenburg R, Yang ES and Yoon KJ: The BET inhibitor JQ1 potentiates the anticlonogenic effect of radiation in pancreatic cancer Cells. Front Oncol. 12:9257182022. View Article : Google Scholar | |
|
Kim S, Jeon SH, Han MG, Kang MH and Kim IA: BRD4 inhibition enhances the antitumor effects of radiation therapy in a murine breast cancer model. Int J Mol Sci. 24:130622023. View Article : Google Scholar | |
|
Santos-de-Frutos K, Segrelles C and Lorz C: Hippo pathway and YAP signaling alterations in squamous cancer of the head and neck. J Clin Med. 8:21312019. View Article : Google Scholar : PubMed/NCBI | |
|
Choi SK, Hong SH, Kim HS, Shin CY, Nam SW, Choi WS, Han JW and You JS: JQ1, an inhibitor of the epigenetic reader BRD4, suppresses the bidirectional MYC-AP4 axis via multiple mechanisms. Oncol Rep. 35:1186–1194. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hong SH, Eun JW, Choi SK, Shen Q, Choi WS, Han JW, Nam SW and You JS: Epigenetic reader BRD4 inhibition as a therapeutic strategy to suppress E2F2-cell cycle regulation circuit in liver cancer. Oncotarget. 7:32628–32640. 2016. View Article : Google Scholar | |
|
Zheng B, Gold S, Iwanaszko M, Howard BC, Wang L and Shilatifard A: Distinct layers of BRD4-PTEFb reveal bromodomain-independent function in transcriptional regulation. Mol Cell. 83:2896–2910.e4. 2023. View Article : Google Scholar | |
|
Itzen F, Greifenberg AK, Bosken CA and Geyer M: Brd4 activates P-TEFb for RNA polymerase II CTD phosphorylation. Nucleic Acids Res. 42:7577–7590. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Ju Y, Hu Y, Wang B, Che S, Jian Y, Zhuo W, Fu X, Cheng Y, Zheng S, et al: Brd4 proteolysis-targeting chimera nanoparticles sensitized colorectal cancer chemotherapy. J Control Release. 354:155–166. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu T, Zhang Z, Wang C, Huang H and Li Y: BRD4 promotes the migration and invasion of bladder cancer cells through the Sonic hedgehog signaling pathway and enhances cisplatin resistance. Biochem Cell Biol. 100:179–187. 2022. View Article : Google Scholar | |
|
Lu L, Chen Z, Lin X, Tian L, Su Q, An P, Li W, Wu Y, Du J, Shan H, et al: Inhibition of BRD4 suppresses the malignancy of breast cancer cells via regulation of Snail. Cell Death Differ. 27:255–268. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shafran JS, Jafari N, Casey AN, Gyorffy B and Denis GV: BRD4 regulates key transcription factors that drive epithelial-mesenchymal transition in castration-resistant prostate cancer. Prostate Cancer Prostatic Dis. 24:268–277. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Shi J, Cao J and Zhou BP: Twist-BRD4 complex: Potential drug target for basal-like breast cancer. Curr Pharm Des. 21:1256–1261. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang P, Dong Z, Cai J, Zhang C, Shen Z, Ke A, Gao D, Fan J and Shi G: BRD4 promotes tumor growth and epithelial-mesenchymal transition in hepatocellular carcinoma. Int J Immunopathol Pharmacol. 28:36–44. 2015. View Article : Google Scholar | |
|
Andrieu GP and Denis GV: BET proteins exhibit transcriptional and functional opposition in the Epithelial-to-Mesenchymal transition. Mol Cancer Res. 16:580–586. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tian B, Zhao Y, Sun H, Zhang Y, Yang J and Brasier AR: BRD4 mediates NF-κB-dependent epithelial-mesenchymal transition and pulmonary fibrosis via transcriptional elongation. Am J Physiol Lung Cell Mol Physiol. 311:L1183–L1201. 2016. View Article : Google Scholar | |
|
Cho HY, Lee SW, Jeon YH, Lee DH, Kim GW, Yoo J, Kim SY and Kwon SH: Combination of ACY-241 and JQ1 synergistically suppresses metastasis of HNSCC via regulation of MMP-2 and MMP-9. Int J Mol Sci. 21:68732020. View Article : Google Scholar | |
|
Hu Y, Zhou J, Ye F, Xiong H, Peng L, Zheng Z, Xu F, Cui M, Wei C, Wang X, et al: BRD4 inhibitor inhibits colorectal cancer growth and metastasis. Int J Mol Sci. 16:1928–1948. 2015. View Article : Google Scholar | |
|
Wang L, Wu X, Wang R, Yang C, Li Z, Wang C, Zhang F and Yang P: BRD4 inhibition suppresses cell growth, migration and invasion of salivary adenoid cystic carcinoma. Biol Res. 50:192017. View Article : Google Scholar : PubMed/NCBI | |
|
Yamamoto T, Hirosue A, Nakamoto M, Yoshida R, Sakata J, Matsuoka Y, Kawahara K, Nagao Y, Nagata M, Takahashi N, et al: BRD4 promotes metastatic potential in oral squamous cell carcinoma through the epigenetic regulation of the MMP2 gene. Br J Cancer. 123:580–590. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Griso AB, Acero-Riaguas L, Castelo B, Cebrian-Carretero JL and Sastre-Perona A: Mechanisms of cisplatin resistance in HPV negative head and neck squamous cell carcinomas. Cells. 11:5612022. View Article : Google Scholar : PubMed/NCBI | |
|
Bonomi M, Patsias A, Posner M and Sikora A: The role of inflammation in head and neck cancer. Adv Exp Med Biol. 816:107–127. 2014. View Article : Google Scholar | |
|
Gong Z, Liu G, Liu W, Zou H, Song R, Zhao H, Yuan Y, Gu J, Bian J, Zhu J, et al: The epigenetic regulator BRD4 is involved in cadmium-triggered inflammatory response in rat kidney. Ecotoxicol Environ Saf. 224:1126202021. View Article : Google Scholar : PubMed/NCBI | |
|
Bao Y, Wu X, Chen J, Hu X, Zeng F, Cheng J, Jin H, Lin X and Chen LF: Brd4 modulates the innate immune response through Mnk2-eIF4E pathway-dependent translational control of IκBα. Proc Natl Acad Sci USA. 114:E3993–E4001. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y and Vakoc CR: Brd4 is on the move during inflammation. Trends Cell Biol. 24:615–616. 2014. View Article : Google Scholar | |
|
Jarausch J, Neuenroth L, Andag R, Leha A, Fischer A, Asif AR, Lenz C and Eidizadeh A: Influence of shear stress, inflammation and BRD4 inhibition on human endothelial cells: A holistic proteomic approach. Cells. 11:30862022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Zhong X, Cao W, Mao M, Li W, Yang H, Li M, Shi M, Zhang Y, Deng Y, et al: JQ1 as a BRD4 inhibitor blocks inflammatory pyroptosis-related acute colon injury induced by LPS. Front Immunol. 12:6093192021. View Article : Google Scholar | |
|
Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, Chandwani R, Marazzi I, Wilson P, Coste H, et al: Suppression of inflammation by a synthetic histone mimic. Nature. 468:1119–1123. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Khan YM, Kirkham P, Barnes PJ and Adcock IM: Brd4 is essential for IL-1β-induced inflammation in human airway epithelial cells. PLoS One. 9:e950512014. View Article : Google Scholar : PubMed/NCBI | |
|
Jing SL, Afshari K and Guo ZC: Inflammatory response-related genes predict prognosis in patients with HNSCC. Immunol Lett. 259:46–60. 2023. View Article : Google Scholar | |
|
Rassouli A, Saliba J, Castano R, Hier M and Zeitouni AG: Systemic inflammatory markers as independent prognosticators of head and neck squamous cell carcinoma. Head Neck. 37:103–110. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou S, Yuan H, Wang J, Hu X, Liu F, Zhang Y, Jiang B and Zhang W: Prognostic value of systemic inflammatory marker in patients with head and neck squamous cell carcinoma undergoing surgical resection. Future Oncol. 16:559–571. 2020. View Article : Google Scholar | |
|
Charles KA, Harris BD, Haddad CR, Clarke SJ, Guminski A, Stevens M, Dodds T, Gill AJ, Back M, Veivers D, et al: Systemic inflammation is an independent predictive marker of clinical outcomes in mucosal squamous cell carcinoma of the head and neck in oropharyngeal and non-oropharyngeal patients. BMC Cancer. 16:1242016. View Article : Google Scholar : PubMed/NCBI | |
|
Roman BR and Aragones A: Epidemiology and incidence of HPV-related cancers of the head and neck. J Surg Oncol. 124:920–922. 2021. View Article : Google Scholar | |
|
Serrano B, Brotons M, Bosch FX and Bruni L: Epidemiology and burden of HPV-related disease. Best Pract Res Clin Obstet Gynaecol. 47:14–26. 2018. View Article : Google Scholar | |
|
Betiol J, Villa LL and Sichero L: Impact of HPV infection on the development of head and neck cancer. Braz J Med Biol Res. 46:217–226. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
de Martel C, Georges D, Bray F, Ferlay J and Clifford GM: Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob Health. 8:e180–e190. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kajitani N, Satsuka A, Kawate A and Sakai H: Productive lifecycle of human papillomaviruses that depends upon squamous epithelial differentiation. Front Microbiol. 3:1522012. View Article : Google Scholar | |
|
Cricca M, Venturoli S, Leo E, Costa S, Musiani M and Zerbini M: Disruption of HPV 16 E1 and E2 genes in precancerous cervical lesions. J Virol Methods. 158:180–183. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Pal A and Kundu R: Human Papillomavirus E6 and E7: The cervical cancer hallmarks and targets for therapy. Front Microbiol. 10:31162019. View Article : Google Scholar | |
|
Yu L, Majerciak V and Zheng ZM: HPV16 and HPV18 genome structure, expression, and Post-Transcriptional regulation. Int J Mol Sci. 23:49432022. View Article : Google Scholar | |
|
Helfer CM, Yan J and You J: The cellular bromodomain protein Brd4 has multiple functions in E2-mediated papillomavirus transcription activation. Viruses. 6:3228–3249. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
McBride AA, McPhillips MG and Oliveira JG: Brd4: Tethering, segregation and beyond. Trends Microbiol. 12:527–529. 2004. View Article : Google Scholar | |
|
Jang MK, Shen K and McBride AA: Papillomavirus genomes associate with BRD4 to replicate at fragile sites in the host genome. PLoS Pathog. 10:e10041172014. View Article : Google Scholar : PubMed/NCBI | |
|
McBride AA and Jang MK: Current understanding of the role of the Brd4 protein in the papillomavirus lifecycle. Viruses. 5:1374–1394. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
McKinney CC, Kim MJ, Chen D and McBride AA: Brd4 activates early viral transcription upon human papillomavirus 18 infection of primary keratinocytes. mBio. 7:e01644–16. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Iftner T, Haedicke-Jarboui J, Wu SY and Chiang CM: Involvement of Brd4 in different steps of the papillomavirus life cycle. Virus Res. 231:76–82. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Morse MA, Balogh KK, Brendle SA, Campbell CA, Chen MX, Furze RC, Harada IL, Holyer ID, Kumar U, Lee K, et al: BET bromodomain inhibitors show anti-papillomavirus activity in vitro and block CRPV wart growth in vivo. Antiviral Res. 154:158–165. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Li GL, Ming SL, Wang CF, Shi LJ, Su BQ, Wu HT, Zeng L, Han YQ, Liu ZH, et al: BRD4 inhibition exerts anti-viral activity through DNA damage-dependent innate immune responses. PLoS Pathog. 16:e10084292020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Wang Z, Phuc T, Xu Z, Yang D, Chen Z, Lin Z, Kendrick S, Dai L, Li HY, et al: Oncolytic strategy using new bifunctional HDACs/BRD4 inhibitors against virus-associated lymphomas. PLoS Pathog. 19:e10110892023. View Article : Google Scholar : PubMed/NCBI | |
|
Cohen EEW, Bell RB, Bifulco CB, Burtness B, Gillison ML, Harrington KJ, Le QT, Lee NY, Leidner R, Lewis RL, et al: The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). J Immunother Cancer. 7:1842019. View Article : Google Scholar : PubMed/NCBI | |
|
Oosting SF and Haddad RI: Best practice in systemic therapy for head and neck squamous cell carcinoma. Front Oncol. 9:8152019. View Article : Google Scholar | |
|
Rosenberg AJ and Vokes EE: Optimizing treatment De-Escalation in head and neck cancer: Current and future perspectives. Oncologist. 26:40–48. 2021. View Article : Google Scholar | |
|
Swain M, Kannan S, Srinivasan S, Agarwal JP and Gupta T: Concurrent Cetuximab-based bioradiotherapy versus Cisplatin-based Chemoradiotherapy in the Definitive Management of Favourable Biology Human Papillomavirus-associated Oropharyngeal Squamous Cell Carcinoma: Systematic Review and Meta-analysis. Clin Oncol (R Coll Radiol). 34:786–795. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lv XX, Zheng XY, Yu JJ, Ma HR, Hua C and Gao RT: EGFR enhances the stemness and progression of oral cancer through inhibiting autophagic degradation of SOX2. Cancer Med. 9:1131–1140. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Beck TN, Georgopoulos R, Shagisultanova EI, Sarcu D, Handorf EA, Dubyk C, Lango MN, Ridge JA, Astsaturov I, Serebriiskii IG, et al: EGFR and RB1 as dual biomarkers in HPV-Negative head and neck cancer. Mol Cancer Ther. 15:2486–2497. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Alsahafi EN, Thavaraj S, Sarvestani N, Novoplansky O, Elkabets M, Ayaz B, Tavassoli M and Legends MF: EGFR overexpression increases radiotherapy response in HPV-positive head and neck cancer through inhibition of DNA damage repair and HPV E6 downregulation. Cancer Lett. 498:80–97. 2021. View Article : Google Scholar | |
|
Rieckmann T and Kriegs M: The failure of cetuximab-based de-intensified regimes for HPV-positive OPSCC: A radiobiologists perspective. Clin Transl Radiat Oncol. 17:47–50. 2019. | |
|
Krishnamurthy S, Ahmed I, Bhise R, Mohanti BK, Sharma A, Rieckmann T, Paterson C and Bonomo P: The dogma of Cetuximab and Radiotherapy in head and neck cancer-A dawn to dusk journey. Clin Transl Radiat Oncol. 34:75–81. 2022. | |
|
Xu K, Chen D, Qian D, Zhang S, Zhang Y, Guo S, Ma Z and Wang S: AZD5153, a novel BRD4 inhibitor, suppresses human thyroid carcinoma cell growth in vitro and in vivo. Biochem Biophys Res Commun. 499:531–537. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cortiguera MG, Batlle-López A, Albajar M, Delgado MD and León J: MYC as therapeutic target in leukemia and lymphoma. Blood and Lymphatic Cancer: Targets and Therapy. 5:75–91. 2015. | |
|
Wang C, Zhang Y, Zhou D, Cao G and Wu Y: miR-204 enhances p27 mRNA stability by targeting Brd4 in head and neck squamous cell carcinoma. Oncol Lett. 16:4179–4184. 2018. | |
|
Zhang W, Ge H, Jiang Y, Huang R, Wu Y, Wang D, Guo S, Li S, Wang Y, Jiang H, et al: Combinational therapeutic targeting of BRD4 and CDK7 synergistically induces anticancer effects in head and neck squamous cell carcinoma. Cancer Lett. 469:510–523. 2020. View Article : Google Scholar | |
|
Webber LP, Yujra VQ, Vargas PA, Martins MD, Squarize CH and Castilho RM: Interference with the bromodomain epigenome readers drives p21 expression and tumor senescence. Cancer Lett. 461:10–20. 2019. View Article : Google Scholar | |
|
Dong J, Li J, Li Y, Ma Z, Yu Y and Wang CY: Transcriptional super-enhancers control cancer stemness and metastasis genes in squamous cell carcinoma. Nat Commun. 12:39742021. View Article : Google Scholar : PubMed/NCBI | |
|
Jing C, Liu D, Lai Q, Li L, Zhou M, Ye B, Wu Y, Li H, Yue K, Wu Y, et al: JOSD1 promotes proliferation and chemoresistance of head and neck squamous cell carcinoma under the epigenetic regulation of BRD4. Cancer Cell Int. 21:3752021. View Article : Google Scholar | |
|
Chen N, Golczer G, Ghose S, Lin B, Langenbucher A, Webb J, Bhanot H, Abt NB, Lin D, Varvares M, et al: YAP1 maintains active chromatin state in head and neck squamous cell carcinomas that promotes tumorigenesis through cooperation with BRD4. Cell Rep. 39:1109702022. View Article : Google Scholar : PubMed/NCBI | |
|
Leonard B, Brand TM, O'Keefe RA, Lee ED, Zeng Y, Kemmer JD, Li H, Grandis JR and Bhola NE: BET Inhibition overcomes receptor tyrosine Kinase-Mediated cetuximab resistance in HNSCC. Cancer Res. 78:4331–4343. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Araujo TG, Mota STS, Ferreira HSV, Ribeiro MA, Goulart LR and Vecchi L: Annexin A1 as a regulator of immune response in cancer. Cells. 10:22452021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong L, Yang Z, Lei D, Li L, Song S, Cao D and Liu Y: Bromodomain 4 is a potent prognostic marker associated with immune cell infiltration in breast cancer. Basic Clin Pharmacol Toxicol. 128:169–182. 2021. View Article : Google Scholar | |
|
Chen YR, Ouyang SS, Chen YL, Li P, Xu HW and Zhu SL: BRD4/8/9 are prognostic biomarkers and associated with immune infiltrates in hepatocellular carcinoma. Aging (Albany NY). 12:17541–17567. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lee M, Tayyari F, Pinnaduwage D, Bayani J, Bartlett JMS, Mulligan AM, Bull SB and Andrulis IL: Tumoral BRD4 expression in lymph node-negative breast cancer: association with T-bet+ tumor-infiltrating lymphocytes and disease-free survival. BMC Cancer. 18:7502018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao L, Li P, Zhao L, Wang M, Tong D, Meng Z, Zhang Q, Li Q and Zhang F: Expression and clinical value of PD-L1 which is regulated by BRD4 in tongue squamous cell carcinoma. J Cell Biochem. 121:1855–1869. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jing X, Shao S, Zhang Y, Luo A, Zhao L, Zhang L, Gu S and Zhao X: BRD4 inhibition suppresses PD-L1 expression in triple-negative breast cancer. Exp Cell Res. 392:1120342020. View Article : Google Scholar : PubMed/NCBI | |
|
Ye Y, Zhong W, Qian J, Zhang J, Xu T, Han R, Han J, Wang C, Song L, Zeng X, et al: Comprehensive analysis of the prognosis and immune infiltrates for the BET protein family reveals the significance of BRD4 in glioblastoma multiforme. Front Cell Dev Biol. 11:10424902023. View Article : Google Scholar | |
|
Bhola NE, Njatcha C, Hu L, Lee ED, Shiah JV, Kim MO, Johnson DE and Grandis JR: PD-L1 is upregulated via BRD2 in head and neck squamous cell carcinoma models of acquired cetuximab resistance. Head Neck. 43:3364–3373. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Wang G, Ma Z, Xiong G, Wang W, Huang Z, Wan Y, Xu X, Hoyle RG, Yi C, et al: BET inhibition triggers antitumor immunity by enhancing MHC class I expression in head and neck squamous cell carcinoma. Mol Ther. 30:3394–3413. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Suarez-Alvarez B, Morgado-Pascual JL, Rayego-Mateos S, Rodriguez RM, Rodrigues-Diez R, Cannata-Ortiz P, Sanz AB, Egido J, Tharaux PL, Ortiz A, et al: Inhibition of bromodomain and extraterminal domain family proteins ameliorates experimental renal damage. J Am Soc Nephrol. 28:504–519. 2017. View Article : Google Scholar | |
|
Xia L, Liu JY, Zheng ZZ, Chen YJ, Ding JC, Hu YH, Hu GS, Xia NS and Liu W: BRD4 inhibition boosts the therapeutic effects of epidermal growth factor receptor-targeted chimeric antigen receptor T cells in glioblastoma. Mol Ther. 29:3011–3026. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Joshi S, Singh AR, Liu KX, Pham TV, Zulcic M, Skola D, Chun HB, Glass CK, Morales GA, Garlich JR, et al: SF2523: Dual PI3K/BRD4 inhibitor blocks tumor immunosuppression and promotes adaptive immune responses in cancer. Mol Cancer Ther. 18:1036–1044. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Fu Y, Yang B, Guo E, Wu Y, Huang J, Zhang X, Xiao R, Li K, Wang B, et al: BRD4 Inhibition by AZD5153 promotes antitumor immunity via depolarizing M2 macrophages. Front Immunol. 11:892020. View Article : Google Scholar | |
|
Fong CY, Gilan O, Lam EY, Rubin AF, Ftouni S, Tyler D, Stanley K, Sinha D, Yeh P, Morison J, et al: BET inhibitor resistance emerges from leukaemia stem cells. Nature. 525:538–542. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Rathert P, Roth M, Neumann T, Muerdter F, Roe JS, Muhar M, Deswal S, Cerny-Reiterer S, Peter B, Jude J, et al: Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature. 525:543–547. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Calder J, Nagelberg A, Luu J, Lu D and Lockwood WW: Resistance to BET inhibitors in lung adenocarcinoma is mediated by casein kinase phosphorylation of BRD4. Oncogenesis. 10:272021. View Article : Google Scholar : PubMed/NCBI | |
|
Jin X, Yan Y, Wang D, Ding D, Ma T, Ye Z, Jimenez R, Wang L, Wu H and Huang H: DUB3 promotes BET inhibitor resistance and cancer progression by deubiquitinating BRD4. Mol Cell. 71:592–605. e5942018. View Article : Google Scholar | |
|
Tai F, Gong K, Song K, He Y and Shi J: Enhanced JunD/RSK3 signalling due to loss of BRD4/FOXD3/miR-548d-3p axis determines BET inhibition resistance. Nat Commun. 11:2582020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Wei X, Cao Y and Xing P: ZNF33A promotes tumor progression and BET inhibitor resistance in Triple-Negative breast cancer. Am J Pathol. 192:1458–1469. 2022. View Article : Google Scholar | |
|
Shu S, Wu HJ, Ge JY, Zeid R, Harris IS, Jovanovic B, Murphy K, Wang B, Qiu X, Endress JE, et al: Synthetic lethal and resistance interactions with BET bromodomain inhibitors in Triple-Negative breast cancer. Mol Cell. 78:1096–1113.e8. 2020. View Article : Google Scholar | |
|
Luan W, Pang Y, Li R, Wei X, Jiao X, Shi J, Yu J, Mao H and Liu P: Akt/mTOR-Mediated autophagy confers resistance to BET inhibitor JQ1 in ovarian cancer. Onco Targets Ther. 12:8063–8074. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Andrikopoulou A, Liontos M, Koutsoukos K, Dimopoulos MA and Zagouri F: Clinical perspectives of BET inhibition in ovarian cancer. Cell Oncol (Dordr). 44:237–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang B, Fan P, Zhao J and Wu H, Jin X and Wu H: FBP1 loss contributes to BET inhibitors resistance by undermining c-Myc expression in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res. 37:2242018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang P, Wang D, Zhao Y, Ren S, Gao K, Ye Z, Wang S, Pan CW, Zhu Y, Yan Y, et al: Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation. Nat Med. 23:1055–1062. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Piha-Paul SA, Sachdev JC, Barve M, LoRusso P, Szmulewitz R, Patel SP, Lara PN Jr, Chen X, Hu B, Freise KJ, et al: First-in-Human study of mivebresib (ABBV-075), an Oral Pan-Inhibitor of bromodomain and extra terminal proteins, in patients with Relapsed/Refractory solid tumors. Clin Cancer Res. 25:6309–6319. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Aggarwal RR, Schweizer MT, Nanus DM, Pantuck AJ, Heath EI, Campeau E, Attwell S, Norek K, Snyder M, Bauman L, et al: A Phase Ib/IIa Study of the Pan-BET Inhibitor ZEN-3694 in combination with enzalutamide in patients with metastatic Castration-Resistant prostate cancer. Clin Cancer Res. 26:5338–5347. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Faivre EJ, McDaniel KF, Albert DH, Mantena SR, Plotnik JP, Wilcox D, Zhang L, Bui MH, Sheppard GS, Wang L, et al: Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. Nature. 578:306–310. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ferreira D, Moreira JN and Rodrigues LR: New advances in exosome-based targeted drug delivery systems. Crit Rev Oncol Hematol. 172:1036282022. View Article : Google Scholar | |
|
Bhome R, Del Vecchio F, Lee GH, Bullock MD, Primrose JN, Sayan AE and Mirnezami AH: Exosomal microRNAs (exomiRs): Small molecules with a big role in cancer. Cancer Lett. 420:228–235. 2018. View Article : Google Scholar | |
|
Alcitepe I, Salcin H, Karatekin I and Kaymaz BT: HDAC inhibitor Vorinostat and BET inhibitor Plx51107 epigenetic agents' combined treatments exert a therapeutic approach upon acute myeloid leukemia cell model. Med Oncol. 39:2572022. View Article : Google Scholar | |
|
Liu S, Li F, Pan L, Yang Z, Shu Y, Lv W, Dong P and Gong W: BRD4 inhibitor and histone deacetylase inhibitor synergistically inhibit the proliferation of gallbladder cancer in vitro and in vivo. Cancer Sci. 110:2493–2506. 2019. View Article : Google Scholar | |
|
Patel MR, Garcia-Manero G, Paquette R, Dinner S, Donnellan WB, Grunwald MR, Ribadeneira MD, Schroeder P, Brevard J, Wilson L, et al: Phase 1 Dose escalation and expansion study to determine safety, tolerability, pharmacokinetics, and pharmacodynamics of the BET inhibitor FT-1101 as a single agent in patients with relapsed or refractory hematologic malignancies. Blood. 134:3907. 2019. View Article : Google Scholar | |
|
Piha-Paul SA, Hann CL, French CA, Cousin S, Brana I, Cassier PA, Moreno V, de Bono JS, Harward SD, Ferron-Brady G, et al: Phase 1 study of molibresib (GSK525762), a bromodomain and Extra-Terminal domain protein inhibitor, in NUT carcinoma and other solid tumors. JNCI Cancer Spectr. 4:pkz0932020. View Article : Google Scholar : PubMed/NCBI | |
|
Dawson M, Stein EM, Huntly BJP, Karadimitris A, Kamdar M, Fernandez de Larrea C, Dickinson MJ, Yeh PS-H, Daver N, Chaidos A, et al: A Phase I study of GSK525762, a selective bromodomain (BRD) and extra terminal protein (BET) Inhibitor: Results from Part 1 of Phase I/II open label single agent study in patients with acute myeloid leukemia (AML). Blood. 130:13772017. View Article : Google Scholar : PubMed/NCBI | |
|
Falchook G, Rosen S, LoRusso P, Watts J, Gupta S, Coombs CC, Talpaz M, Kurzrock R, Mita M, Cassaday R, et al: Development of 2 bromodomain and extraterminal inhibitors with distinct pharmacokinetic and pharmacodynamic profiles for the treatment of advanced malignancies. Clin Cancer Res. 26:1247–1257. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Watts JM, Hunter AM, Iurlo A, Xicoy B, Palandri F, Reeves B, Vannucchi A, Bose P, Ayala Diaz R, Halpern AB, et al: Bromodomain and extra-terminal (BET) inhibitor INCB057643 (LIMBER-103) in patients (pts) with relapsed or refractory myelofibrosis (R/R MF) and other advanced myeloid neoplasms: A phase 1 study. HemaSphere. 7:e17929062023. View Article : Google Scholar | |
|
Ameratunga M, Brana I, Bono P, Postel-Vinay S, Plummer R, Aspegren J, Korjamo T, Snapir A and de Bono JS: First-in-human Phase 1 open label study of the BET inhibitor ODM-207 in patients with selected solid tumours. Br J Cancer. 123:1730–1736. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dombret H, Preudhomme C, Berthon C, Raffoux E, Thomas X, Vey N, Gomez-Roca C, Ethell M, Yee K, Bourdel F, et al: A Phase 1 Study of the BET-Bromodomain inhibitor OTX015 in patients with advanced acute leukemia. Blood. 124:1172014. View Article : Google Scholar | |
|
Doroshow DB, Eder JP and LoRusso PM: BET inhibitors: A novel epigenetic approach. Ann Oncol. 28:1776–1787. 2017. View Article : Google Scholar | |
|
Lewin J, Soria JC, Stathis A, Delord JP, Peters S, Awada A, Aftimos PG, Bekradda M, Rezai K, Zeng Z, et al: Phase Ib Trial With Birabresib, a Small-Molecule inhibitor of bromodomain and extraterminal proteins, in patients with selected advanced solid tumors. J Clin Oncol. 36:3007–3014. 2018. View Article : Google Scholar | |
|
Moreno V, Sepulveda JM, Vieito M, Hernandez-Guerrero T, Doger B, Saavedra O, Ferrero O, Sarmiento R, Arias M, De Alvaro J, et al: Phase I study of CC-90010, a reversible, oral BET inhibitor in patients with advanced solid tumors and relapsed/refractory non-Hodgkin's lymphoma. Ann Oncol. 31:780–788. 2020. View Article : Google Scholar | |
|
Bhattacharya S, Piya S and Borthakur G: Bromodomain inhibitors: What does the future hold? Clin Adv Hematol Oncol. 16:504–515. 2018. | |
|
Mascarenhas J, Kremyanskaya M, Hoffman R, Bose P, Talpaz M, Harrison CN, Gupta V, Leber B, Sirhan S, Kabir S, et al: MANIFEST, a Phase 2 Study of CPI-0610, a bromodomain and extraterminal domain inhibitor (BETi), as monotherapy or ‘Add-on’ to ruxolitinib, in patients with refractory or intolerant advanced myelofibrosis. Blood. 134:6702019. View Article : Google Scholar | |
|
Senapati J, Fiskus WC, Daver N, Wilson NR, Ravandi F, Garcia-Manero G, Kadia T, DiNardo CD, Jabbour E, Burger J, et al: Phase I results of bromodomain and Extra-terminal inhibitor PLX51107 in combination with azacitidine in patients with Relapsed/Refractory myeloid malignancies. Clin Cancer Res. 29:4352–4360. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Patnaik A, Carvajal RD, Komatsubara KM, Britten CD, Wesolowski R, Michelson G, Alcantar O, Zhang C, Powell B, Severson P, et al: Phase ib/2a study of PLX51107, a small molecule BET inhibitor, in subjects with advanced hematological malignancies and solid tumors. J Clin Oncol. 36:2550. 2018. View Article : Google Scholar | |
|
Roboz GJ, Desai P, Lee S, Ritchie EK, Winer ES, DeMario M, Brennan B, Nuesch E, Chesne E, Brennan L, et al: A dose escalation study of RO6870810/TEN-10 in patients with acute myeloid leukemia and myelodysplastic syndrome. Leuk Lymphoma. 62:1740–1748. 2021. View Article : Google Scholar | |
|
Shapiro GI, LoRusso P, Dowlati A, T Do K, Jacobson CA, Vaishampayan U, Weise A, Caimi PF, Eder JP, French CA, et al: A Phase 1 study of RO6870810, a novel bromodomain and extra-terminal protein inhibitor, in patients with NUT carcinoma, other solid tumours, or diffuse large B-cell lymphoma. Br J Cancer. 124:744–753. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang JSZ, Vita SD, Karlix JL, Cook C, Littlewood GM, Hattersley MM, Moorthy G, Edlund H, Fabbri G, Sachsenmeier KF, et al: First-in-human study of AZD5153, a small molecule inhibitor of bromodomain protein 4 (BRD4), in patients (pts) with relapsed/refractory (RR) malignant solid tumor and lymphoma: Preliminary data. J Clin Oncol. 37:3085. 2019. View Article : Google Scholar | |
|
Hilton J, Cristea M, Postel-Vinay S, Baldini C, Voskoboynik M, Edenfield W, Shapiro GI, Cheng ML, Vuky J, Corr B, et al: BMS-986158, a small molecule inhibitor of the bromodomain and extraterminal domain proteins, in patients with selected advanced solid tumors: Results from a Phase 1/2a trial. Cancers (Basel). 14:40792022. View Article : Google Scholar : PubMed/NCBI | |
|
Brown JA, Bal J, Simeoni M, Williams P, Mander PK, Soden PE, Daga S, Fahy WA, Wong GK, Bloomer JC, et al: A randomized study of the safety and pharmacokinetics of GSK3358699, a mononuclear myeloid-targeted bromodomain and extra-terminal domain inhibitor. Br J Clin Pharmacol. 88:2140–2155. 2022. View Article : Google Scholar | |
|
Li Y, Xiang J, Zhang J, Lin J, Wu Y and Wang X: Inhibition of Brd4 by JQ1 promotes functional recovery from spinal cord injury by activating autophagy. Front Cell Neurosci. 14:5555912020. View Article : Google Scholar | |
|
Lee DU, Katavolos P, Palanisamy G, Katewa A, Sioson C, Corpuz J, Pang J, DeMent K, Choo E, Ghilardi N, et al: Nonselective inhibition of the epigenetic transcriptional regulator BET induces marked lymphoid and hematopoietic toxicity in mice. Toxicol Appl Pharmacol. 300:47–54. 2016. View Article : Google Scholar | |
|
Bakshi S, McKee C, Walker K, Brown C and Chaudhry GR: Toxicity of JQ1 in neuronal derivatives of human umbilical cord mesenchymal stem cells. Oncotarget. 9:33853–33864. 2018. View Article : Google Scholar | |
|
Leal AS, Williams CR, Royce DB, Pioli PA, Sporn MB and Liby KT: Bromodomain inhibitors, JQ1 and I-BET 762, as potential therapies for pancreatic cancer. Cancer Lett. 394:76–87. 2017. View Article : Google Scholar | |
|
Piquereau J, Boet A, Pechoux C, Antigny F, Lambert M, Gressette M, Ranchoux B, Gambaryan N, Domergue V, Mumby S, et al: The BET bromodomain inhibitor I-BET-151 induces structural and functional alterations of the heart mitochondria in healthy male mice and rats. Int J Mol Sci. 20:15272019. View Article : Google Scholar | |
|
Liu CS, Rioja I, Bakr A, Veldwijk MR, Sperk E, Herskind C, Weichenhan D, Prinjha RK, Plass C, Schmezer P, et al: Selective inhibitors of bromodomain BD1 and BD2 of BET proteins modulate radiation-induced profibrotic fibroblast responses. Int J Cancer. 151:275–286. 2022. View Article : Google Scholar : PubMed/NCBI |