Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
June-2024 Volume 51 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2024 Volume 51 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Important role and underlying mechanism of non‑SMC condensin I complex subunit G in tumours (Review)

  • Authors:
    • Ruobing Li
    • Dechun Wang
    • Hong Yang
    • Leilei Pu
    • Xiaohong Li
    • Fumei Yang
    • Rong Zhu
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 77
    |
    Published online on: April 15, 2024
       https://doi.org/10.3892/or.2024.8736
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

At present, the incidence of tumours is increasing on a yearly basis, and tumourigenesis is usually associated with chromosomal instability and cell cycle dysregulation. Moreover, abnormalities in the chromosomal structure often lead to DNA damage, further exacerbating gene mutations and chromosomal rearrangements. However, the non‑SMC condensin I complex subunit G (NCAPG) of the structural maintenance of chromosomes family is known to exert a key role in tumour development. It has been shown that high expression of NCAPG is closely associated with tumour development and progression. Overexpression of NCAPG variously affects chromosome condensation and segregation during cell mitosis, influences cell cycle regulation, promotes tumour cell proliferation and invasion, and inhibits apoptosis. In addition, NCAPG has been associated with tumour cell stemness, tumour resistance and recurrence. The aim of the present review was to explore the underlying mechanisms of NCAPG during tumour development, with a view towards providing novel targets and strategies for tumour therapy, and through the elucidation of the mechanisms involved, to lay the foundation for future developments in health.
View Figures

Figure 1

Figure 2

View References

1 

Ono T, Losada A, Hirano M, Myers MP, Neuwald AF and Hirano T: Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell. 115:109–121. 2003. View Article : Google Scholar

2 

Hara K, Kinoshita K, Migita T, Murakami K, Shimizu K, Takeuchi K, Hirano T and Hashimoto H: Structural basis of HEAT-kleisin interactions in the human condensin I subcomplex. EMBO Rep. 20:e471832019. View Article : Google Scholar : PubMed/NCBI

3 

Kinoshita K, Kobayashi TJ and Hirano T: Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes. Dev Cell. 33:94–106. 2015. View Article : Google Scholar

4 

Xiao C, Gong J, Jie Y, Cao J, Chen Z, Li R, Chong Y, Hu B and Zhang Q: NCAPG is a promising therapeutic target across different tumor types. Front Pharmacol. 11:3872020. View Article : Google Scholar

5 

Eberlein A, Takasuga A, Setoguchi K, Pfuhl R, Flisikowski K, Fries R, Klopp N, Fürbass R, Weikard R and Kühn C: Dissection of genetic factors modulating fetal growth in cattle indicates a substantial role of the non-SMC condensin I complex, subunit G (NCAPG) gene. Genetics. 183:951–964. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Dej KJ, Ahn C and Orr-Weaver TL: Mutations in the Drosophila condensin subunit dCAP-G: Defining the role of condensin for chromosome condensation in mitosis and gene expression in interphase. Genetics. 168:895–906. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Murphy LA and Sarge KD: Phosphorylation of CAP-G is required for its chromosomal DNA localization during mitosis. Biochem Biophys Res Commun. 377:1007–1011. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Sun H, Zhang H, Yan Y, Li Y, Che G, Zhou C, Nicot C and Ma H: Correction: NCAPG promotes the oncogenesis and progression of non-small cell lung cancer cells through upregulating LGALS1 expression. Mol Cancer. 21:2212022. View Article : Google Scholar : PubMed/NCBI

9 

Yuan Y, Jiang X, Tang L, Wang J, Zhang D, Cho WC and Duan L: FOXM1/lncRNA TYMSOS/miR-214-3p-mediated high expression of NCAPG correlates with poor prognosis and cell proliferation in non-small cell lung carcinoma. Front Mol Biosci. 8:7857672022. View Article : Google Scholar

10 

Fu Q, Yang F, Zhao J, Yang X, Xiang T, Huai G, Zhang J, Wei L, Deng S and Yang H: Bioinformatical identification of key pathways and genes in human hepatocellular carcinoma after CSN5 depletion. Cell Signal. 49:79–86. 2018. View Article : Google Scholar

11 

Liu W, Liang B, Liu H, Huang Y, Yin X, Zhou F, Yu X, Feng Q, Li E, Zou Z and Wu L: Overexpression of non-SMC condensin I complex subunit G serves as a promising prognostic marker and therapeutic target for hepatocellular carcinoma. Int J Mol Med. 40:731–738. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Shi Y, Ge C, Fang D, Wei W, Li L, Wei Q and Yu H: NCAPG facilitates colorectal cancer cell proliferation, migration, invasion and epithelial-mesenchymal transition by activating the Wnt/β-catenin signaling pathway. Cancer Cell Int. 22:1192022. View Article : Google Scholar

13 

Wu C, Huang ZH, Meng ZQ, Fan XT, Lu S, Tan YY, You LM, Huang JQ, Stalin A, Ye PZ, et al: A network pharmacology approach to reveal the pharmacological targets and biological mechanism of compound kushen injection for treating pancreatic cancer based on WGCNA and in vitro experiment validation. Chin Med. 16:1212021. View Article : Google Scholar : PubMed/NCBI

14 

Zhang D, Cui F, Peng L, Wang M, Yang X, Xia C, Li K, Yin H, Zhang Y, Yu Q, et al: Establishing and validating an ADCP-related prognostic signature in pancreatic ductal adenocarcinoma. Aging (Albany NY). 14:6299–6315. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Hitti E, Bakheet T, Al-Souhibani N, Moghrabi W, Al-Yahya S, Al-Ghamdi M, Al-Saif M, Shoukri MM, Lánczky A, Grépin R, et al: Systematic analysis of AU-rich element expression in cancer reveals common functional clusters regulated by key RNA-binding proteins. Cancer Res. 76:4068–4080. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Xu T, Dong M, Wang Z, Li H and Li X: Elevated mRNA expression levels of NCAPG are associated with poor prognosis in ovarian cancer. Cancer Manag Res. 12:5773–5786. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Zhang W, Gao L, Wang C, Wang S, Sun D, Li X, Liu M, Qi Y, Liu J and Lin B: Combining bioinformatics and experiments to identify and verify key genes with prognostic values in endometrial carcinoma. J Cancer. 11:716–732. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Wang M, Cui Y, Cai Y, Jiang Y and Peng Y: Comprehensive bioinformatics analysis of mRNA expression profiles and identification of a miRNA-mRNA network associated with the pathogenesis of low-grade gliomas. Cancer Manag Res. 13:5135–5147. 2021. View Article : Google Scholar : PubMed/NCBI

19 

Lu S, Sun C, Chen H, Zhang C, Li W, Wu L, Zhu J, Sun F, Huang J, Wang J, et al: Bioinformatics analysis and validation identify CDK1 and MAD2L1 as prognostic markers of rhabdomyosarcoma. Cancer Manag Res. 12:12123–12136. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Ryu B, Kim DS, Deluca AM and Alani RM: Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS One. 2:e5942007. View Article : Google Scholar : PubMed/NCBI

21 

Xie D, Chen X, Wu H, Ning D, Cao X and Wan C: Prediction of diagnostic gene biomarkers associated with immune infiltration for basal cell carcinoma. Clin Cosmet Investig Dermatol. 15:2657–2673. 2022. View Article : Google Scholar

22 

Cohen Y, Gutwein O, Garach-Jehoshua O, Bar-Haim A and Kornberg A: The proliferation arrest of primary tumor cells out-of-niche is associated with widespread downregulation of mitotic and transcriptional genes. Hematology. 19:286–292. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Wu Y, Lin Y, Pan J, Tu X, Xu Y, Li H and Chen Y: NCAPG promotes the progression of lung adenocarcinoma via the TGF-β signaling pathway. Cancer Cell Int. 21:4432021. View Article : Google Scholar

24 

Guo ZY and Zhu ZT: NCAPG is a prognostic biomarker associated with vascular invasion in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci. 25:7238–7251. 2021.

25 

Sun DP, Wu CC, Chou CL, Cheng LC, Wang WC, Lin SS, Hung ST, Tian YF, Fang CL and Lin KY: NCAPG deregulation indicates poor patient survival and contributes to colorectal carcinogenesis. Pathol Res Pract. 241:1542382023. View Article : Google Scholar

26 

Hou J, Huang P, Xu M, Wang H, Shao Y, Weng X, Liu Y, Chang H, Zhang L and Cui H: NCAPG promotes the progression of glioblastoma by facilitating PARP1-mediated E2F1 transactivation. Neuro Oncol. 25:2023. View Article : Google Scholar

27 

Zhang X, Wang H, Han Y, Zhu M, Song Z, Zhan D and Jia J: NCAPG induces cell proliferation in cardia adenocarcinoma via PI3K/AKT signaling pathway. Onco Targets Ther. 13:11315–11326. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Guo M, Li X, Li J and Li B: Identification of the prognostic biomarkers and their correlations with immune infiltration in colorectal cancer through bioinformatics analysis and in vitro experiments. Heliyon. 9:e171012023. View Article : Google Scholar : PubMed/NCBI

29 

Farzaneh M, Ghasemian M, Ghaedrahmati F, Poodineh J, Najafi S, Masoodi T, Kurniawan D, Uddin S and Azizidoost S: Functional roles of lncRNA-TUG1 in hepatocellular carcinoma. Life Sci. 308:1209742022. View Article : Google Scholar

30 

Li L, Liu S, Peng L, Zhang Y, Zhang Y, Zeng H, Li G and Zhang C: The identification and preliminary study of lncRNA TUG1 and its related genes in hepatocellular carcinoma. Arch Med Sci. 18:1582–1595. 2019.

31 

Liu K, Li Y, Yu B, Wang F, Mi T and Zhao Y: Silencing non-SMC chromosome-associated polypeptide G inhibits proliferation and induces apoptosis in hepatocellular carcinoma cells. Can J Physiol Pharmacol. 96:1246–1254. 2018. View Article : Google Scholar

32 

Wang Y, Gao B, Tan PY, Handoko YA, Sekar K, Deivasigamani A, Seshachalam VP, OuYang HY, Shi M, Xie C, et al: Genome-wide CRISPR knockout screens identify NCAPG as an essential oncogene for hepatocellular carcinoma tumor growth. FASEB J. 33:8759–8770. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Ai J, Gong C, Wu J, Gao J, Liu W, Liao W and Wu L: MicroRNA-181c suppresses growth and metastasis of hepatocellular carcinoma by modulating NCAPG. Cancer Manag Res. 11:3455–3467. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Li Y, Shi H, Zhao Z and Xu M: Identification of castration-dependent and -independent driver genes and pathways in castration-resistant prostate cancer (CRPC). BMC Urol. 22:1622022. View Article : Google Scholar

35 

Goto Y, Kurozumi A, Arai T, Nohata N, Kojima S, Okato A, Kato M, Yamazaki K, Ishida Y, Naya Y, et al: Impact of novel miR-145-3p regulatory networks on survival in patients with castration-resistant prostate cancer. Br J Cancer. 117:409–420. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Arai T, Okato A, Yamada Y, Sugawara S, Kurozumi A, Kojima S, Yamazaki K, Naya Y, Ichikawa T and Seki N: Regulation of NCAPG by miR-99a-3p (passenger strand) inhibits cancer cell aggressiveness and is involved in CRPC. Cancer Med. 7:1988–2002. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Yu H, Zou D, Ni N, Zhang S, Zhang Q and Yang L: Overexpression of NCAPG in ovarian cancer is associated with ovarian cancer proliferation and apoptosis via p38 MAPK signaling pathway. J Ovarian Res. 15:982022. View Article : Google Scholar : PubMed/NCBI

38 

Song B, Du J, Song DF, Ren JC and Feng Y: Dysregulation of NCAPG, KNL1, miR-148a-3p, miR-193b-3p, and miR-1179 may contribute to the progression of gastric cancer. Biol Res. 51:442018. View Article : Google Scholar : PubMed/NCBI

39 

Sun DP, Lin CC, Hung ST, Kuang YY, Hseu YC, Fang CL and Lin KY: Aberrant expression of NCAPG is associated with prognosis and progression of gastric cancer. Cancer Manag Res. 12:7837–7846. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Wolf MM, Kimryn Rathmell W and Beckermann KE: Modeling clear cell renal cell carcinoma and therapeutic implications. Oncogene. 39:3413–3426. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Liu B, Xiao Y, Li H, Zhang AL, Meng LB, Feng L, Zhao ZH, Ni XC, Fan B, Zhang XY, et al: Identification and verification of biomarker in clear cell renal cell carcinoma via bioinformatics and neural network model. Biomed Res Int. 2020:69547932020.

42 

Li H, Zheng P, Li Z, Han Q, Zhou B, Wang X and Wang K: NCAPG promotes the proliferation of renal clear cell carcinoma via mediating with CDK1. Dis Markers. 2022:67585952022.PubMed/NCBI

43 

Li S, Xuan Y, Gao B, Sun X, Miao S, Lu T, Wang Y and Jiao W: Identification of an eight-gene prognostic signature for lung adenocarcinoma. Cancer Manag Res. 10:3383–3392. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Wang X, Tian X, Sui X, Li X, Zhao X, Han K, Sun L and Dong Y: Increased expression of NCAPG (Non-SMC condensing I complex subunit G) is associated with progression and poor prognosis of lung adenocarcinoma. Bioengineered. 13:6113–6125. 2022. View Article : Google Scholar : PubMed/NCBI

45 

Chen J, Yang HM, Zhou HC, Peng RR, Niu ZX and Kang CY: PRR11 and SKA2 promote the proliferation, migration and invasion of esophageal carcinoma cells. Oncol Lett. 20:639–646. 2020. View Article : Google Scholar

46 

Sun Y, Xu D, Zhang C, Wang Y, Zhang L, Qiao D, Bu Y and Zhang Y: HEDGEHOG/GLI modulates the PRR11-SKA2 bidirectional transcription unit in lung squamous cell carcinomas. Genes (Basel). 12:1202021. View Article : Google Scholar : PubMed/NCBI

47 

Moura-Castro LH, Peña-Martínez P, Castor A, Galeev R, Larsson J, Järås M, Yang M and Paulsson K: Sister chromatid cohesion defects are associated with chromosomal copy number heterogeneity in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer. 60:410–417. 2021. View Article : Google Scholar : PubMed/NCBI

48 

Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, et al: Induced pluripotent stem cell lines derived from human somatic cells. Science. 318:1917–1920. 2007. View Article : Google Scholar : PubMed/NCBI

49 

González F, Boué S and Izpisúa Belmonte JC: Methods for making induced pluripotent stem cells: Reprogramming à la carte. Nat Rev Genet. 12:231–242. 2011. View Article : Google Scholar

50 

van Es JH, Sato T, van de Wetering M, Lyubimova A, Yee Nee AN, Gregorieff A, Sasaki N, Zeinstra L, van den Born M, Korving J, et al: Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol. 14:1099–1104. 2012. View Article : Google Scholar

51 

Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, Brooks M, Reinhardt F, Su Y, Polyak K, et al: Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci USA. 108:7950–7955. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 5:82020. View Article : Google Scholar : PubMed/NCBI

53 

Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B and Cheng SY: Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics. 10:8721–8743. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Pan S, Zhan Y, Chen X, Wu B and Liu B: Identification of biomarkers for controlling cancer stem cell characteristics in bladder cancer by network analysis of transcriptome data stemness indices. Front Oncol. 9:6132019. View Article : Google Scholar

55 

Li J, Zhou M, Huang D, Lin R, Cui X, Chen S, Yao Y, Xian S, Wang S, Fu Q, et al: The recurrent-specific regulation network of prognostic stemness-related signatures in low-grade glioma. Dis Markers. 2023:22439282023. View Article : Google Scholar : PubMed/NCBI

56 

Li H, Jiang Y, Hu J, Xu J, Chen L, Zhang G, Zhao J, Zong S, Guo Z, Li X, et al: The U2AF65/circNCAPG/RREB1 feedback loop promotes malignant phenotypes of glioma stem cells through activating the TGF-β pathway. Cell Death Dis. 14:232023. View Article : Google Scholar : PubMed/NCBI

57 

Xiang Z, Cha G, Wang Y, Gao J and Jia J: Characterizing the crosstalk of NCAPG with tumor microenvironment and tumor stemness in stomach adenocarcinoma. Stem Cells Int. 2022:18883582022. View Article : Google Scholar

58 

Xia X and Li Y: Comprehensive analysis of transcriptome data stemness indices identifies key genes for controlling cancer stem cell characteristics in gastric cancer. Transl Cancer Res. 9:6050–6061. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Guo SH, Ma L and Chen J: Identification of prognostic markers and potential therapeutic targets in gastric adenocarcinoma by machine learning based on mRNAsi index. J Oncol. 2022:89261272022. View Article : Google Scholar

60 

Zhang Z, Qi D, Liu X and Kang P: NCAPG stimulates lung adenocarcinoma cell stemness through aerobic glycolysis. Clin Respir J. 17:884–892. 2023. View Article : Google Scholar : PubMed/NCBI

61 

Xiao Y and Yu D: Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 221:1077532021. View Article : Google Scholar : PubMed/NCBI

62 

Hinshaw DC and Shevde LA: The tumor microenvironment innately modulates cancer progression. Cancer Res. 79:4557–4566. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Jin MZ and Jin WL: The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 5:1662020. View Article : Google Scholar : PubMed/NCBI

64 

Wu T and Dai Y: Tumor microenvironment and therapeutic response. Cancer Lett. 387:61–68. 2017. View Article : Google Scholar

65 

Xu N, Dong RN, Lin TT, Lin T, Lin YZ, Chen SH, Zhu JM, Ke ZB, Huang F, Chen YH and Xue XY: Development and validation of novel biomarkers related to M2 macrophages infiltration by weighted gene co-expression network analysis in prostate cancer. Front Oncol. 11:6340752021. View Article : Google Scholar

66 

Aleshin A and Finn RS: SRC: A century of science brought to the clinic. Neoplasia. 12:599–607. 2010. View Article : Google Scholar

67 

Roskoski R Jr: Src protein-tyrosine kinase structure and regulation. Biochem Biophys Res Commun. 324:1155–1164. 2004. View Article : Google Scholar : PubMed/NCBI

68 

Jiang L, Ren L, Chen H, Pan J, Zhang Z, Kuang X, Chen X, Bao W, Lin C, Zhou Z, et al: NCAPG confers trastuzumab resistance via activating SRC/STAT3 signaling pathway in HER2-positive breast cancer. Cell Death Dis. 11:5472020. View Article : Google Scholar : PubMed/NCBI

69 

Singh D, Assaraf YG and Gacche RN: Long non-coding RNA mediated drug resistance in breast cancer. Drug Resist Updat. 63:1008512022. View Article : Google Scholar

70 

Wei L, Sun J, Zhang N, Zheng Y, Wang X, Lv L, Liu J, Xu Y, Shen Y and Yang M: Noncoding RNAs in gastric cancer: Implications for drug resistance. Mol Cancer. 19:622020. View Article : Google Scholar : PubMed/NCBI

71 

Entezari M, Ghanbarirad M, Taheriazam A, Sadrkhanloo M, Zabolian A, Goharrizi MASB, Hushmandi K, Aref AR, Ashrafizadeh M, Zarrabi A, et al: Long non-coding RNAs and exosomal lncRNAs: Potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling. Biomed Pharmacother. 150:1129632022. View Article : Google Scholar : PubMed/NCBI

72 

Bao J, Wu Y, Zhang K and Qi H: AC099850.3/NCAPG axis predicts poor prognosis and is associated with resistance to EGFR tyrosine-kinase inhibitors in lung Adenocarcinoma. Int J Gen Med. 15:6917–6930. 2022. View Article : Google Scholar : PubMed/NCBI

73 

Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Austine-Orimoloye O, Azov AG, Barnes I, Bennett R, et al: Ensembl 2022. Nucleic Acids Res. 50(D1): D988–D995. 2022. View Article : Google Scholar : PubMed/NCBI

74 

He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW and Li B: Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 6:4252021. View Article : Google Scholar : PubMed/NCBI

75 

Gong C, Ai J, Fan Y, Gao J, Liu W, Feng Q, Liao W and Wu L: NCAPG promotes the proliferation of hepatocellular carcinoma through PI3K/AKT signaling. Onco Targets Ther. 12:8537–8552. 2019. View Article : Google Scholar : PubMed/NCBI

76 

Grossi I, Salvi A, Baiocchi G, Portolani N and De Petro G: Functional role of microRNA-23b-3p in cancer biology. Microrna. 7:156–166. 2018. View Article : Google Scholar

77 

Kou CH, Zhou T, Han XL, Zhuang HJ and Qian HX: Downregulation of mir-23b in plasma is associated with poor prognosis in patients with colorectal cancer. Oncol Lett. 12:4838–4844. 2016. View Article : Google Scholar

78 

Li P, Wen J, Ren X, Zhou Y, Xue Y, Yan Z, Li S, Tian H, Tang XG and Zhang GJ: MicroRNA-23b-3p targets non-SMC condensing I complex subunit G to promote proliferation and inhibit apoptosis of colorectal cancer cells via regulation of the PI3K/AKT signaling pathway. Oncol Lett. 22:8122021. View Article : Google Scholar

79 

Worby CA and Dixon JE: PTEN. Annu Rev Biochem. 83:641–669. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Álvarez-Garcia V, Tawil Y, Wise HM and Leslie NR: Mechanisms of PTEN loss in cancer: It's all about diversity. Semin Cancer Biol. 59:66–79. 2019. View Article : Google Scholar

81 

Oh NS, Yoon SH, Lee WK, Choi JY, Min do S and Bae YS: Phosphorylation of CKBBP2/CRIF1 by protein kinase CKII promotes cell proliferation. Gene. 386:147–153. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Zhang R, Ai J, Wang J, Sun C, Lu H, He A, Li M, Liao Y, Lei J, Zhou F, et al: NCAPG promotes the proliferation of hepatocellular carcinoma through the CKII-dependent regulation of PTEN. J Transl Med. 20:3252022. View Article : Google Scholar : PubMed/NCBI

83 

Zhou Y, Xu J, Luo H, Meng X, Chen M and Zhu D: Wnt signaling pathway in cancer immunotherapy. Cancer Lett. 525:84–96. 2022. View Article : Google Scholar

84 

Rim EY, Clevers H and Nusse R: The Wnt pathway: From signaling mechanisms to synthetic modulators. Annu Rev Biochem. 91:571–598. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Liu C, Yan Y, Di F, Li W, Yin X and Dong L: Inhibition of NCAPG expression inactivates the Wnt/β-catenin signal to suppresses endometrial cancer cell growth in vitro. Environ Toxicol. 36:2512–2520. 2021. View Article : Google Scholar

86 

Zhang X, Zhu M, Wang H, Song Z, Zhan D, Cao W, Han Y and Jia J: Overexpression of NCAPG inhibits cardia adenocarcinoma apoptosis and promotes epithelial-mesenchymal transition through the Wnt/β-catenin signaling pathway. Gene. 766:1451632021. View Article : Google Scholar : PubMed/NCBI

87 

Yang H, Pu L, Li R and Zhu R: NCAPG is transcriptionally regulated by CBX3 and activates the Wnt/β-catenin signaling pathway to promote proliferation and the cell cycle and inhibit apoptosis in colorectal cancer. J Gastrointest Oncol. 14:900–912. 2023. View Article : Google Scholar

88 

Li J, Sun S, Li J, Zhao X, Li Z, Sha T and Cui Z: NCAPG, mediated by miR-378a-3p, regulates cell proliferation, cell cycle progression, and apoptosis of oral squamous cell carcinoma through the GSK-3β/β-catenin signaling. Neoplasma. 68:1201–1211. 2021. View Article : Google Scholar

89 

Du W and Searle JS: The rb pathway and cancer therapeutics. Curr Drug Targets. 10:581–589. 2009. View Article : Google Scholar : PubMed/NCBI

90 

Lin SC, Skapek SX and Lee EY: Genes in the RB pathway and their knockout in mice. Semin Cancer Biol. 7:279–289. 1996. View Article : Google Scholar

91 

Nevins JR: The Rb/E2F pathway and cancer. Hum Mol Genet. 10:699–703. 2001. View Article : Google Scholar

92 

Schaal C, Pillai S and Chellappan SP: The Rb-E2F transcriptional regulatory pathway in tumor angiogenesis and metastasis. Adv Cancer Res. 121:147–182. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Liu J, Zhang C, Wang J, Hu W and Feng Z: The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int J Mol Sci. 21:83872020. View Article : Google Scholar

94 

Huang J: Current developments of targeting the p53 signaling pathway for cancer treatment. Pharmacol Ther. 220:1077202021. View Article : Google Scholar : PubMed/NCBI

95 

Dong M, Xu T, Cui X, Li H, Li X and Xia W: NCAPG upregulation mediated by four microRNAs combined with activation of the p53 signaling pathway is a predictor of poor prognosis in patients with breast cancer. Oncol Lett. 21:3232021. View Article : Google Scholar

96 

DiDonato JA, Mercurio F and Karin M: NF-κB and the link between inflammation and cancer. Immunol Rev. 246:379–400. 2012. View Article : Google Scholar : PubMed/NCBI

97 

Oeckinghaus A, Hayden M S and Ghosh S: Crosstalk in NF-κB signaling pathways. Nat Immunol. 12:695–708. 2011. View Article : Google Scholar

98 

Swindell WR, Bojanowski K and Chaudhuri RK: A novel fumarate, isosorbide di-(methyl fumarate) (IDMF), replicates astrocyte transcriptome responses to dimethyl fumarate (DMF) but specifically down-regulates genes linked to a reactive phenotype. Biochem Biophys Res Commun. 532:475–481. 2020. View Article : Google Scholar : PubMed/NCBI

99 

Tang F, Yu H, Wang X, Shi J, Chen Z, Wang H, Wan Z, Fu Q, Hu X, Zuhaer Y, et al: NCAPG promotes tumorigenesis of bladder cancer through NF-κB signaling pathway. Biochem Biophys Res Commun. 622:101–107. 2022. View Article : Google Scholar : PubMed/NCBI

100 

Yu H, Lee H, Herrmann A, Buettner R and Jove R: Revisiting STAT3 signalling in cancer: New and unexpected biological functions. Nat Rev Cancer. 14:736–746. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Zou S, Tong Q, Liu B, Huang W, Tian Y and Fu X: Targeting STAT3 in cancer immunotherapy. Mol Cancer. 19:1452020. View Article : Google Scholar : PubMed/NCBI

102 

Li J, Zheng J, Lin B, Sun H, Lu S, Wang D and Huo H: Knockdown of NCAPG promotes the apoptosis and inhibits the invasion and migration of triple-negative breast cancer MDA-MB-231 cells via regulation of EGFR/JAK/STAT3 signaling. Exp Ther Med. 25:1192023. View Article : Google Scholar : PubMed/NCBI

103 

Peng D, Fu M, Wang M, Wei Y and Wei X: Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 21:1042022. View Article : Google Scholar : PubMed/NCBI

104 

Derynck R, Turley SJ and Akhurst RJ: TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 18:9–34. 2021. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li R, Wang D, Yang H, Pu L, Li X, Yang F and Zhu R: Important role and underlying mechanism of non‑SMC condensin I complex subunit G in tumours (Review). Oncol Rep 51: 77, 2024.
APA
Li, R., Wang, D., Yang, H., Pu, L., Li, X., Yang, F., & Zhu, R. (2024). Important role and underlying mechanism of non‑SMC condensin I complex subunit G in tumours (Review). Oncology Reports, 51, 77. https://doi.org/10.3892/or.2024.8736
MLA
Li, R., Wang, D., Yang, H., Pu, L., Li, X., Yang, F., Zhu, R."Important role and underlying mechanism of non‑SMC condensin I complex subunit G in tumours (Review)". Oncology Reports 51.6 (2024): 77.
Chicago
Li, R., Wang, D., Yang, H., Pu, L., Li, X., Yang, F., Zhu, R."Important role and underlying mechanism of non‑SMC condensin I complex subunit G in tumours (Review)". Oncology Reports 51, no. 6 (2024): 77. https://doi.org/10.3892/or.2024.8736
Copy and paste a formatted citation
x
Spandidos Publications style
Li R, Wang D, Yang H, Pu L, Li X, Yang F and Zhu R: Important role and underlying mechanism of non‑SMC condensin I complex subunit G in tumours (Review). Oncol Rep 51: 77, 2024.
APA
Li, R., Wang, D., Yang, H., Pu, L., Li, X., Yang, F., & Zhu, R. (2024). Important role and underlying mechanism of non‑SMC condensin I complex subunit G in tumours (Review). Oncology Reports, 51, 77. https://doi.org/10.3892/or.2024.8736
MLA
Li, R., Wang, D., Yang, H., Pu, L., Li, X., Yang, F., Zhu, R."Important role and underlying mechanism of non‑SMC condensin I complex subunit G in tumours (Review)". Oncology Reports 51.6 (2024): 77.
Chicago
Li, R., Wang, D., Yang, H., Pu, L., Li, X., Yang, F., Zhu, R."Important role and underlying mechanism of non‑SMC condensin I complex subunit G in tumours (Review)". Oncology Reports 51, no. 6 (2024): 77. https://doi.org/10.3892/or.2024.8736
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team