You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Leemans CR, Snijders PJF and Brakenhoff RH: The molecular landscape of head and neck cancer. Nat Rev Cancer. 18:269–282. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cancer Genome Atlas Research Network, . Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C and Stuart JM: The cancer genome atlas pan-cancer analysis project. Nat Genet. 45:1113–1120. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Leemans CR, Braakhuis BJ and Brakenhoff RH: The molecular biology of head and neck cancer. Nat Rev Cancer. 11:9–22. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Puram SV, Mints M, Pal A, Qi Z, Reeb A, Gelev K, Barrett TF, Gerndt S, Liu P, Parikh AS, et al: Cellular states are coupled to genomic and viral heterogeneity in HPV-related oropharyngeal carcinoma. Nat Genet. 55:640–650. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE and Grandis JR: Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 6:922020. View Article : Google Scholar : PubMed/NCBI | |
|
Fouad S, Hauton D and D'Angiolella V: E2F1: Cause and consequence of DNA replication stress. Front Mol Biosci. 7:5993322021. View Article : Google Scholar : PubMed/NCBI | |
|
Lin M, Ji X, Lv Y, Cui D and Xie J: The roles of TRAF3 in immune responses. Dis Markers. 2023:77878032023. View Article : Google Scholar : PubMed/NCBI | |
|
Hornick EL and Bishop GA: TRAF3: Guardian of T lymphocyte functions. Front Immunol. 14:11292512023. View Article : Google Scholar : PubMed/NCBI | |
|
Seiwert TY, Zuo Z, Keck MK, Khattri A, Pedamallu CS, Stricker T, Brown C, Pugh TJ, Stojanov P, Cho J, et al: Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res. 21:632–641. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Häfner N, Driesch C, Gajda M, Jansen L, Kirchmayr R, Runnebaum IB and Dürst M: Integration of the HPV16 genome does not invariably result in high levels of viral oncogene transcripts. Oncogene. 27:1610–1617. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Parfenov M, Pedamallu CS, Gehlenborg N, Freeman SS, Danilova L, Bristow CA, Lee S, Hadjipanayis AG, Ivanova EV, Wilkerson MD, et al: Characterization of HPV and host genome interactions in primary head and neck cancers. Proc Natl Acad Sci USA. 111:15544–15549. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hettmann A, Demcsák A, Decsi G, Bach Á, Pálinkó D, Rovó L, Nagy K, Takács M and Minarovits J: Infectious agents associated with head and neck carcinomas. Adv Exp Med Biol. 897:63–80. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bai X, Cui C, Yin J, Li H, Gong Q, Wei B and Lu Y: The association between oral hygiene and head and neck cancer: A meta-analysis. Acta Odontol Scand. 81:374–395. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kitamura N, Sento S, Yoshizawa Y, Sasabe E, Kudo Y and Yamamoto T: Current trends and future prospects of molecular targeted therapy in head and neck squamous cell carcinoma. Int J Mol Sci. 22:2402020. View Article : Google Scholar : PubMed/NCBI | |
|
Forman R, Deshpande H, Burtness B and Bhatia AK: Efficacy and toxicity of weekly paclitaxel, carboplatin, and cetuximab as induction chemotherapy or in cases of metastases or relapse for head and neck cancer with a focus on elderly or frail patients. Head Neck. 44:1777–1786. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Dokala A and Thakur SS: Extracellular region of epidermal growth factor receptor: A potential target for anti-EGFR drug discovery. Oncogene. 36:2337–2344. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Eze N, Lee JW, Yang DH, Zhu F, Neumeister V, Sandoval-Schaefer T, Mehra R, Ridge JA, Forastiere A, Chung CH and Burtness B: PTEN loss is associated with resistance to cetuximab in patients with head and neck squamous cell carcinoma. Oral Oncol. 91:69–78. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MF, Ahmed H, Rahman N, Nainu F, Wahyudin E, et al: Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front Oncol. 12:8916522022. View Article : Google Scholar : PubMed/NCBI | |
|
Giddings EL, Champagne DP, Wu MH, Laffin JM, Thornton TM, Valenca-Pereira F, Culp-Hill R, Fortner KA, Romero N, East J, et al: Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance. Nat Commun. 12:28042021. View Article : Google Scholar : PubMed/NCBI | |
|
Ming H, Li B, Jiang J, Qin S, Nice EC, He W, Lang T and Huang C: Protein degradation: Expanding the toolbox to restrain cancer drug resistance. J Hematol Oncol. 16:62023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang N, Ma T and Yu B: Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther. 8:692023. View Article : Google Scholar : PubMed/NCBI | |
|
Su S, Chen J, Yao H, Liu J, Yu S, Lao L, Wang M, Luo M, Xing Y, Chen F, et al: CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell. 172:841–856.e16. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ito Y, Tazaki G, Kondo Y, Takahashi G and Sakamaki F: Therapeutic effect of nintedanib on acute exacerbation of interstitial lung diseases. Respir Med Case Rep. 26:317–320. 2019.PubMed/NCBI | |
|
Hui L and Chen Y: Tumor microenvironment: Sanctuary of the devil. Cancer Lett. 368:7–13. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
da Cunha BR, Domingos C, Stefanini ACB, Henrique T, Polachini GM, Castelo-Branco P and Tajara EH: Cellular interactions in the tumor microenvironment: The role of secretome. J Cancer. 10:4574–4587. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nia HT, Munn LL and Jain RK: Physical traits of cancer. Science. 370:eaaz08682020. View Article : Google Scholar : PubMed/NCBI | |
|
Gourmet LE and Walker-Samuel S: The role of physics in multiomics and cancer evolution. Front Oncol. 13:10680532023. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Stratton MR, Campbell PJ and Futreal PA: The cancer genome. Nature. 458:719–724. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Vendramin R, Litchfield K and Swanton C: Cancer evolution: Darwin and beyond. EMBO J. 40:e1083892021. View Article : Google Scholar : PubMed/NCBI | |
|
Nowell PC: The clonal evolution of tumor cell populations. Science. 194:23–28. 1976. View Article : Google Scholar : PubMed/NCBI | |
|
Dexter DL, Kowalski HM, Blazar BA, Fligiel Z, Vogel R and Heppner GH: Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res. 38:3174–3181. 1978.PubMed/NCBI | |
|
Greaves M and Maley CC: Clonal evolution in cancer. Nature. 481:306–313. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Swanton C: Intratumor heterogeneity: Evolution through space and time. Cancer Res. 72:4875–4882. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Williams MJ, Werner B, Barnes CP, Graham TA and Sottoriva A: Identification of neutral tumor evolution across cancer types. Nat Genet. 48:238–244. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Mohan M and Jagannathan N: Oral field cancerization: An update on current concepts. Oncol Rev. 8:2442014.PubMed/NCBI | |
|
Shen X, Song S, Li C and Zhang J: Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature. 606:725–731. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kristofich J, Morgenthaler AB, Kinney WR, Ebmeier CC, Snyder DJ, Old WM, Cooper VS and Copley SD: Synonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzyme. PLoS Genet. 14:e10076152018. View Article : Google Scholar : PubMed/NCBI | |
|
Li R, Dong J, Zhang H, Zhao Q, Li X, Liu X, Ye Y, Deng S, Lin D, Zheng J and Zuo Z: Clinical and genomic characterization of neutral tumor evolution in head and neck squamous cell carcinoma. Genomics. 112:3448–3454. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cortés-Ciriano I, Lee JJ, Xi R, Jain D, Jung YL, Yang L, Gordenin D, Klimczak LJ, Zhang CZ, Pellman DS, et al: Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet. 52:331–341. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Voronina N, Wong JKL, Hübschmann D, Hlevnjak M, Uhrig S, Heilig CE, Horak P, Kreutzfeldt S, Mock A, Stenzinger A, et al: The landscape of chromothripsis across adult cancer types. Nat Commun. 11:23202020. View Article : Google Scholar : PubMed/NCBI | |
|
Shen MM: Chromoplexy: A new category of complex rearrangements in the cancer genome. Cancer Cell. 23:567–569. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, Park K, Kitabayashi N, MacDonald TY, Ghandi M, et al: Punctuated evolution of prostate cancer genomes. Cell. 153:666–677. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP, Zhao J, Marjoram P, Siegmund K, Press MF, Shibata D and Curtis C: A Big Bang model of human colorectal tumor growth. Nat Genet. 47:209–216. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sottoriva A, Barnes CP and Graham TA: Catch my drift? Making sense of genomic intra-tumour heterogeneity. Biochim Biophys Acta Rev Cancer. 1867:95–100. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Niida A, Mimori K, Shibata T and Miyano S: Modeling colorectal cancer evolution. J Hum Genet. 66:869–878. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Laukien FH: The evolution of evolutionary processes in organismal and cancer evolution. Prog Biophys Mol Biol. 165:43–48. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Fearon ER and Vogelstein B: A genetic model for colorectal tumorigenesis. Cell. 61:759–767. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Caravagna G, Giarratano Y, Ramazzotti D, Tomlinson I, Graham TA, Sanguinetti G and Sottoriva A: Detecting repeated cancer evolution from multi-region tumor sequencing data. Nat Methods. 15:707–714. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
McGranahan N and Swanton C: Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell. 168:613–628. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Niida A, Iwasaki WM and Innan H: Neutral theory in cancer cell population genetics. Mol Biol Evol. 35:1316–1321. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Martínez-Jiménez F, Movasati A, Brunner SR, Nguyen L, Priestley P, Cuppen E and Van Hoeck A: Pan-cancer whole-genome comparison of primary and metastatic solid tumours. Nature. 618:333–341. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen B, Fong C, Luthra A, Smith SA, DiNatale RG, Nandakumar S, Walch H, Chatila WK, Madupuri R, Kundra R, et al: Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell. 185:563–575.e11. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao M, Liu Y, Zheng C and Qu H: dbEMT 2.0: An updated database for epithelial-mesenchymal transition genes with experimentally verified information and precalculated regulation information for cancer metastasis. J Genet Genomics. 46:595–597. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Acar A, Nichol D, Fernandez-Mateos J, Cresswell GD, Barozzi I, Hong SP, Trahearn N, Spiteri I, Stubbs M, Burke R, et al: Exploiting evolutionary steering to induce collateral drug sensitivity in cancer. Nat Commun. 11:19232020. View Article : Google Scholar : PubMed/NCBI | |
|
Tarabichi M, Martincorena I, Gerstung M, Leroi AM, Markowetz F; PCAWG Evolution and Heterogeneity Working Group and Spellman PT, ; Morris QD, Lingjærde OC, Wedge DC and Van Loo P: Neutral tumor evolution? Nat Genet. 50:1630–1633. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Persi E, Wolf YI, Horn D, Ruppin E, Demichelis F, Gatenby RA, Gillies RJ and Koonin EV: Mutation-selection balance and compensatory mechanisms in tumour evolution. Nat Rev Genet. 22:251–262. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Marine JC, Dawson SJ and Dawson MA: Non-genetic mechanisms of therapeutic resistance in cancer. Nat Rev Cancer. 20:743–756. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, Evans KW, et al: Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA. 107:15449–15454. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Graves CA, Abboodi FF, Tomar S, Wells J and Pirisi L: The translational significance of epithelial-mesenchymal transition in head and neck cancer. Clin Transl Med. 3:602014. View Article : Google Scholar : PubMed/NCBI | |
|
Singh A and Settleman J: EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene. 29:4741–4751. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Shibue T and Weinberg RA: EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat Rev Clin Oncol. 14:611–629. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, Emerick KS, et al: Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 171:1611–1624.e24. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pavón MA, Arroyo-Solera I, León X, Téllez-Gabriel M, Virós D, Gallardo A, Céspedes MV, Casanova I, Lopez-Pousa A, Barnadas A, et al: The combined use of EFS, GPX2, and SPRR1A expression could distinguish favorable from poor clinical outcome among epithelial-like head and neck carcinoma subtypes. Head Neck. 41:1830–1845. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
DeCamp SJ, Tsuda VMK, Ferruzzi J, Koehler SA, Giblin JT, Roblyer D, Zaman MH, Weiss ST, Kılıç A, De Marzio M, et al: Epithelial layer unjamming shifts energy metabolism toward glycolysis. Sci Rep. 10:183022020. View Article : Google Scholar : PubMed/NCBI | |
|
De Marzio M, Kılıç A, Maiorino E, Mitchel JA, Mwase C, O'Sullivan MJ, McGill M, Chase R, Fredberg JJ, Park JA, et al: Genomic signatures of the unjamming transition in compressed human bronchial epithelial cells. Sci Adv. 7:eabf10882021. View Article : Google Scholar : PubMed/NCBI | |
|
Kılıç A, Ameli A, Park JA, Kho AT, Tantisira K, Santolini M, Cheng F, Mitchel JA, McGill M, O'Sullivan MJ, et al: Mechanical forces induce an asthma gene signature in healthy airway epithelial cells. Sci Rep. 10:9662020. View Article : Google Scholar : PubMed/NCBI | |
|
Ataie-Kachoie P, Pourgholami MH, Richardson DR and Morris DL: Gene of the month: Interleukin 6 (IL-6). J Clin Pathol. 67:932–937. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Taher MY, Davies DM and Maher J: The role of the interleukin (IL)-6/IL-6 receptor axis in cancer. Biochem Soc Trans. 46:1449–1462. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y and Zhou BP: TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 102:639–644. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Dongre A and Weinberg RA: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 20:69–84. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Azmi AS and Mohammad RM: Deregulated transcription factors and poor clinical outcomes in cancer patients. Semin Cancer Biol. 86:122–134. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
De Craene B and Berx G: Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 13:97–110. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Xin W, Zhao C, Jiang L, Pei D, Zhao L and Zhang C: Identification of a novel epithelial-mesenchymal transition gene signature predicting survival in patients with HNSCC. Pathol Oncol Res. 27:5851922021. View Article : Google Scholar : PubMed/NCBI | |
|
Vallina C, López-Pintor RM, González-Serrano J, de Vicente JC, Hernández G and Lorz C: Genes involved in the epithelial-mesenchymal transition in oral cancer: A systematic review. Oral Oncol. 117:1053102021. View Article : Google Scholar : PubMed/NCBI | |
|
Okuyama K, Suzuki K and Yanamoto S: Relationship between tumor budding and partial epithelial-mesenchymal transition in head and neck cancer. Cancers (Basel). 15:11112023. View Article : Google Scholar : PubMed/NCBI | |
|
Tamimi A, Tamimi A, Sorkheh F, Asl SM, Ghafari A, Karimi AG, Erabi G, Pourmontaseri H and Deravi N: Monoclonal antibodies for the treatment of squamous cell carcinoma: A literature review. Cancer Rep (Hoboken). 6:e18022023. View Article : Google Scholar : PubMed/NCBI | |
|
Byeon HK, Ku M and Yang J: Beyond EGFR inhibition: Multilateral combat strategies to stop the progression of head and neck cancer. Exp Mol Med. 51:1–14. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Klein P, Mattoon D, Lemmon MA and Schlessinger J: A structure-based model for ligand binding and dimerization of EGF receptors. Proc Natl Acad Sci USA. 101:929–934. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Nair S, Trummell HQ, Rajbhandari R, Thudi NK, Nozell SE, Warram JM, Willey CD, Yang ES, Placzek WJ, Bonner JA and Bredel M: Novel EGFR ectodomain mutations associated with ligand-independent activation and cetuximab resistance in head and neck cancer. PLoS One. 15:e02290772020. View Article : Google Scholar : PubMed/NCBI | |
|
Purba ER, Saita EI and Maruyama IN: Activation of the EGF receptor by ligand binding and oncogenic mutations: The ‘rotation model’. Cells. 6:132017. View Article : Google Scholar : PubMed/NCBI | |
|
Kriegs M, Clauditz TS, Hoffer K, Bartels J, Buhs S, Gerull H, Zech HB, Bußmann L, Struve N, Rieckmann T, et al: Analyzing expression and phosphorylation of the EGF receptor in HNSCC. Sci Rep. 9:135642019. View Article : Google Scholar : PubMed/NCBI | |
|
Kalyankrishna S and Grandis JR: Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 24:2666–2672. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Najafi M, Ahmadi A and Mortezaee K: Extracellular-signal-regulated kinase/mitogen-activated protein kinase signaling as a target for cancer therapy: An updated review. Cell Biol Int. 43:1206–1222. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nishihara S, Yamaoka T, Ishikawa F, Higuchi K, Hasebe Y, Manabe R, Kishino Y, Kusumoto S, Ando K, Kuroda Y, et al: Mechanisms of EGFR-TKI-induced apoptosis and strategies targeting apoptosis in EGFR-mutated non-small cell lung cancer. Genes (Basel). 13:21832022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Mei W, Zhang P and Zeng C: PIK3CA mutation as an acquired resistance driver to EGFR-TKIs in non-small cell lung cancer: Clinical challenges and opportunities. Pharmacol Res. 202:1071232024. View Article : Google Scholar : PubMed/NCBI | |
|
Lai SY and Johnson FM: Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: Implications for future therapeutic approaches. Drug Resist Updat. 13:67–78. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Ji S, Shrestha C, Jiang Y, Liao L, Xu F, Liu Z, Bikle DD and Xie Z: p120-catenin suppresses proliferation and tumor growth of oral squamous cell carcinoma via inhibiting nuclear phospholipase C-γ1 signaling. J Cell Physiol. 235:9399–9413. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Mittal S, Kamath A, Joseph AM and Rajala MS: PLCγ1-dependent invasion and migration of cells expressing NSCLC-associated EGFR mutants. Int J Oncol. 57:989–1000. 2020.PubMed/NCBI | |
|
Li Q, Tie Y, Alu A, Ma X and Shi H: Targeted therapy for head and neck cancer: Signaling pathways and clinical studies. Signal Transduct Target Ther. 8:312023. View Article : Google Scholar : PubMed/NCBI | |
|
Silva-Oliveira RJ, Melendez M, Martinho O, Zanon MF, de Souza Viana L, Carvalho AL and Reis RM: AKT can modulate the in vitro response of HNSCC cells to irreversible EGFR inhibitors. Oncotarget. 8:53288–53301. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kordbacheh F and Farah CS: Current and emerging molecular therapies for head and neck squamous cell carcinoma. Cancers (Basel). 13:54712021. View Article : Google Scholar : PubMed/NCBI | |
|
Ebrahimi N, Fardi E, Ghaderi H, Palizdar S, Khorram R, Vafadar R, Ghanaatian M, Rezaei-Tazangi F, Baziyar P, Ahmadi A, et al: Receptor tyrosine kinase inhibitors in cancer. Cell Mol Life Sci. 80:1042023. View Article : Google Scholar : PubMed/NCBI | |
|
Lacas B, Carmel A, Landais C, Wong SJ, Licitra L, Tobias JS, Burtness B, Ghi MG, Cohen EEW, Grau C, et al: Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 107 randomized trials and 19,805 patients, on behalf of MACH-NC group. Radiother Oncol. 156:281–293. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, Erfan J, Zabolotnyy D, Kienzer HR, Cupissol D, et al: Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 359:1116–1127. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Guigay J, Aupérin A, Fayette J, Saada-Bouzid E, Lafond C, Taberna M, Geoffrois L, Martin L, Capitain O, Cupissol D, et al: Cetuximab, docetaxel, and cisplatin versus platinum, fluorouracil, and cetuximab as first-line treatment in patients with recurrent or metastatic head and neck squamous-cell carcinoma (GORTEC 2014-01 TPExtreme): A multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 22:463–475. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Eggers H, Häbel L, Ganser A, Grünwald V, Merten R, Warnecke A, Durisin M and Ivanyi P: Anti-EGFR-based therapy in recurrent or metastatic HNSCC-what difference does it make? Cancer Invest. 41:93–100. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Dasari S and Tchounwou PB: Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 740:364–378. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Rich TA, Shepard RC and Mosley ST: Four decades of continuing innovation with fluorouracil: Current and future approaches to fluorouracil chemoradiation therapy. J Clin Oncol. 22:2214–2232. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Muraro E, Fanetti G, Lupato V, Giacomarra V, Steffan A, Gobitti C, Vaccher E and Franchin G: Cetuximab in locally advanced head and neck squamous cell carcinoma: Biological mechanisms involved in efficacy, toxicity and resistance. Crit Rev Oncol Hematol. 164:1034242021. View Article : Google Scholar : PubMed/NCBI | |
|
Okada Y, Kimura T, Nakagawa T, Okamoto K, Fukuya A, Goji T, Fujimoto S, Sogabe M, Miyamoto H, Muguruma N, et al: EGFR downregulation after Anti-EGFR therapy predicts the antitumor effect in colorectal cancer. Mol Cancer Res. 15:1445–1454. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kang JJ, Ko A, Kil SH, Mallen-St Clair J, Shin DS, Wang MB and Srivatsan ES: EGFR pathway targeting drugs in head and neck cancer in the era of immunotherapy. Biochim Biophys Acta Rev Cancer. 1878:1888272023. View Article : Google Scholar : PubMed/NCBI | |
|
Chaudhary R, Slebos RJC, Noel LC, Song F, Poole MI, Hoening DS, Hernandez-Prera JC, Conejo-Garcia JR, Guevara-Patino JA, Wang X, et al: EGFR inhibition by cetuximab modulates hypoxia and IFN response genes in head and neck squamous cell carcinoma. Cancer Res Commun. 3:896–907. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bugaj LJ, Sabnis AJ, Mitchell A, Garbarino JE, Toettcher JE, Bivona TG and Lim WA: Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway. Science. 361:eaao30482018. View Article : Google Scholar : PubMed/NCBI | |
|
Jie HB, Schuler PJ, Lee SC, Srivastava RM, Argiris A, Ferrone S, Whiteside TL and Ferris RL: CTLA-4+ regulatory T cells increased in cetuximab-treated head and neck cancer patients suppress NK cell cytotoxicity and correlate with poor prognosis. Cancer Res. 75:2200–2210. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kagohara LT, Zamuner F, Davis-Marcisak EF, Sharma G, Considine M, Allen J, Yegnasubramanian S, Gaykalova DA and Fertig EJ: Integrated single-cell and bulk gene expression and ATAC-seq reveals heterogeneity and early changes in pathways associated with resistance to cetuximab in HNSCC-sensitive cell lines. Br J Cancer. 123:101–113. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ryman JT and Meibohm B: Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 6:576–588. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tathineni P, Joshi N and Jelinek MJ: Current state and future directions of EGFR-directed therapy in head and neck cancer. Curr Treat Options Oncol. 24:680–692. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
de Castro G Jr, Alves GV, Castro AF, Chaves ALF, De Marchi P, de Oliveira TB, Dias FL, Guindalini RSC, Nicolau UR, Soares A and Mora PAR: Criteria for eligibility to cisplatin in the curative treatment of head and neck cancer: Consensus opinion from a panel of experts. Crit Rev Oncol Hematol. 131:30–34. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Carinato H, Burgy M, Ferry R, Fischbach C, Kalish M, Guihard S, Brahimi Y, Flesch H, Bronner G, Schultz P, et al: Weekly paclitaxel, carboplatin, and cetuximab as first-line treatment of recurrent and/or metastatic head and neck squamous cell carcinoma for patients ineligible to cisplatin-based chemotherapy: A retrospective monocentric study in 60 patients. Front Oncol. 11:7145512021. View Article : Google Scholar : PubMed/NCBI | |
|
Abdulla M, Belal AA, Sakr A, El Arab LE, Mokhtar M, Allahloubi N, Ghali R, Hashem T and Arafat W: Eligibility criteria to cisplatin in head and neck squamous cell carcinoma: Egyptian expert opinion. Health Sci Rep. 6:e10372023. View Article : Google Scholar : PubMed/NCBI | |
|
Guigay J, Fayette J, Dillies AF, Sire C, Kerger JN, Tennevet I, Machiels JP, Zanetta S, Pointreau Y, Bozec Le Moal L, et al: Cetuximab, docetaxel, and cisplatin as first-line treatment in patients with recurrent or metastatic head and neck squamous cell carcinoma: A multicenter, phase II GORTEC study. Ann Oncol. 26:1941–1947. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mehanna H, Robinson M, Hartley A, Kong A, Foran B, Fulton-Lieuw T, Dalby M, Mistry P, Sen M, O'Toole L, et al: Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): An open-label randomised controlled phase 3 trial. Lancet. 393:51–60. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Silver JA, Turkdogan S, Roy CF, Subramaniam T, Henry M and Sadeghi N: De-escalation strategies for human papillomavirus-associated oropharyngeal squamous cell carcinoma-where are we now? Curr Oncol. 29:3668–3697. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Willey CD, Anderson JC, Trummell HQ, Naji F, de Wijn R, Yang ES, Bredel M, Thudi NK and Bonner JA: Differential escape mechanisms in cetuximab-resistant head and neck cancer cells. Biochem Biophys Res Commun. 517:36–42. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yonesaka K, Tanaka K, Kitano M, Kawakami H, Hayashi H, Takeda M, Sakai K, Nishio K, Doi K and Nakagawa K: Aberrant HER3 ligand heregulin-expressing head and neck squamous cell carcinoma is resistant to anti-EGFR antibody cetuximab, but not second-generation EGFR-TKI. Oncogenesis. 8:542019. View Article : Google Scholar : PubMed/NCBI | |
|
Picon H and Guddati AK: Mechanisms of resistance in head and neck cancer. Am J Cancer Res. 10:2742–2751. 2020.PubMed/NCBI | |
|
Ortiz-Cuaran S, Bouaoud J, Karabajakian A, Fayette J and Saintigny P: Precision medicine approaches to overcome resistance to therapy in head and neck cancers. Front Oncol. 11:6143322021. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng H, Fertig EJ, Ozawa H, Hatakeyama H, Howard JD, Perez J, Considine M, Thakar M, Ranaweera R, Krigsfeld G and Chung CH: Decreased SMAD4 expression is associated with induction of epithelial-to-mesenchymal transition and cetuximab resistance in head and neck squamous cell carcinoma. Cancer Biol Ther. 16:1252–1258. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Boeckx C, Blockx L, Op de Beeck K, Limame R, Camp GV, Peeters M, Vermorken JB, Specenier P, Wouters A, Baay M and Lardon F: Establishment and characterization of cetuximab resistant head and neck squamous cell carcinoma cell lines: Focus on the contribution of the AP-1 transcription factor. Am J Cancer Res. 5:1921–1938. 2015.PubMed/NCBI | |
|
Citron F, Segatto I, Musco L, Pellarin I, Rampioni Vinciguerra GL, Franchin G, Fanetti G, Miccichè F, Giacomarra V, Lupato V, et al: miR-9 modulates and predicts the response to radiotherapy and EGFR inhibition in HNSCC. EMBO Mol Med. 13:e128722021. View Article : Google Scholar : PubMed/NCBI | |
|
Morvan VL, Richard É, Cadars M, Fessart D, Broca-Brisson L, Auzanneau C, Pasquies A, Modesto A, Lusque A, Mathoulin-Pélissier S, et al: Cytochrome P450 1B1 polymorphism drives cancer cell stemness and patient outcome in head-and-neck carcinoma. Br J Cancer. 123:772–784. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wheeler DL, Huang S, Kruser TJ, Nechrebecki MM, Armstrong EA, Benavente S, Gondi V, Hsu KT and Harari PM: Mechanisms of acquired resistance to cetuximab: Role of HER (ErbB) family members. Oncogene. 27:3944–3956. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Nelhűbel GA, Cserepes M, Szabó B, Türk D, Kárpáti A, Kenessey I, Rásó E, Barbai T, Hegedűs Z, László V, et al: EGFR alterations influence the cetuximab treatment response and c-MET tyrosine-kinase inhibitor sensitivity in experimental head and neck squamous cell carcinomas. Pathol Oncol Res. 27:6202562021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, Wu Y, Li X, Li X, Li G, et al: Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 17:452018. View Article : Google Scholar : PubMed/NCBI | |
|
Cortesina G, Martone T, Galeazzi E, Olivero M, De Stefani A, Bussi M, Valente G, Comoglio PM and Di Renzo MF: Staging of head and neck squamous cell carcinoma using the MET oncogene product as marker of tumor cells in lymph node metastases. Int J Cancer. 89:286–292. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Slomiany MG, Black LA, Kibbey MM, Tingler MA, Day TA and Rosenzweig SA: Insulin-like growth factor-1 receptor and ligand targeting in head and neck squamous cell carcinoma. Cancer Lett. 248:269–279. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Gonzales CB, De La Chapa JJ, Saikumar P, Singha PK, Dybdal-Hargreaves NF, Chavez J, Horning AM, Parra J and Kirma NB: Co-targeting ALK and EGFR parallel signaling in oral squamous cell carcinoma. Oral Oncol. 59:12–19. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Iyer G, Price J, Bourgeois S, Armstrong E, Huang S and Harari PM: Insulin-like growth factor 1 receptor mediated tyrosine 845 phosphorylation of epidermal growth factor receptor in the presence of monoclonal antibody cetuximab. BMC Cancer. 16:7732016. View Article : Google Scholar : PubMed/NCBI | |
|
Krumbach R, Schüler J, Hofmann M, Giesemann T, Fiebig HH and Beckers T: Primary resistance to cetuximab in a panel of patient-derived tumour xenograft models: Activation of MET as one mechanism for drug resistance. Eur J Cancer. 47:1231–1243. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ouyang X, Barling A, Lesch A, Tyner JW, Choonoo G, Zheng C, Jeng S, West TM, Clayburgh D, Courtneidge SA, et al: Induction of anaplastic lymphoma kinase (ALK) as a novel mechanism of EGFR inhibitor resistance in head and neck squamous cell carcinoma patient-derived models. Cancer Biol Ther. 19:921–933. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Umemori K, Ono K, Eguchi T, Kawai H, Nakamura T, Ogawa T, Yoshida K, Kanemoto H, Sato K, Obata K, et al: EpEX, the soluble extracellular domain of EpCAM, resists cetuximab treatment of EGFR-high head and neck squamous cell carcinoma. Oral Oncol. 142:1064332023. View Article : Google Scholar : PubMed/NCBI | |
|
Gires O, Pan M, Schinke H, Canis M and Baeuerle PA: Expression and function of epithelial cell adhesion molecule EpCAM: Where are we after 40 years? Cancer Metastasis Rev. 39:969–987. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Went PT, Lugli A, Meier S, Bundi M, Mirlacher M, Sauter G and Dirnhofer S: Frequent EpCam protein expression in human carcinomas. Hum Pathol. 35:122–128. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Mignion L, Acciardo S, Gourgue F, Joudiou N, Caignet X, Goebbels RM, Corbet C, Feron O, Bouzin C, Cani PD, et al: Metabolic imaging using hyperpolarized pyruvate-lactate exchange assesses response or resistance to the EGFR inhibitor cetuximab in patient-derived HNSCC xenografts. Clin Cancer Res. 26:1932–1943. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bae T, Hallis SP and Kwak MK: Hypoxia, oxidative stress, and the interplay of HIFs and NRF2 signaling in cancer. Exp Mol Med. 56:501–514. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Deng L, Wang L, Zhang J, Zhao L, Meng Y, Zheng J, Xu W, Zhu Z and Huang H: The mechanism of action and biodistribution of a novel EGFR/VEGF bispecific fusion protein that exhibited superior antitumor activities. Heliyon. 9:e169222023. View Article : Google Scholar : PubMed/NCBI | |
|
Liang W, Zheng Y, Zhang J and Sun X: Multiscale modeling reveals angiogenesis-induced drug resistance in brain tumors and predicts a synergistic drug combination targeting EGFR and VEGFR pathways. BMC Bioinformatics. 20 (Suppl 7):S2032019. View Article : Google Scholar : PubMed/NCBI | |
|
Wiechec E, Hansson KT, Alexandersson L, Jönsson JI and Roberg K: Hypoxia mediates differential response to anti-EGFR therapy in HNSCC cells. Int J Mol Sci. 18:9432017. View Article : Google Scholar : PubMed/NCBI | |
|
Ge H, Ferris RL and Wang JH: Cetuximab responses in patients with HNSCC correlate to clonal expansion feature of peripheral and tumor-infiltrating T cells with Top T-cell receptor clonotypes. Clin Cancer Res. 29:647–658. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Parikh AS, Yu VX, Flashner S, Okolo OB, Lu C, Henick BS, Momen-Heravi F, Puram SV, Teknos T, Pan Q and Nakagawa H: Patient-derived three-dimensional culture techniques model tumor heterogeneity in head and neck cancer. Oral Oncol. 138:1063302023. View Article : Google Scholar : PubMed/NCBI | |
|
Cree IA and Charlton P: Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer. 17:102017. View Article : Google Scholar : PubMed/NCBI | |
|
Shirani-Bidabadi S, Tabatabaee A, Tavazohi N, Hariri A, Aref AR, Zarrabi A, Casarcia N, Bishayee A and Mirian M: CRISPR technology: A versatile tool to model, screen, and reverse drug resistance in cancer. Eur J Cell Biol. 102:1512992023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Wang R and Fang J: Exploring the frontiers: Tumor immune microenvironment and immunotherapy in head and neck squamous cell carcinoma. Discov Oncol. 15:222024. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Y, Huang Y, Ren H, Huang H, Lai C, Wang W, Tong Z, Zhang H, Wu W, Liu C, et al: Nano-enhanced immunotherapy: Targeting the immunosuppressive tumor microenvironment. Biomaterials. 305:1224632024. View Article : Google Scholar : PubMed/NCBI | |
|
Avgoustakis K and Angelopoulou A: Biomaterial-based responsive nanomedicines for targeting solid tumor microenvironments. Pharmaceutics. 16:1792024. View Article : Google Scholar : PubMed/NCBI | |
|
Harrer DC, Lüke F, Pukrop T, Ghibelli L, Reichle A and Heudobler D: Addressing genetic tumor heterogeneity, post-therapy metastatic spread, cancer repopulation, and development of acquired tumor cell resistance. Cancers (Basel). 16:1802023. View Article : Google Scholar : PubMed/NCBI | |
|
Derbal Y: Cell adaptive fitness and cancer evolutionary dynamics. Cancer Inform. 22:117693512311546792023. View Article : Google Scholar : PubMed/NCBI | |
|
Parseghian CM, Napolitano S, Loree JM and Kopetz S: Mechanisms of innate and acquired resistance to anti-EGFR therapy: A review of current knowledge with a focus on rechallenge therapies. Clin Cancer Res. 25:6899–6908. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Walens A, Lin J, Damrauer JS, McKinney B, Lupo R, Newcomb R, Fox DB, Mabe NW, Gresham J, Sheng Z, et al: Adaptation and selection shape clonal evolution of tumors during residual disease and recurrence. Nat Commun. 11:50172020. View Article : Google Scholar : PubMed/NCBI | |
|
Fittall MW and Van Loo P: Translating insights into tumor evolution to clinical practice: Promises and challenges. Genome Med. 11:202019. View Article : Google Scholar : PubMed/NCBI |