Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
June-2024 Volume 51 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2024 Volume 51 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Involvement of lncRNAs in the regulation of aerobic glycolysis in hepatocellular carcinoma: Main functions, regulatory mechanisms and potential therapeutic implications (Review)

  • Authors:
    • Qiongqing Huang
    • Zhengui Liang
    • Qiqi Huang
    • Xueyu Li
    • Jingjing Xia
    • Lining Huang
    • Lin Bing Huang
    • Chao Ou
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China, Experimental Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
    Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 84
    |
    Published online on: April 25, 2024
       https://doi.org/10.3892/or.2024.8743
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Even under aerobic conditions, tumor cells can reprogram their metabolism to preferentially metabolize glucose into lactic acid. This abnormal metabolic pattern, known as the ‘Warburg’ effect or aerobic glycolysis, promotes cancer progression. Long non‑coding RNAs (lncRNAs) are RNAs that are >200 nucleotides in length and do not have protein‑coding capabilities. However, these RNAs play a key role in tumor development. There is increasing evidence to indicate that lncRNAs regulate glucose metabolism in tumor cells by affecting metabolic enzymes and some signaling pathways, thereby regulating the occurrence and progression of hepatocellular carcinoma (HCC). Therefore, it is crucial to understand which lncRNAs play a regulatory role in HCC glycolysis and to determine the related molecular mechanisms. The present review summarized and discussed the functions of lncRNAs, focusing on the regulatory mechanisms of lncRNAs in the process of glycolysis in HCC. In addition, the present review suggests the importance of lncRNAs as future therapeutic targets for antitumor cell metabolism.
View Figures

Figure 1

Figure 2

View References

1 

Bertuccio P, Turati F, Carioli G, Rodriguez T, La Vecchia C, Malvezzi M and Negri E: Global trends and predictions in hepatocellular carcinoma mortality. J Hepatol. 67:302–309. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A and Roberts LR: A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 16:589–604. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Lunt SY and Vander Heiden MG: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 27:441–464. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Shestov AA, Liu X, Ser Z, Cluntun AA, Hung YP, Huang L, Kim D, Le A, Yellen G, Albeck JG, et al: Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. Elife. 3:e033422014. View Article : Google Scholar : PubMed/NCBI

6 

Guido C, Whitaker-Menezes D, Capparelli C, Balliet R, Lin Z, Pestell RG, Howell A, Aquila S, Andò S, Martinez-Outschoorn U, et al: Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: Connecting TGF-β signaling with ‘Warburg-like’ cancer metabolism and L-lactate production. Cell Cycle. 11:3019–3035. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Liberti MV and Locasale JW: The Warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Sattler UGA and Mueller-Klieser W: The anti-oxidant capacity of tumour glycolysis. Int J Radiat Biol. 85:963–971. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Beyoğlu D, Imbeaud S, Maurhofer O, Bioulac-Sage P, Zucman-Rossi J, Dufour JF and Idle JR: Tissue metabolomics of hepatocellular carcinoma: Tumor energy metabolism and the role of transcriptomic classification. Hepatology. 58:229–238. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Bustamante E and Pedersen PL: High aerobic glycolysis of rat hepatoma cells in culture: Role of mitochondrial hexokinase. Proc Natl Acad Sci USA. 74:3735–3739. 1977. View Article : Google Scholar : PubMed/NCBI

11 

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al: Landscape of transcription in human cells. Nature. 489:101–108. 2012. View Article : Google Scholar : PubMed/NCBI

12 

ENCODE Project Consortium, Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, et al: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 447:799–816. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Deng H, Zhang J, Shi J, Guo Z, He C, Ding L, Tang JH and Hou Y: Role of long non-coding RNA in tumor drug resistance. Tumour Biol. 37:11623–11631. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Li J, Meng H, Bai Y and Wang K: Regulation of lncRNA and its role in cancer metastasis. Oncol Res. 23:205–217. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Shen XH, Qi P and Du X: Long non-coding RNAs in cancer invasion and metastasis. Mod Pathol. 28:4–13. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Statello L, Guo CJ, Chen LL and Huarte M: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. View Article : Google Scholar : PubMed/NCBI

17 

Yuan SX, Zhang J, Xu QG, Yang Y and Zhou WP: Long noncoding RNA, the methylation of genomic elements and their emerging crosstalk in hepatocellular carcinoma. Cancer Lett. 379:239–244. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Tang J, Xie Y, Xu X, Yin Y, Jiang R, Deng L, Tan Z, Gangarapu V, Tang J and Sun B: Bidirectional transcription of Linc00441 and RB1 via H3K27 modification-dependent way promotes hepatocellular carcinoma. Cell Death Dis. 8:e26752017. View Article : Google Scholar : PubMed/NCBI

19 

Braconi C, Kogure T, Valeri N, Huang N, Nuovo G, Costinean S, Negrini M, Miotto E, Croce CM and Patel T: microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene. 30:4750–4756. 2021. View Article : Google Scholar : PubMed/NCBI

20 

Zhou Y, Huan L, Wu Y, Bao C, Chen B, Wang L, Huang S, Liang L and He X: LncRNA ID2-AS1 suppresses tumor metastasis by activating the HDAC8/ID2 pathway in hepatocellular carcinoma. Cancer Lett. 469:399–409. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Yuan JH, Liu XN, Wang TT, Pan W, Tao QF, Zhou WP, Wang F and Sun SH: The MBNL3 splicing factor promotes hepatocellular carcinoma by increasing PXN expression through the alternative splicing of lncRNA-PXN-AS1. Nat Cell Biol. 19:820–832. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Zhou HZ, Li F, Cheng ST, Xu Y, Deng HJ, Gu DY, Wang J, Chen WX, Zhou YJ, Yang ML, et al: DDX17-regulated alternative splicing that produced an oncogenic isoform of PXN-AS1 to promote HCC metastasis. Hepatology. 75:847–865. 2022. View Article : Google Scholar : PubMed/NCBI

23 

Zhang H, Su X, Burley SK and Zheng XFS: mTOR regulates aerobic glycolysis through NEAT1 and nuclear paraspeckle-mediated mechanism in hepatocellular carcinoma. Theranostics. 12:3518–3533. 2022. View Article : Google Scholar : PubMed/NCBI

24 

Tran DDH, Kessler C, Niehus SE, Mahnkopf M, Koch A and Tamura T: Myc target gene, long intergenic noncoding RNA, Linc00176 in hepatocellular carcinoma regulates cell cycle and cell survival by titrating tumor suppressor microRNAs. Oncogene. 37:75–85. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Zhou Y, Huang Y, Hu K, Zhang Z, Yang J and Wang Z: HIF1A activates the transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p. Cell Death Dis. 11:1762020. View Article : Google Scholar : PubMed/NCBI

26 

Zhu J, Liu S, Ye F, Shen Y, Tie Y, Zhu J, Wei L, Jin Y, Fu H, Wu Y and Zheng X: Long noncoding RNA MEG3 interacts with p53 protein and regulates partial p53 target genes in hepatoma cells. PLoS One. 10:e1397902015.

27 

Lu Q, Wang H, Lei X, Ma Q, Zhao J, Sun W, Guo C, Huang D and Xu Q: LncRNA ALKBH3-AS1 enhances ALKBH3 mRNA stability to promote hepatocellular carcinoma cell proliferation and invasion. J Cell Mol Med. 26:5292–5302. 2022. View Article : Google Scholar : PubMed/NCBI

28 

Zhuang LK, Yang YT, Ma X, Han B, Wang ZS, Zhao QY, Wu LQ and Qu ZQ: MicroRNA-92b promotes hepatocellular carcinoma progression by targeting Smad7 and is mediated by long non-coding RNA XIST. Cell Death Dis. 7:e22032016. View Article : Google Scholar : PubMed/NCBI

29 

Pang Y, Liu Z, Han H, Wang B, Li W, Mao C and Liu S: Peptide SMIM30 promotes HCC development by inducing SRC/YES1 membrane anchoring and MAPK pathway activation. J Hepatol. 73:1155–1169. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Xiang X, Fu Y, Zhao K, Miao R, Zhang X, Ma X, Liu C, Zhang N and Qu K: Cellular senescence in hepatocellular carcinoma induced by a long non-coding RNA-encoded peptide PINT87aa by blocking FOXM1-mediated PHB2. Theranostics. 11:4929–4944. 2021. View Article : Google Scholar : PubMed/NCBI

31 

Xu W, Deng B, Lin P, Liu C, Li B, Huang Q, Zhou H, Yang J and Qu L: Ribosome profiling analysis identified a KRAS-interacting microprotein that represses oncogenic signaling in hepatocellular carcinoma cells. Sci China Life Sci. 63:529–542. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Li S, Li J, Dai W, Zhang Q, Feng J, Wu L, Liu T, Yu Q, Xu S, Wang W, et al: Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death. Br J Cancer. 117:1518–1528. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Li Y, Lu Z, Liang Z, Ji D, Zhang P, Liu Q, Zheng X and Yao Y: Metastasis-associated in colon cancer-1 is associated with poor prognosis in hepatocellular carcinoma, partly by promoting proliferation through enhanced glucose metabolism. Mol Med Rep. 12:426–434. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Pan L, Feng F, Wu J, Fan S, Han J, Wang S, Yang L, Liu W, Wang C and Xu K: Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells. Pharmacol Res. 181:1062702022. View Article : Google Scholar : PubMed/NCBI

35 

Ganapathy-Kanniappan S: Linking tumor glycolysis and immune evasion in cancer: Emerging concepts and therapeutic opportunities. Biochim Biophys Acta Rev Cancer. 1868:212–220. 2017. View Article : Google Scholar : PubMed/NCBI

36 

He H, Chen T, Mo H, Chen S, Liu Q and Guo C: Hypoxia-inducible long noncoding RNA NPSR1-AS1 promotes the proliferation and glycolysis of hepatocellular carcinoma cells by regulating the MAPK/ERK pathway. Biochem Biophys Res Commun. 533:886–892. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Liu C, Xu K, Liu J, He C, Liu P, Fu Q, Zhang H and Qin T: LncRNA RP11-620J15.3 promotes HCC cell proliferation and metastasis by targeting miR-326/GPI to enhance glycolysis. Biol Direct. 18:152023. View Article : Google Scholar : PubMed/NCBI

38 

Zhang H, Zhao L, Ren P and Sun X: LncRNA MBNL1-AS1 knockdown increases the sensitivity of hepatocellular carcinoma to tripterine by regulating miR-708-5p-mediated glycolysis. Biotechnol Genet Eng Rev. 1–18. 2023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

39 

Lu L, Huang J, Mo J, Da X, Li Q, Fan M and Lu H: Exosomal lncRNA TUG1 from cancer-associated fibroblasts promotes liver cancer cell migration, invasion, and glycolysis by regulating the miR-524-5p/SIX1 axis. Cell Mol Biol Lett. 27:172022. View Article : Google Scholar : PubMed/NCBI

40 

Lin YH, Wu MH, Huang YH, Yeh CT, Cheng ML, Chi HC, Tsai CY, Chung IH, Chen CY and Lin KH: Taurine up-regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma. Hepatology. 67:188–203. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Hu M, Fu Q, Jing C, Zhang X, Qin T and Pan Y: LncRNA HOTAIR knockdown inhibits glycolysis by regulating miR-130a-3p/HIF1A in hepatocellular carcinoma under hypoxia. Biomed Pharmacother. 125:1097032020. View Article : Google Scholar : PubMed/NCBI

42 

Wei S, Fan Q, Yang L, Zhang X, Ma Y, Zong Z, Hua X, Su D, Sun H, Li H and Liu Z: Promotion of glycolysis by HOTAIR through GLUT1 upregulation via mTOR signaling. Oncol Rep. 38:1902–1908. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Malakar P, Stein I, Saragovi A, Winkler R, Stern-Ginossar N, Berger M, Pikarsky E and Karni R: Long Noncoding RNA MALAT1 regulates cancer glucose metabolism by enhancing mTOR-mediated translation of TCF7L2. Cancer Res. 79:2480–2493. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Xu M, Zhou C, Weng J, Chen Z, Zhou Q, Gao J, Shi G, Ke A, Ren N, Sun H and Shen Y: Tumor associated macrophages-derived exosomes facilitate hepatocellular carcinoma malignance by transferring lncMMPA to tumor cells and activating glycolysis pathway. J Exp Clin Cancer Res. 41:2532022. View Article : Google Scholar : PubMed/NCBI

45 

Li X, Zhao Q, Qi J, Wang W, Zhang D, Li Z and Qin C: lncRNA Ftx promotes aerobic glycolysis and tumor progression through the PPARγ pathway in hepatocellular carcinoma. Int J Oncol. 53:551–566. 2018.PubMed/NCBI

46 

Chen K, Wang X, Wei B, Sun R, Wu C and Yang HJ: LncRNA SNHG6 promotes glycolysis reprogramming in hepatocellular carcinoma by stabilizing the BOP1 protein. Anim Cells Syst (Seoul). 26:369–379. 2022. View Article : Google Scholar : PubMed/NCBI

47 

Wang F, Hu Y, Wang H, Hu P, Xiong H, Zeng Z, Han S, Wang D, Wang J, Zhao Y, et al: LncRNA FTO-IT1 promotes glycolysis and progression of hepatocellular carcinoma through modulating FTO-mediated N6-methyladenosine modification on GLUT1 and PKM2. J Exp Clin Cancer Res. 42:2672023. View Article : Google Scholar : PubMed/NCBI

48 

Liang Y, Zhang D, Zheng T, Yang G, Wang J, Meng F, Liu Y, Zhang G, Zhang L, Han J, et al: lncRNA-SOX2OT promotes hepatocellular carcinoma invasion and metastasis through miR-122-5p-mediated activation of PKM2. Oncogenesis. 9:542020. View Article : Google Scholar : PubMed/NCBI

49 

Ye Y, Wang M, Wang G, Mai Z, Zhou B, Han Y, Zhuang J and Xia W: lncRNA miR4458HG modulates hepatocellular carcinoma progression by activating m6A-dependent glycolysis and promoting the polarization of tumor-associated macrophages. Cell Mol Life Sci. 80:992023. View Article : Google Scholar : PubMed/NCBI

50 

Li X, Li Y, Bai S, Zhang J, Liu Z and Yang J: NR2F1-AS1/miR-140/HK2 axis regulates hypoxia-induced glycolysis and migration in hepatocellular carcinoma. Cancer Manag Res. 13:427–437. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Ma X, Mao Z, Zhu J, Liu H and Chen F: lncRNA PANTR1 upregulates BCL2A1 expression to promote tumorigenesis and warburg effect of hepatocellular carcinoma through restraining miR-587. J Immunol Res. 2021:17368192021. View Article : Google Scholar : PubMed/NCBI

52 

Shang R, Wang M, Dai B, Du J, Wang J, Liu Z, Qu S, Yang X, Liu J, Xia C, et al: Long noncoding RNA SLC2A1-AS1 regulates aerobic glycolysis and progression in hepatocellular carcinoma via inhibiting the STAT3/FOXM1/GLUT1 pathway. Mol Oncol. 14:1381–1396. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Shen C, Ding L, Mo H, Liu R, Xu Q and Tu K: Long noncoding RNA FIRRE contributes to the proliferation and glycolysis of hepatocellular carcinoma cells by enhancing PFKFB4 expression. J Cancer. 12:4099–4108. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Lai S, Quan Z, Hao Y, Liu J, Wang Z, Dai L, Dai H, He S and Tang B: Long non-coding RNA LINC01572 promotes hepatocellular carcinoma progression via sponging miR-195-5p to enhance PFKFB4-mediated glycolysis and PI3K/AKT activation. Front Cell Dev Biol. 9:7830882021. View Article : Google Scholar : PubMed/NCBI

55 

Ji W, Bai J and Ke Y: Exosomal ZFPM2-AS1 contributes to tumorigenesis, metastasis, stemness, macrophage polarization, and infiltration in hepatocellular carcinoma through PKM mediated glycolysis. Environ Toxicol. 38:1332–1346. 2023. View Article : Google Scholar : PubMed/NCBI

56 

Wang Y, Yang F, Peng Q, Mei K, He H and Yang Q: Long non-coding RNA SNHG1 activates glycolysis to promote hepatocellular cancer progression through the miR-326/PKM2 axis. J Gene Med. 24:e34402022. View Article : Google Scholar : PubMed/NCBI

57 

Xu B, Wei Y, Liu F, Li L, Zhou S, Peng Y and Li B: Long noncoding RNA CERS6-AS1 modulates glucose metabolism and tumor progression in hepatocellular carcinoma by promoting the MDM2/p53 signaling pathway. Cell Death Discov. 8:3482022. View Article : Google Scholar : PubMed/NCBI

58 

Wu Y, Wang Y, Yao H, Li H, Meng F, Li Q, Lin X and Liu L: MNX1-AS1, a c-Myc induced lncRNA, promotes the Warburg effect by regulating PKM2 nuclear translocation. J Exp Clin Cancer Res. 41:3372022. View Article : Google Scholar : PubMed/NCBI

59 

Zhang D, Zou X, Song Y and Wu D: Long non-coding RNA UPK1A-AS1 promotes glycolysis in hepatocellular carcinoma cells via stabilization of HIF-1α. Nan Fang Yi Ke Da Xue Xue Bao. 41:193–199. 2021.(In Chinese). PubMed/NCBI

60 

Chen B, Xu X, Wu W, Zheng K and Yu Y: LINC00659 inhibits hepatocellular carcinoma malignant progression by blocking aerobic glycolysis through FUS recruitment and SLC10A1 modulation. Anal Cell Pathol (Amst). 2023:58529632023.PubMed/NCBI

61 

Zheng YL, Li L, Jia YX, Zhang BZ, Li JC, Zhu YH, Li MQ, He JZ, Zeng TT, Ban XJ, et al: LINC01554-mediated glucose metabolism reprogramming suppresses tumorigenicity in hepatocellular carcinoma via downregulating PKM2 expression and inhibiting Akt/mTOR signaling pathway. Theranostics. 9:796–810. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Guan YF, Huang QL, Ai YL, Chen QT, Zhao WX, Wang XM, Wu Q and Chen HZ: Nur77-activated lncRNA WFDC21P attenuates hepatocarcinogenesis via modulating glycolysis. Oncogene. 39:2408–2423. 2020. View Article : Google Scholar : PubMed/NCBI

63 

Li Y, Chen X, Huang H, Liao L, Chong H, Li G, Yuan T, Lu W, Deng S and Huang Q: A feedback loop between NONHSAT024276 and PTBP1 inhibits tumor progression and glycolysis in HCC by increasing the PKM1/PKM2 ratio. Cancer Sci. 114:1519–1540. 2023. View Article : Google Scholar : PubMed/NCBI

64 

Huang MD, Chen WM, Qi FZ, Sun M, Xu TP, Ma P and Shu YQ: Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol Cancer. 14:1652015. View Article : Google Scholar : PubMed/NCBI

65 

Chen K, Wei H, Pan J, Chen Z, Pan D, Gao T, Huang J, Huang M, Ou M and Zhong W: Six1 is negatively correlated with poor prognosis and reduces 5-fluorouracil sensitivity via attenuating the stemness of hepatocellular carcinoma cells. Eur J Pharmacol. 861:1725992019. View Article : Google Scholar : PubMed/NCBI

66 

Raju G, Pavitra E, Bandaru SS, Varaprasad GL, Nagaraju GP, Malla RR, Huh YS and Han YK: HOTAIR: A potential metastatic, drug-resistant and prognostic regulator of breast cancer. Mol Cancer. 22:652023. View Article : Google Scholar : PubMed/NCBI

67 

Zhang J, Zhang P, Wang L, Piao HL and Ma L: Long non-coding RNA HOTAIR in carcinogenesis and metastasis. Acta Biochim Biophys Sin (Shanghai). 46:1–5. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Li T, Sun X and Jiang X: UCA1 involved in the metformin-regulated bladder cancer cell proliferation and glycolysis. Tumour Biol. 39:10104283177108232017. View Article : Google Scholar : PubMed/NCBI

69 

Lou CH, Shao A, Shum EY, Espinoza JL, Huang L, Karam R and Wilkinson MF: Posttranscriptional control of the stem cell and neurogenic programs by the nonsense-mediated RNA decay pathway. Cell Rep. 6:748–764. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Zhou Y, Li Y, Wang N, Li X, Zheng J and Ge L: UPF1 inhibits the hepatocellular carcinoma progression by targeting long non-coding RNA UCA1. Sci Rep. 9:66522019. View Article : Google Scholar : PubMed/NCBI

71 

Grant SFA, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, et al: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 38:320–323. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Li GZ, Meng GX, Pan GQ, Zhang X, Yan LJ, Li RZ, Ding ZN, Tan SY, Wang DX, Tian BW, et al: MALAT1/mir-1-3p mediated BRF2 expression promotes HCC progression via inhibiting the LKB1/AMPK signaling pathway. Cancer Cell Int. 23:1882023. View Article : Google Scholar : PubMed/NCBI

73 

Döring B, Lütteke T, Geyer J and Petzinger E: The SLC10 carrier family: Transport functions and molecular structure. Curr Top Membr. 70:105–168. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Tran QH, Nguyen VG, Tran CM and Nguyen MN: Down-regulation of solute carrier family 10 member 1 is associated with early recurrence and poorer prognosis of hepatocellular carcinoma. Heliyon. 7:e064632021. View Article : Google Scholar : PubMed/NCBI

75 

Lu C, Fang S, Weng Q, Lv X, Meng M, Zhu J, Zheng L, Hu Y, Gao Y, Wu X, et al: Integrated analysis reveals critical glycolytic regulators in hepatocellular carcinoma. Cell Commun Signal. 18:972020. View Article : Google Scholar : PubMed/NCBI

76 

Zhang B, Xie Z and Li B: The clinicopathologic impacts and prognostic significance of GLUT1 expression in patients with lung cancer: A meta-analysis. Gene. 689:76–83. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Kuai XY, Lei ZY, Liu XS and Shao XY: The interaction of GLUT1 and FOXM1 leads to a poor prognosis in colorectal cancer. Anticancer Agents Med Chem. 20:941–950. 2020. View Article : Google Scholar : PubMed/NCBI

78 

Xiao H, Wang J, Yan W, Cui Y, Chen Z, Gao X, Wen X and Chen J: GLUT1 regulates cell glycolysis and proliferation in prostate cancer. Prostate. 78:86–94. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Sun HW, Yu XJ, Wu WC, Chen J, Shi M, Zheng L and Xu J: GLUT1 and ASCT2 as predictors for prognosis of hepatocellular carcinoma. PLoS One. 11:e01689072016. View Article : Google Scholar : PubMed/NCBI

80 

Barbosa AM and Martel F: Targeting glucose transporters for breast cancer therapy: The effect of natural and synthetic compounds. Cancers (Basel). 12:1542020. View Article : Google Scholar : PubMed/NCBI

81 

DeWaal D, Nogueira V, Terry AR, Patra KC, Jeon SM, Guzman G, Au J, Long CP, Antoniewicz MR and Hay N: Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat Commun. 9:4462018. View Article : Google Scholar : PubMed/NCBI

82 

Wu Q, Wang SP, Sun XX, Tao YF, Yuan XQ, Chen QM, Dai L, Li CL, Zhang JY and Yang AL: HuaChanSu suppresses tumor growth and interferes with glucose metabolism in hepatocellular carcinoma cells by restraining Hexokinase-2. Int J Biochem Cell Biol. 142:1061232022. View Article : Google Scholar : PubMed/NCBI

83 

Ros S and Schulze A: Glycolysis back in the limelight: Systemic targeting of HK2 blocks tumor growth. Cancer Discov. 3:1105–1107. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Zhang R, Su J, Xue SL, Yang H, Ju LL, Ji Y, Wu KH, Zhang YW, Zhang YX, Hu JF and Yu M: HPV E6/p53 mediated down-regulation of miR-34a inhibits Warburg effect through targeting LDHA in cervical cancer. Am J Cancer Res. 6:312–320. 2016.PubMed/NCBI

85 

Zhang K, Zhang T, Yang Y, Tu W, Huang H, Wang Y, Chen Y, Pan K and Chen Z: N6-methyladenosine-mediated LDHA induction potentiates chemoresistance of colorectal cancer cells through metabolic reprogramming. Theranostics. 12:4802–4817. 2022. View Article : Google Scholar : PubMed/NCBI

86 

Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL and Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 452:230–233. 2008. View Article : Google Scholar : PubMed/NCBI

87 

Kotowski K, Rosik J, Machaj F, Supplitt S, Wiczew D, Jabłońska K, Wiechec E, Ghavami S and Dzięgiel P: Role of PFKFB3 and PFKFB4 in cancer: Genetic basis, impact on disease development/progression, and potential as therapeutic targets. Cancers (Basel). 13:9092021. View Article : Google Scholar : PubMed/NCBI

88 

Wu M, An J, Zheng Q, Xin X, Lin Z, Li X, Li H and Lu D: Double mutant P53 (N340Q/L344R) promotes hepatocarcinogenesis through upregulation of Pim1 mediated by PKM2 and LncRNA CUDR. Oncotarget. 7:66525–66539. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Tang J, Yan T, Bao Y, Shen C, Yu C, Zhu X, Tian X, Guo F, Liang Q, Liu Q, et al: LncRNA GLCC1 promotes colorectal carcinogenesis and glucose metabolism by stabilizing c-Myc. Nat Commun. 10:34992019. View Article : Google Scholar : PubMed/NCBI

90 

Yu Z, Wang Y, Deng J, Liu D, Zhang L, Shao H, Wang Z, Zhu W, Zhao C and Ke Q: Long non-coding RNA COL4A2-AS1 facilitates cell proliferation and glycolysis of colorectal cancer cells via miR-20b-5p/hypoxia inducible factor 1 alpha subunit axis. Bioengineered. 12:6251–6263. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Badoiu SC, Greabu M, Miricescu D, Stanescu-Spinu II, Ilinca R, Balan DG, Balcangiu-Stroescu AE, Mihai DA, Vacaroiu IA, Stefani C and Jinga V: PI3K/AKT/mTOR dysregulation and reprogramming metabolic pathways in renal cancer: Crosstalk with the VHL/HIF axis. Int J Mol Sci. 24:83912023. View Article : Google Scholar : PubMed/NCBI

92 

Zhu YJ, Zheng B, Wang HY and Chen L: New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin. 38:614–622. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Zhang H, Wang Q, Liu J and Cao H: Inhibition of the PI3K/Akt signaling pathway reverses sorafenib-derived chemo-resistance in hepatocellular carcinoma. Oncol Lett. 15:9377–9384. 2018.PubMed/NCBI

94 

Li J, Xing J, Yang Y, Liu J, Wang W, Xia Y, Yan Z, Wang K, Wu D, Wu L, et al: Adjuvant 131I-metuximab for hepatocellular carcinoma after liver resection: A randomised, controlled, multicentre, open-label, phase 2 trial. Lancet Gastroenterol Hepatol. 5:548–560. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Elgendy M, Cirò M, Hosseini A, Weiszmann J, Mazzarella L, Ferrari E, Cazzoli R, Curigliano G, DeCensi A, Bonanni B, et al: Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3β-MCL-1 axis. Cancer Cell. 35:798–815. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Sasaki R, Kanda T, Yokosuka O, Kato N, Matsuoka S and Moriyama M: Exosomes and hepatocellular carcinoma: From bench to bedside. Int J Mol Sci. 20:14062019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang Q, Liang Z, Huang Q, Li X, Xia J, Huang L, Huang LB and Ou C: Involvement of lncRNAs in the regulation of aerobic glycolysis in hepatocellular carcinoma: Main functions, regulatory mechanisms and potential therapeutic implications (Review). Oncol Rep 51: 84, 2024.
APA
Huang, Q., Liang, Z., Huang, Q., Li, X., Xia, J., Huang, L. ... Ou, C. (2024). Involvement of lncRNAs in the regulation of aerobic glycolysis in hepatocellular carcinoma: Main functions, regulatory mechanisms and potential therapeutic implications (Review). Oncology Reports, 51, 84. https://doi.org/10.3892/or.2024.8743
MLA
Huang, Q., Liang, Z., Huang, Q., Li, X., Xia, J., Huang, L., Huang, L. B., Ou, C."Involvement of lncRNAs in the regulation of aerobic glycolysis in hepatocellular carcinoma: Main functions, regulatory mechanisms and potential therapeutic implications (Review)". Oncology Reports 51.6 (2024): 84.
Chicago
Huang, Q., Liang, Z., Huang, Q., Li, X., Xia, J., Huang, L., Huang, L. B., Ou, C."Involvement of lncRNAs in the regulation of aerobic glycolysis in hepatocellular carcinoma: Main functions, regulatory mechanisms and potential therapeutic implications (Review)". Oncology Reports 51, no. 6 (2024): 84. https://doi.org/10.3892/or.2024.8743
Copy and paste a formatted citation
x
Spandidos Publications style
Huang Q, Liang Z, Huang Q, Li X, Xia J, Huang L, Huang LB and Ou C: Involvement of lncRNAs in the regulation of aerobic glycolysis in hepatocellular carcinoma: Main functions, regulatory mechanisms and potential therapeutic implications (Review). Oncol Rep 51: 84, 2024.
APA
Huang, Q., Liang, Z., Huang, Q., Li, X., Xia, J., Huang, L. ... Ou, C. (2024). Involvement of lncRNAs in the regulation of aerobic glycolysis in hepatocellular carcinoma: Main functions, regulatory mechanisms and potential therapeutic implications (Review). Oncology Reports, 51, 84. https://doi.org/10.3892/or.2024.8743
MLA
Huang, Q., Liang, Z., Huang, Q., Li, X., Xia, J., Huang, L., Huang, L. B., Ou, C."Involvement of lncRNAs in the regulation of aerobic glycolysis in hepatocellular carcinoma: Main functions, regulatory mechanisms and potential therapeutic implications (Review)". Oncology Reports 51.6 (2024): 84.
Chicago
Huang, Q., Liang, Z., Huang, Q., Li, X., Xia, J., Huang, L., Huang, L. B., Ou, C."Involvement of lncRNAs in the regulation of aerobic glycolysis in hepatocellular carcinoma: Main functions, regulatory mechanisms and potential therapeutic implications (Review)". Oncology Reports 51, no. 6 (2024): 84. https://doi.org/10.3892/or.2024.8743
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team