|
1
|
Zheng RS, Zhang SW, Sun KX, Chen R, Wang
SM, Li L, Zeng HM, Wei WW and He J: Cancer statistics in China,
2016. Zhonghua Zhong Liu Za Zhi. 45:212–220. 2023.(In Chinese).
PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD, Wagle NS and Jemal
A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Chen S, Cao Z, Prettner K, Kuhn M, Yang J,
Jiao L, Wang Z, Li W, Geldsetzer P, Bärnighausen T, et al:
Estimates and projections of the global economic cost of 29 cancers
in 204 countries and territories from 2020 to 2050. JAMA Oncol.
9:465–472. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sterner RC and Sterner RM: CAR-T cell
therapy: Current limitations and potential strategies. Blood Cancer
J. 11:692021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wang S, Sun J, Chen K, Ma P, Lei Q, Xing
S, Cao Z, Sun S, Yu Z, Liu Y and Li N: Perspectives of
tumor-infiltrating lymphocyte treatment in solid tumors. BMC Med.
19:1402021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lin B, Du L, Li H, Zhu X, Cui L and Li X:
Tumor-infiltrating lymphocytes: Warriors fight against tumors
powerfully. Biomed Pharmacother. 132:1108732020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yron I, Wood TA Jr, Spiess PJ and
Rosenberg SA: In vitro growth of murine T cells. V. The isolation
and growth of lymphoid cells infiltrating syngeneic solid tumors. J
Immunol. 125:238–245. 1980. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Rosenberg SA, Spiess P and Lafreniere R: A
new approach to the adoptive immunotherapy of cancer with
tumor-infiltrating lymphocytes. Science. 233:1318–1321. 1986.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Topalian SL, Solomon D, Avis FP, Chang AE,
Freerksen DL, Linehan WM, Lotze MT, Robertson CN, Seipp CA, Simon
P, et al: Immunotherapy of patients with advanced cancer using
tumor-infiltrating lymphocytes and recombinant interleukin-2: A
pilot study. J Clin Oncol. 6:839–853. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Rosenberg SA, Yannelli JR, Yang JC,
Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA,
Einhorn JH and White DE: Treatment of patients with metastatic
melanoma with autologous tumor-infiltrating lymphocytes and
interleukin 2. J Natl Cancer Inst. 86:1159–1166. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Tran KQ, Zhou J, Durflinger KH, Langhan
MM, Shelton TE, Wunderlich JR, Robbins PF, Rosenberg SA and Dudley
ME: Minimally cultured tumor-infiltrating lymphocytes display
optimal characteristics for adoptive cell therapy. J Immunother.
31:742–751. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Itzhaki O, Hovav E, Ziporen Y, Levy D,
Kubi A, Zikich D, Hershkovitz L, Treves AJ, Shalmon B, Zippel D, et
al: Establishment and large-scale expansion of minimally cultured
‘young’ tumor infiltrating lymphocytes for adoptive transfer
therapy. J Immunother. 34:212–220. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Jin J, Sabatino M, Somerville R, Wilson
JR, Dudley ME, Stroncek DF and Rosenberg SA: Simplified method of
the growth of human tumor infiltrating lymphocytes in gas-permeable
flasks to numbers needed for patient treatment. J Immunother.
35:283–292. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Friedman KM, Prieto PA, Devillier LE,
Gross CA, Yang JC, Wunderlich JR, Rosenberg SA and Dudley ME:
Tumor-specific CD4+ melanoma tumor-infiltrating lymphocytes. J
Immunother. 35:400–408. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Tran E, Turcotte S, Gros A, Robbins PF, Lu
YC, Dudley ME, Wunderlich JR, Somerville RP, Hogan K, Hinrichs CS,
et al: Cancer immunotherapy based on mutation-specific CD4+ T cells
in a patient with epithelial cancer. Science. 344:641–645. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang L, Morgan RA, Beane JD, Zheng Z,
Dudley ME, Kassim SH, Nahvi AV, Ngo LT, Sherry RM, Phan GQ, et al:
Tumor-infiltrating lymphocytes genetically engineered with an
inducible gene encoding interleukin-12 for the immunotherapy of
metastatic melanoma. Clin Cancer Res. 21:2278–2288. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Beane JD, Lee G, Zheng Z, Mendel M,
Abate-Daga D, Bharathan M, Black M, Gandhi N, Yu Z, Chandran S, et
al: Clinical scale zinc finger nuclease-mediated gene editing of
PD-1 in tumor infiltrating lymphocytes for the treatment of
metastatic melanoma. Mol Ther. 23:1380–1390. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Parkhurst M, Gros A, Pasetto A, Prickett
T, Crystal JS, Robbins P and Rosenberg SA: Isolation of T-cell
receptors specifically reactive with mutated tumor-associated
antigens from tumor-infiltrating lymphocytes based on CD137
expression. Clin Cancer Res. 23:2491–2505. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lu YC, Zheng Z, Robbins PF, Tran E,
Prickett TD, Gartner JJ, Li YF, Ray S, Franco Z, Bliskovsky V, et
al: An Efficient Single-Cell RNA-Seq approach to identify
neoantigen-specific T cell receptors. Mol Ther. 26:379–389. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Nguyen LT, Saibil SD, Sotov V, Le MX,
Khoja L, Ghazarian D, Bonilla L, Majeed H, Hogg D, Joshua AM, et
al: Phase II clinical trial of adoptive cell therapy for patients
with metastatic melanoma with autologous tumor-infiltrating
lymphocytes and low-dose interleukin-2. Cancer Immunol Immunother.
68:773–785. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Krishna S, Lowery FJ, Copeland AR,
Bahadiroglu E, Mukherjee R, Jia L, Anibal JT, Sachs A, Adebola SO,
Gurusamy D, et al: Stem-like CD8 T cells mediate response of
adoptive cell immunotherapy against human cancer. Science.
370:1328–1334. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sinicrope FA, Shi Q, Smyrk TC, Goldberg
RM, Cohen SJ, Gill S, Kahlenberg MS, Nair S, Shield AF, Jahagirdar
BN, et al: Association of adiponectin and vitamin D with tumor
infiltrating lymphocytes and survival in stage III colon cancer.
JNCI Cancer Spectr. 5:pkab0702021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chamberlain CA, Bennett EP, Kverneland AH,
Svane IM, Donia M and Met Ö: Highly efficient PD-1-targeted
CRISPR-Cas9 for tumor-infiltrating lymphocyte-based adoptive T cell
therapy. Mol Ther Oncolytics. 24:417–428. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Forsberg EMV, Riise R, Saellström S,
Karlsson J, Alsén S, Bucher V, Hemminki AE, Olofsson Bagge R, Ny L,
Nilsson LM, et al: Treatment with Anti-HER2 Chimeric Antigen
receptor tumor-infiltrating lymphocytes (CAR-TILs) Is safe and
associated with antitumor efficacy in mice and companion dogs.
Cancers (Basel). 15:6482023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Shafer P, Kelly LM and Hoyos V: Cancer
therapy with TCR-Engineered T Cells: Current strategies,
challenges, and prospects. Front Immunol. 13:8357622022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Alcover A, Alarcón B and Di Bartolo V:
Cell biology of T cell receptor expression and regulation. Annu Rev
Immunol. 36:103–125. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wang WC, Zhang ZQ, Li PP, Ma JY, Chen L,
Qian HH, Shi LH, Yin ZF, Sun B and Zhang XF: Anti-tumor activity
and mechanism of oligoclonal hepatocellular carcinoma
tumor-infiltrating lymphocytes in vivo and in vitro. Cancer Biol
Ther. 20:1187–1194. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ahn EY, Pan G, Vickers SM and McDonald JM:
IFN-gammaupregulates apoptosis-related molecules and enhances
Fas-mediated apoptosis in human cholangiocarcinoma. Int J Cancer.
100:445–451. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
De Paola F, Ridolfi R, Riccobon A, Flamini
E, Barzanti F, Granato AM, Mordenti GL, Medri L, Vitali P and
Amadori D: Restored T-cell activation mechanisms in human
tumour-infiltrating lymphocytes from melanomas and colorectal
carcinomas after exposure to interleukin-2. Br J Cancer.
88:320–326. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Draghi A, Chamberlain CA, Khan S, Papp K,
Lauss M, Soraggi S, Radic HD, Presti M, Harbst K, Gokuldass A, et
al: Rapid identification of the tumor-specific reactive TIL
Repertoire via combined detection of CD137, TNF, and IFNγ,
following recognition of autologous tumor-antigens. Front Immunol.
12:7054222021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Trüb M, Uhlenbrock F, Claus C, Herzig P,
Thelen M, Karanikas V, Bacac M, Amann M, Albrecht R, Ferrara-Koller
C, et al: Fibroblast activation protein-targeted-4-1BB ligand
agonist amplifies effector functions of intratumoral T cells in
human cancer. J Immunother Cancer. 8:e0002382020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Sano E, Kazaana A, Tadakuma H, Takei T,
Yoshimura S, Hanashima Y, Ozawa Y, Yoshino A, Suzuki Y and Ueda T:
Interleukin-6 sensitizes TNF-α and TRAIL/Apo2L dependent cell death
through upregulation of death receptors in human cancer cells.
Biochim Biophys Acta Mol Cell Res. 1868:1190372021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Faletti L, Peintner L, Neumann S, Sandler
S, Grabinger T, Mac Nelly S, Merfort I, Huang CH, Tschaharganeh D,
Kang TW, et al: TNFα sensitizes hepatocytes to FasL-induced
apoptosis by NFκB-mediated Fas upregulation. Cell Death Dis.
9:9092018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li XY, Li Z, An GJ, Liu S and Lai YD:
Co-expression of perforin and granzyme B genes induces apoptosis
and inhibits the tumorigenicity of laryngeal cancer cell line
Hep-2. Int J Clin Exp Pathol. 7:978–986. 2014.PubMed/NCBI
|
|
35
|
Shi L, Mai S, Israels S, Browne K, Trapani
JA and Greenberg AH: Granzyme B (GraB) autonomously crosses the
cell membrane and perforin initiates apoptosis and GraB nuclear
localization. J Exp Med. 185:855–866. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jacquemin G, Margiotta D, Kasahara A,
Bassoy EY, Walch M, Thiery J, Lieberman J and Martinvalet D:
Granzyme B-induced mitochondrial ROS are required for apoptosis.
Cell Death Differ. 22:862–874. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Pinkoski MJ, Waterhouse NJ, Heibein JA,
Wolf BB, Kuwana T, Goldstein JC, Newmeyer DD, Bleackley RC and
Green DR: Granzyme B-mediated apoptosis proceeds predominantly
through a Bcl-2-inhibitable mitochondrial pathway. J Biol Chem.
276:12060–12067. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Upadhyay R, Boiarsky JA, Pantsulaia G,
Svensson-Arvelund J, Lin MJ, Wroblewska A, Bhalla S, Scholler N,
Bot A, Rossi JM, et al: A critical role for fas-mediated off-target
tumor killing in T-cell immunotherapy. Cancer Discov. 11:599–613.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Martínez-Lostao L, Anel A and Pardo J: How
do cytotoxic lymphocytes kill cancer cells? Clin Cancer Res.
21:5047–5056. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Golstein P and Griffiths GM: An early
history of T cell-mediated cytotoxicity. Nat Rev Immunol.
18:527–535. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Montinaro A and Walczak H: Harnessing
TRAIL-induced cell death for cancer therapy: A long walk with
thrilling discoveries. Cell Death Differ. 30:237–249. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Coe GL, Redd PS, Paschall AV, Lu C, Gu L,
Cai H, Albers T, Lebedyeva IO and Liu K: Ceramide mediates
FasL-induced caspase 8 activation in colon carcinoma cells to
enhance FasL-induced cytotoxicity by tumor-specific cytotoxic T
lymphocytes. Sci Rep. 6:308162016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Goedegebuure PS, Douville LM, Li H,
Richmond GC, Schoof DD, Scavone M and Eberlein TJ: Adoptive
immunotherapy with tumor-infiltrating lymphocytes and interleukin-2
in patients with metastatic malignant melanoma and renal cell
carcinoma: A pilot study. J Clin Oncol. 13:1939–1949. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Goff SL, Dudley ME, Citrin DE, Somerville
RP, Wunderlich JR, Danforth DN, Zlott DA, Yang JC, Sherry RM,
Kammula US, et al: Randomized, prospective evaluation comparing
intensity of lymphodepletion before adoptive transfer of
tumor-infiltrating lymphocytes for patients with metastatic
melanoma. J Clin Oncol. 34:2389–2397. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Huang H, Nie CP, Liu XF, Song B, Yue JH,
Xu JX, He J, Li K, Feng YL, Wan T, et al: Phase I study of adjuvant
immunotherapy with autologous tumor-infiltrating lymphocytes in
locally advanced cervical cancer. J Clin Invest. 132:e1577262022.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Chesney J, Lewis KD, Kluger H, Hamid O,
Whitman E, Thomas S, Wermke M, Cusnir M, Domingo-Musibay E, Phan
GQ, et al: Efficacy and safety of lifileucel, a one-time autologous
tumor-infiltrating lymphocyte (TIL) cell therapy, in patients with
advanced melanoma after progression on immune checkpoint inhibitors
and targeted therapies: Pooled analysis of consecutive cohorts of
the C-144-01 study. J Immunother Cancer. 10:e0057552022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zacharakis N, Huq LM, Seitter SJ, Kim SP,
Gartner JJ, Sindiri S, Hill VK, Li YF, Paria BC, Ray S, et al:
Breast cancers are immunogenic: Immunologic analyses and a phase II
pilot clinical trial using mutation-reactive autologous
lymphocytes. J Clin Oncol. 40:1741–1754. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Stevanović S, Helman SR, Wunderlich JR,
Langhan MM, Doran SL, Kwong MLM, Somerville RPT, Klebanoff CA,
Kammula US, Sherry RM, et al: A phase II study of
tumor-infiltrating lymphocyte therapy for human
papillomavirus-associated epithelial cancers. Clin Cancer Res.
25:1486–1493. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Rosenberg SA, Yang JC, Sherry RM, Kammula
US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF,
Wunderlich JR, et al: Durable complete responses in heavily
pretreated patients with metastatic melanoma using T-cell transfer
immunotherapy. Clin Cancer Res. 17:4550–4557. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Queirolo P, Ponte M, Gipponi M, Cafiero F,
Peressini A, Semino C, Pietra G, Lionetto R, Vecchio S, Ribizzi I,
et al: Adoptive immunotherapy with tumor-infiltrating lymphocytes
and subcutaneous recombinant interleukin-2 plus interferon alfa-2a
for melanoma patients with nonresectable distant disease: A phase
I/II pilot trial. Melanoma Istituto Scientifico Tumori Group. Ann
Surg Oncol. 6:272–278. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Dudley ME, Gross CA, Langhan MM, Garcia
MR, Sherry RM, Yang JC, Phan GQ, Kammula US, Hughes MS, Citrin DE,
et al: CD8+ enriched ‘young’ tumor infiltrating lymphocytes can
mediate regression of metastatic melanoma. Clin Cancer Res.
16:6122–6131. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Figlin RA, Pierce WC, Kaboo R, Tso CL,
Moldawer N, Gitlitz B, deKernion J and Belldegrun A: Treatment of
metastatic renal cell carcinoma with nephrectomy, interleukin-2 and
cytokine-primed or CD8(+) selected tumor infiltrating lymphocytes
from primary tumor. J Urol. 158((3 Pt 1)): 740–745. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Jansen CS, Prokhnevska N, Master VA, Sanda
MG, Carlisle JW, Bilen MA, Cardenas M, Wilkinson S, Lake R,
Sowalsky AG, et al: An intra-tumoral niche maintains and
differentiates stem-like CD8 T cells. Nature. 576:465–470. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Saito H, Iwabuchi K, Fusaki N and Ito F:
Generation of induced pluripotent stem cells from human melanoma
tumor-infiltrating lymphocytes. J Vis Exp. 117:54372016.
|
|
55
|
Islam SMR, Maeda T, Tamaoki N, Good ML,
Kishton RJ, Paria BC, Yu Z, Bosch-Marce M, Bedanova NM, Liu C, et
al: Reprogramming of Tumor-reactive Tumor-infiltrating Lymphocytes
to Human-induced Pluripotent Stem Cells. Cancer Res Commun.
3:917–932. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Bhadurihauck A, Li L, Li Q, Wang J and
Xiao Z: Transient exposure to proteins SOX2, Oct-4, and NANOG
immortalizes exhausted tumor-infiltrating CTLs. Biochem Biophys Res
Commun. 473:1255–1260. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Teo YWB, Linn YC, Goh YT, Li S and Ho LP:
Tumor infiltrating lymphocytes from acute myeloid leukemia marrow
can be reverted to CD45RA+ central memory state by reactivation in
SIP (Simulated Infective Protocol). Immunobiology. 224:526–531.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Vodnala SK, Eil R, Kishton RJ, Sukumar M,
Yamamoto TN, Ha NH, Lee PH, Shin M, Patel SJ, Yu Z, et al: T cell
stemness and dysfunction in tumors are triggered by a common
mechanism. Science. 363:eaau01352019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cheng H, Qiu Y, Xu Y, Chen L, Ma K, Tao M,
Frankiw L, Yin H, Xie E, Pan X, et al: Extracellular acidosis
restricts one-carbon metabolism and preserves T cell stemness. Nat
Metab. 5:314–330. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ye Q, Loisiou M, Levine BL, Suhoski MM,
Riley JL, June CH, Coukos G and Powell DJ Jr: Engineered artificial
antigen presenting cells facilitate direct and efficient expansion
of tumor infiltrating lymphocytes. J Transl Med. 9:1312011.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Forget MA, Malu S, Liu H, Toth C, Maiti S,
Kale C, Haymaker C, Bernatchez C, Huls H, Wang E, et al: Activation
and propagation of tumor-infiltrating lymphocytes on clinical-grade
designer artificial antigen-presenting cells for adoptive
immunotherapy of melanoma. J Immunother. 37:448–460. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hsu C, Abad JD and Morgan RA:
Characterization of human T lymphocytes engineered to express
interleukin-15 and herpes simplex virus-thymidine kinase. J Surg
Res. 184:282–289. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Heemskerk B, Liu K, Dudley ME, Johnson LA,
Kaiser A, Downey S, Zheng Z, Shelton TE, Matsuda K, Robbins PF, et
al: Adoptive cell therapy for patients with melanoma, using
tumor-infiltrating lymphocytes genetically engineered to secrete
interleukin-2. Hum Gene Ther. 19:496–510. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Fix SM, Forget MA, Sakellariou-Thompson D,
Wang Y, Griffiths TM, Lee M, Haymaker CL, Dominguez AL, Basar R,
Reyes C, et al: CRISPR-mediated TGFBR2 knockout renders human
ovarian cancer tumor-infiltrating lymphocytes resistant to TGF-β
signaling. J Immunother Cancer. 10:e0037502022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Robbins PF, Morgan RA, Feldman SA, Yang
JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ,
Mackall CL, et al: Tumor regression in patients with metastatic
synovial cell sarcoma and melanoma using genetically engineered
lymphocytes reactive with NY-ESO-1. J Clin Oncol. 29:917–924. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liu X, Ranganathan R, Jiang S, Fang C, Sun
J, Kim S, Newick K, Lo A, June CH, Zhao Y and Moon EK: A chimeric
switch-receptor targeting PD1 augments the efficacy of
second-generation CAR T cells in advanced solid tumors. Cancer Res.
76:1578–1590. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lee M, Li J, Li J, Fang S, Zhang J, Vo
ATT, Han W, Zeng H, Isgandarova S, Martinez-Moczygemba M, et al:
Tet2 inactivation enhances the antitumor activity of
tumor-infiltrating lymphocytes. Cancer Res. 81:1965–1976. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Palmer DC, Webber BR, Patel Y, Johnson MJ,
Kariya CM, Lahr WS, Parkhurst MR, Gartner JJ, Prickett TD, Lowery
FJ, et al: Internal checkpoint regulates T cell neoantigen
reactivity and susceptibility to PD1 blockade. Med. 3:682–704.e8.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Schlabach MR, Lin S, Collester ZR,
Wrocklage C, Shenker S, Calnan C, Xu T, Gannon HS, Williams LJ,
Thompson F, et al: Rational design of a SOCS1-edited
tumor-infiltrating lymphocyte therapy using CRISPR/Cas9 screens. J
Clin Invest. 133:e1630962023. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Feist M, Zhu Z, Dai E, Ma C, Liu Z, Giehl
E, Ravindranathan R, Kowalsky SJ, Obermajer N, Kammula US, et al:
Oncolytic virus promotes tumor-reactive infiltrating lymphocytes
for adoptive cell therapy. Cancer Gene Ther. 28:98–111. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Quixabeira DCA, Jirovec E, Pakola S,
Havunen R, Basnet S, Santos JM, Kudling TV, Clubb JHA, Haybout L,
Arias V, et al: Improving the cytotoxic response of
tumor-infiltrating lymphocytes towards advanced stage ovarian
cancer with an oncolytic adenovirus expressing a human vIL-2
cytokine. Cancer Gene Ther. 30:1543–1553. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Santos JM, Heiniö C, Cervera-Carrascon V,
Quixabeira DCA, Siurala M, Havunen R, Butzow R, Zafar S, de Gruijl
T, Lassus H, et al: Oncolytic adenovirus shapes the ovarian tumor
microenvironment for potent tumor-infiltrating lymphocyte tumor
reactivity. J Immunother Cancer. 8:e0001882020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Santos J, Heiniö C, Quixabeira D, Zafar S,
Clubb J, Pakola S, Cervera-Carrascon V, Havunen R, Kanerva A and
Hemminki A: Systemic delivery of oncolytic adenovirus to tumors
using tumor-infiltrating lymphocytes as carriers. Cells.
10:9782021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kudling TV, Clubb JHA, Quixabeira DCA,
Santos JM, Havunen R, Kononov A, Heiniö C, Cervera-Carrascon V,
Pakola S, Basnet S, et al: Local delivery of interleukin 7 with an
oncolytic adenovirus activates tumor-infiltrating lymphocytes and
causes tumor regression. Oncoimmunology. 11:20965722022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Khammari A, Nguyen JM, Saint-Jean M, Knol
AC, Pandolfino MC, Quereux G, Brocard A, Peuvrel L, Saiagh S,
Bataille V, et al: Adoptive T cell therapy combined with
intralesional administrations of TG1042 (adenovirus expressing
interferon-γ) in metastatic melanoma patients. Cancer Immunol
Immunother. 64:805–815. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ye K, Li F, Wang R, Cen T, Liu S, Zhao Z,
Li R, Xu L, Zhang G, Xu Z, et al: An armed oncolytic virus enhances
the efficacy of tumor-infiltrating lymphocyte therapy by converting
tumors to artificial antigen-presenting cells in situ. Mol Ther.
30:3658–3676. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yang H, Berezowska S, Dorn P, Zens P, Chen
P, Peng RW, Marti TM, Kocher GJ, Schmid RA and Hall SRR:
Tumor-infiltrating lymphocytes are functionally inactivated by
CD90+ stromal cells and reactivated by combined Ibrutinib and
Rapamycin in human pleural mesothelioma. Theranostics. 12:167–185.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Mullinax JE, Hall M, Prabhakaran S, Weber
J, Khushalani N, Eroglu Z, Brohl AS, Markowitz J, Royster E,
Richards A, et al: Combination of ipilimumab and adoptive cell
therapy with tumor-infiltrating lymphocytes for patients with
metastatic melanoma. Front Oncol. 8:442018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Oberg HH, Janitschke L, Sulaj V, Weimer J,
Gonnermann D, Hedemann N, Arnold N, Kabelitz D, Peipp M,
Bauerschlag D and Wesch D: Bispecific antibodies enhance
tumor-infiltrating T cell cytotoxicity against autologous
HER-2-expressing high-grade ovarian tumors. J Leukoc Biol.
107:1081–1095. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Li Y, Cong Y, Jia M, He Q, Zhong H, Zhao
Y, Li H, Yan M, You J, Liu J, et al: Targeting IL-21 to
tumor-reactive T cells enhances memory T cell responses and
anti-PD-1 antibody therapy. Nat Commun. 12:9512021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kazemi MH, Shokrollahi Barough M,
Momeni-Varposhti Z, Ghanavatinejad A, Zarehzadeh Mehrabadi A,
Sadeghi B and Falak R: Pentoxifylline changes the balance of immune
cell population in breast tumor-infiltrating lymphocytes. Med
Oncol. 40:1682023. View Article : Google Scholar : PubMed/NCBI
|