
Developing innovative strategies of tumor‑infiltrating lymphocyte therapy for tumor treatment
- Authors:
- Zhongjie Yu
- Jianhua Shi
- Yuan Fang
- Yi Zhao
- Aotian Xu
- Ning Li
-
Affiliations: R&D, Qingdao Sino‑cell Biomedicine Co., Ltd., Qingdao, Shandong 266000, P.R. China, Phase I Clinical Research Center Affiliated, Linyi Tumor Hospital, Linyi, Shandong 276000, P.R. China, Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China - Published online on: April 26, 2024 https://doi.org/10.3892/or.2024.8744
- Article Number: 85
-
Copyright: © Yu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Zheng RS, Zhang SW, Sun KX, Chen R, Wang SM, Li L, Zeng HM, Wei WW and He J: Cancer statistics in China, 2016. Zhonghua Zhong Liu Za Zhi. 45:212–220. 2023.(In Chinese). PubMed/NCBI | |
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Cao Z, Prettner K, Kuhn M, Yang J, Jiao L, Wang Z, Li W, Geldsetzer P, Bärnighausen T, et al: Estimates and projections of the global economic cost of 29 cancers in 204 countries and territories from 2020 to 2050. JAMA Oncol. 9:465–472. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sterner RC and Sterner RM: CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 11:692021. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Sun J, Chen K, Ma P, Lei Q, Xing S, Cao Z, Sun S, Yu Z, Liu Y and Li N: Perspectives of tumor-infiltrating lymphocyte treatment in solid tumors. BMC Med. 19:1402021. View Article : Google Scholar : PubMed/NCBI | |
Lin B, Du L, Li H, Zhu X, Cui L and Li X: Tumor-infiltrating lymphocytes: Warriors fight against tumors powerfully. Biomed Pharmacother. 132:1108732020. View Article : Google Scholar : PubMed/NCBI | |
Yron I, Wood TA Jr, Spiess PJ and Rosenberg SA: In vitro growth of murine T cells. V. The isolation and growth of lymphoid cells infiltrating syngeneic solid tumors. J Immunol. 125:238–245. 1980. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SA, Spiess P and Lafreniere R: A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 233:1318–1321. 1986. View Article : Google Scholar : PubMed/NCBI | |
Topalian SL, Solomon D, Avis FP, Chang AE, Freerksen DL, Linehan WM, Lotze MT, Robertson CN, Seipp CA, Simon P, et al: Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: A pilot study. J Clin Oncol. 6:839–853. 1988. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH and White DE: Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst. 86:1159–1166. 1994. View Article : Google Scholar : PubMed/NCBI | |
Tran KQ, Zhou J, Durflinger KH, Langhan MM, Shelton TE, Wunderlich JR, Robbins PF, Rosenberg SA and Dudley ME: Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J Immunother. 31:742–751. 2008. View Article : Google Scholar : PubMed/NCBI | |
Itzhaki O, Hovav E, Ziporen Y, Levy D, Kubi A, Zikich D, Hershkovitz L, Treves AJ, Shalmon B, Zippel D, et al: Establishment and large-scale expansion of minimally cultured ‘young’ tumor infiltrating lymphocytes for adoptive transfer therapy. J Immunother. 34:212–220. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jin J, Sabatino M, Somerville R, Wilson JR, Dudley ME, Stroncek DF and Rosenberg SA: Simplified method of the growth of human tumor infiltrating lymphocytes in gas-permeable flasks to numbers needed for patient treatment. J Immunother. 35:283–292. 2012. View Article : Google Scholar : PubMed/NCBI | |
Friedman KM, Prieto PA, Devillier LE, Gross CA, Yang JC, Wunderlich JR, Rosenberg SA and Dudley ME: Tumor-specific CD4+ melanoma tumor-infiltrating lymphocytes. J Immunother. 35:400–408. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, Wunderlich JR, Somerville RP, Hogan K, Hinrichs CS, et al: Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 344:641–645. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Morgan RA, Beane JD, Zheng Z, Dudley ME, Kassim SH, Nahvi AV, Ngo LT, Sherry RM, Phan GQ, et al: Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin Cancer Res. 21:2278–2288. 2015. View Article : Google Scholar : PubMed/NCBI | |
Beane JD, Lee G, Zheng Z, Mendel M, Abate-Daga D, Bharathan M, Black M, Gandhi N, Yu Z, Chandran S, et al: Clinical scale zinc finger nuclease-mediated gene editing of PD-1 in tumor infiltrating lymphocytes for the treatment of metastatic melanoma. Mol Ther. 23:1380–1390. 2015. View Article : Google Scholar : PubMed/NCBI | |
Parkhurst M, Gros A, Pasetto A, Prickett T, Crystal JS, Robbins P and Rosenberg SA: Isolation of T-cell receptors specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137 expression. Clin Cancer Res. 23:2491–2505. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lu YC, Zheng Z, Robbins PF, Tran E, Prickett TD, Gartner JJ, Li YF, Ray S, Franco Z, Bliskovsky V, et al: An Efficient Single-Cell RNA-Seq approach to identify neoantigen-specific T cell receptors. Mol Ther. 26:379–389. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nguyen LT, Saibil SD, Sotov V, Le MX, Khoja L, Ghazarian D, Bonilla L, Majeed H, Hogg D, Joshua AM, et al: Phase II clinical trial of adoptive cell therapy for patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and low-dose interleukin-2. Cancer Immunol Immunother. 68:773–785. 2019. View Article : Google Scholar : PubMed/NCBI | |
Krishna S, Lowery FJ, Copeland AR, Bahadiroglu E, Mukherjee R, Jia L, Anibal JT, Sachs A, Adebola SO, Gurusamy D, et al: Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science. 370:1328–1334. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sinicrope FA, Shi Q, Smyrk TC, Goldberg RM, Cohen SJ, Gill S, Kahlenberg MS, Nair S, Shield AF, Jahagirdar BN, et al: Association of adiponectin and vitamin D with tumor infiltrating lymphocytes and survival in stage III colon cancer. JNCI Cancer Spectr. 5:pkab0702021. View Article : Google Scholar : PubMed/NCBI | |
Chamberlain CA, Bennett EP, Kverneland AH, Svane IM, Donia M and Met Ö: Highly efficient PD-1-targeted CRISPR-Cas9 for tumor-infiltrating lymphocyte-based adoptive T cell therapy. Mol Ther Oncolytics. 24:417–428. 2022. View Article : Google Scholar : PubMed/NCBI | |
Forsberg EMV, Riise R, Saellström S, Karlsson J, Alsén S, Bucher V, Hemminki AE, Olofsson Bagge R, Ny L, Nilsson LM, et al: Treatment with Anti-HER2 Chimeric Antigen receptor tumor-infiltrating lymphocytes (CAR-TILs) Is safe and associated with antitumor efficacy in mice and companion dogs. Cancers (Basel). 15:6482023. View Article : Google Scholar : PubMed/NCBI | |
Shafer P, Kelly LM and Hoyos V: Cancer therapy with TCR-Engineered T Cells: Current strategies, challenges, and prospects. Front Immunol. 13:8357622022. View Article : Google Scholar : PubMed/NCBI | |
Alcover A, Alarcón B and Di Bartolo V: Cell biology of T cell receptor expression and regulation. Annu Rev Immunol. 36:103–125. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang WC, Zhang ZQ, Li PP, Ma JY, Chen L, Qian HH, Shi LH, Yin ZF, Sun B and Zhang XF: Anti-tumor activity and mechanism of oligoclonal hepatocellular carcinoma tumor-infiltrating lymphocytes in vivo and in vitro. Cancer Biol Ther. 20:1187–1194. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ahn EY, Pan G, Vickers SM and McDonald JM: IFN-gammaupregulates apoptosis-related molecules and enhances Fas-mediated apoptosis in human cholangiocarcinoma. Int J Cancer. 100:445–451. 2002. View Article : Google Scholar : PubMed/NCBI | |
De Paola F, Ridolfi R, Riccobon A, Flamini E, Barzanti F, Granato AM, Mordenti GL, Medri L, Vitali P and Amadori D: Restored T-cell activation mechanisms in human tumour-infiltrating lymphocytes from melanomas and colorectal carcinomas after exposure to interleukin-2. Br J Cancer. 88:320–326. 2003. View Article : Google Scholar : PubMed/NCBI | |
Draghi A, Chamberlain CA, Khan S, Papp K, Lauss M, Soraggi S, Radic HD, Presti M, Harbst K, Gokuldass A, et al: Rapid identification of the tumor-specific reactive TIL Repertoire via combined detection of CD137, TNF, and IFNγ, following recognition of autologous tumor-antigens. Front Immunol. 12:7054222021. View Article : Google Scholar : PubMed/NCBI | |
Trüb M, Uhlenbrock F, Claus C, Herzig P, Thelen M, Karanikas V, Bacac M, Amann M, Albrecht R, Ferrara-Koller C, et al: Fibroblast activation protein-targeted-4-1BB ligand agonist amplifies effector functions of intratumoral T cells in human cancer. J Immunother Cancer. 8:e0002382020. View Article : Google Scholar : PubMed/NCBI | |
Sano E, Kazaana A, Tadakuma H, Takei T, Yoshimura S, Hanashima Y, Ozawa Y, Yoshino A, Suzuki Y and Ueda T: Interleukin-6 sensitizes TNF-α and TRAIL/Apo2L dependent cell death through upregulation of death receptors in human cancer cells. Biochim Biophys Acta Mol Cell Res. 1868:1190372021. View Article : Google Scholar : PubMed/NCBI | |
Faletti L, Peintner L, Neumann S, Sandler S, Grabinger T, Mac Nelly S, Merfort I, Huang CH, Tschaharganeh D, Kang TW, et al: TNFα sensitizes hepatocytes to FasL-induced apoptosis by NFκB-mediated Fas upregulation. Cell Death Dis. 9:9092018. View Article : Google Scholar : PubMed/NCBI | |
Li XY, Li Z, An GJ, Liu S and Lai YD: Co-expression of perforin and granzyme B genes induces apoptosis and inhibits the tumorigenicity of laryngeal cancer cell line Hep-2. Int J Clin Exp Pathol. 7:978–986. 2014.PubMed/NCBI | |
Shi L, Mai S, Israels S, Browne K, Trapani JA and Greenberg AH: Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J Exp Med. 185:855–866. 1997. View Article : Google Scholar : PubMed/NCBI | |
Jacquemin G, Margiotta D, Kasahara A, Bassoy EY, Walch M, Thiery J, Lieberman J and Martinvalet D: Granzyme B-induced mitochondrial ROS are required for apoptosis. Cell Death Differ. 22:862–874. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pinkoski MJ, Waterhouse NJ, Heibein JA, Wolf BB, Kuwana T, Goldstein JC, Newmeyer DD, Bleackley RC and Green DR: Granzyme B-mediated apoptosis proceeds predominantly through a Bcl-2-inhibitable mitochondrial pathway. J Biol Chem. 276:12060–12067. 2001. View Article : Google Scholar : PubMed/NCBI | |
Upadhyay R, Boiarsky JA, Pantsulaia G, Svensson-Arvelund J, Lin MJ, Wroblewska A, Bhalla S, Scholler N, Bot A, Rossi JM, et al: A critical role for fas-mediated off-target tumor killing in T-cell immunotherapy. Cancer Discov. 11:599–613. 2021. View Article : Google Scholar : PubMed/NCBI | |
Martínez-Lostao L, Anel A and Pardo J: How do cytotoxic lymphocytes kill cancer cells? Clin Cancer Res. 21:5047–5056. 2015. View Article : Google Scholar : PubMed/NCBI | |
Golstein P and Griffiths GM: An early history of T cell-mediated cytotoxicity. Nat Rev Immunol. 18:527–535. 2018. View Article : Google Scholar : PubMed/NCBI | |
Montinaro A and Walczak H: Harnessing TRAIL-induced cell death for cancer therapy: A long walk with thrilling discoveries. Cell Death Differ. 30:237–249. 2023. View Article : Google Scholar : PubMed/NCBI | |
Coe GL, Redd PS, Paschall AV, Lu C, Gu L, Cai H, Albers T, Lebedyeva IO and Liu K: Ceramide mediates FasL-induced caspase 8 activation in colon carcinoma cells to enhance FasL-induced cytotoxicity by tumor-specific cytotoxic T lymphocytes. Sci Rep. 6:308162016. View Article : Google Scholar : PubMed/NCBI | |
Goedegebuure PS, Douville LM, Li H, Richmond GC, Schoof DD, Scavone M and Eberlein TJ: Adoptive immunotherapy with tumor-infiltrating lymphocytes and interleukin-2 in patients with metastatic malignant melanoma and renal cell carcinoma: A pilot study. J Clin Oncol. 13:1939–1949. 1995. View Article : Google Scholar : PubMed/NCBI | |
Goff SL, Dudley ME, Citrin DE, Somerville RP, Wunderlich JR, Danforth DN, Zlott DA, Yang JC, Sherry RM, Kammula US, et al: Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol. 34:2389–2397. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Nie CP, Liu XF, Song B, Yue JH, Xu JX, He J, Li K, Feng YL, Wan T, et al: Phase I study of adjuvant immunotherapy with autologous tumor-infiltrating lymphocytes in locally advanced cervical cancer. J Clin Invest. 132:e1577262022. View Article : Google Scholar : PubMed/NCBI | |
Chesney J, Lewis KD, Kluger H, Hamid O, Whitman E, Thomas S, Wermke M, Cusnir M, Domingo-Musibay E, Phan GQ, et al: Efficacy and safety of lifileucel, a one-time autologous tumor-infiltrating lymphocyte (TIL) cell therapy, in patients with advanced melanoma after progression on immune checkpoint inhibitors and targeted therapies: Pooled analysis of consecutive cohorts of the C-144-01 study. J Immunother Cancer. 10:e0057552022. View Article : Google Scholar : PubMed/NCBI | |
Zacharakis N, Huq LM, Seitter SJ, Kim SP, Gartner JJ, Sindiri S, Hill VK, Li YF, Paria BC, Ray S, et al: Breast cancers are immunogenic: Immunologic analyses and a phase II pilot clinical trial using mutation-reactive autologous lymphocytes. J Clin Oncol. 40:1741–1754. 2022. View Article : Google Scholar : PubMed/NCBI | |
Stevanović S, Helman SR, Wunderlich JR, Langhan MM, Doran SL, Kwong MLM, Somerville RPT, Klebanoff CA, Kammula US, Sherry RM, et al: A phase II study of tumor-infiltrating lymphocyte therapy for human papillomavirus-associated epithelial cancers. Clin Cancer Res. 25:1486–1493. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR, et al: Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 17:4550–4557. 2011. View Article : Google Scholar : PubMed/NCBI | |
Queirolo P, Ponte M, Gipponi M, Cafiero F, Peressini A, Semino C, Pietra G, Lionetto R, Vecchio S, Ribizzi I, et al: Adoptive immunotherapy with tumor-infiltrating lymphocytes and subcutaneous recombinant interleukin-2 plus interferon alfa-2a for melanoma patients with nonresectable distant disease: A phase I/II pilot trial. Melanoma Istituto Scientifico Tumori Group. Ann Surg Oncol. 6:272–278. 1999. View Article : Google Scholar : PubMed/NCBI | |
Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC, Phan GQ, Kammula US, Hughes MS, Citrin DE, et al: CD8+ enriched ‘young’ tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res. 16:6122–6131. 2010. View Article : Google Scholar : PubMed/NCBI | |
Figlin RA, Pierce WC, Kaboo R, Tso CL, Moldawer N, Gitlitz B, deKernion J and Belldegrun A: Treatment of metastatic renal cell carcinoma with nephrectomy, interleukin-2 and cytokine-primed or CD8(+) selected tumor infiltrating lymphocytes from primary tumor. J Urol. 158((3 Pt 1)): 740–745. 1997. View Article : Google Scholar : PubMed/NCBI | |
Jansen CS, Prokhnevska N, Master VA, Sanda MG, Carlisle JW, Bilen MA, Cardenas M, Wilkinson S, Lake R, Sowalsky AG, et al: An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature. 576:465–470. 2019. View Article : Google Scholar : PubMed/NCBI | |
Saito H, Iwabuchi K, Fusaki N and Ito F: Generation of induced pluripotent stem cells from human melanoma tumor-infiltrating lymphocytes. J Vis Exp. 117:54372016. | |
Islam SMR, Maeda T, Tamaoki N, Good ML, Kishton RJ, Paria BC, Yu Z, Bosch-Marce M, Bedanova NM, Liu C, et al: Reprogramming of Tumor-reactive Tumor-infiltrating Lymphocytes to Human-induced Pluripotent Stem Cells. Cancer Res Commun. 3:917–932. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bhadurihauck A, Li L, Li Q, Wang J and Xiao Z: Transient exposure to proteins SOX2, Oct-4, and NANOG immortalizes exhausted tumor-infiltrating CTLs. Biochem Biophys Res Commun. 473:1255–1260. 2016. View Article : Google Scholar : PubMed/NCBI | |
Teo YWB, Linn YC, Goh YT, Li S and Ho LP: Tumor infiltrating lymphocytes from acute myeloid leukemia marrow can be reverted to CD45RA+ central memory state by reactivation in SIP (Simulated Infective Protocol). Immunobiology. 224:526–531. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vodnala SK, Eil R, Kishton RJ, Sukumar M, Yamamoto TN, Ha NH, Lee PH, Shin M, Patel SJ, Yu Z, et al: T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science. 363:eaau01352019. View Article : Google Scholar : PubMed/NCBI | |
Cheng H, Qiu Y, Xu Y, Chen L, Ma K, Tao M, Frankiw L, Yin H, Xie E, Pan X, et al: Extracellular acidosis restricts one-carbon metabolism and preserves T cell stemness. Nat Metab. 5:314–330. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ye Q, Loisiou M, Levine BL, Suhoski MM, Riley JL, June CH, Coukos G and Powell DJ Jr: Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes. J Transl Med. 9:1312011. View Article : Google Scholar : PubMed/NCBI | |
Forget MA, Malu S, Liu H, Toth C, Maiti S, Kale C, Haymaker C, Bernatchez C, Huls H, Wang E, et al: Activation and propagation of tumor-infiltrating lymphocytes on clinical-grade designer artificial antigen-presenting cells for adoptive immunotherapy of melanoma. J Immunother. 37:448–460. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hsu C, Abad JD and Morgan RA: Characterization of human T lymphocytes engineered to express interleukin-15 and herpes simplex virus-thymidine kinase. J Surg Res. 184:282–289. 2013. View Article : Google Scholar : PubMed/NCBI | |
Heemskerk B, Liu K, Dudley ME, Johnson LA, Kaiser A, Downey S, Zheng Z, Shelton TE, Matsuda K, Robbins PF, et al: Adoptive cell therapy for patients with melanoma, using tumor-infiltrating lymphocytes genetically engineered to secrete interleukin-2. Hum Gene Ther. 19:496–510. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fix SM, Forget MA, Sakellariou-Thompson D, Wang Y, Griffiths TM, Lee M, Haymaker CL, Dominguez AL, Basar R, Reyes C, et al: CRISPR-mediated TGFBR2 knockout renders human ovarian cancer tumor-infiltrating lymphocytes resistant to TGF-β signaling. J Immunother Cancer. 10:e0037502022. View Article : Google Scholar : PubMed/NCBI | |
Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, et al: Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 29:917–924. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Ranganathan R, Jiang S, Fang C, Sun J, Kim S, Newick K, Lo A, June CH, Zhao Y and Moon EK: A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 76:1578–1590. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee M, Li J, Li J, Fang S, Zhang J, Vo ATT, Han W, Zeng H, Isgandarova S, Martinez-Moczygemba M, et al: Tet2 inactivation enhances the antitumor activity of tumor-infiltrating lymphocytes. Cancer Res. 81:1965–1976. 2021. View Article : Google Scholar : PubMed/NCBI | |
Palmer DC, Webber BR, Patel Y, Johnson MJ, Kariya CM, Lahr WS, Parkhurst MR, Gartner JJ, Prickett TD, Lowery FJ, et al: Internal checkpoint regulates T cell neoantigen reactivity and susceptibility to PD1 blockade. Med. 3:682–704.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
Schlabach MR, Lin S, Collester ZR, Wrocklage C, Shenker S, Calnan C, Xu T, Gannon HS, Williams LJ, Thompson F, et al: Rational design of a SOCS1-edited tumor-infiltrating lymphocyte therapy using CRISPR/Cas9 screens. J Clin Invest. 133:e1630962023. View Article : Google Scholar : PubMed/NCBI | |
Feist M, Zhu Z, Dai E, Ma C, Liu Z, Giehl E, Ravindranathan R, Kowalsky SJ, Obermajer N, Kammula US, et al: Oncolytic virus promotes tumor-reactive infiltrating lymphocytes for adoptive cell therapy. Cancer Gene Ther. 28:98–111. 2021. View Article : Google Scholar : PubMed/NCBI | |
Quixabeira DCA, Jirovec E, Pakola S, Havunen R, Basnet S, Santos JM, Kudling TV, Clubb JHA, Haybout L, Arias V, et al: Improving the cytotoxic response of tumor-infiltrating lymphocytes towards advanced stage ovarian cancer with an oncolytic adenovirus expressing a human vIL-2 cytokine. Cancer Gene Ther. 30:1543–1553. 2023. View Article : Google Scholar : PubMed/NCBI | |
Santos JM, Heiniö C, Cervera-Carrascon V, Quixabeira DCA, Siurala M, Havunen R, Butzow R, Zafar S, de Gruijl T, Lassus H, et al: Oncolytic adenovirus shapes the ovarian tumor microenvironment for potent tumor-infiltrating lymphocyte tumor reactivity. J Immunother Cancer. 8:e0001882020. View Article : Google Scholar : PubMed/NCBI | |
Santos J, Heiniö C, Quixabeira D, Zafar S, Clubb J, Pakola S, Cervera-Carrascon V, Havunen R, Kanerva A and Hemminki A: Systemic delivery of oncolytic adenovirus to tumors using tumor-infiltrating lymphocytes as carriers. Cells. 10:9782021. View Article : Google Scholar : PubMed/NCBI | |
Kudling TV, Clubb JHA, Quixabeira DCA, Santos JM, Havunen R, Kononov A, Heiniö C, Cervera-Carrascon V, Pakola S, Basnet S, et al: Local delivery of interleukin 7 with an oncolytic adenovirus activates tumor-infiltrating lymphocytes and causes tumor regression. Oncoimmunology. 11:20965722022. View Article : Google Scholar : PubMed/NCBI | |
Khammari A, Nguyen JM, Saint-Jean M, Knol AC, Pandolfino MC, Quereux G, Brocard A, Peuvrel L, Saiagh S, Bataille V, et al: Adoptive T cell therapy combined with intralesional administrations of TG1042 (adenovirus expressing interferon-γ) in metastatic melanoma patients. Cancer Immunol Immunother. 64:805–815. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ye K, Li F, Wang R, Cen T, Liu S, Zhao Z, Li R, Xu L, Zhang G, Xu Z, et al: An armed oncolytic virus enhances the efficacy of tumor-infiltrating lymphocyte therapy by converting tumors to artificial antigen-presenting cells in situ. Mol Ther. 30:3658–3676. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Berezowska S, Dorn P, Zens P, Chen P, Peng RW, Marti TM, Kocher GJ, Schmid RA and Hall SRR: Tumor-infiltrating lymphocytes are functionally inactivated by CD90+ stromal cells and reactivated by combined Ibrutinib and Rapamycin in human pleural mesothelioma. Theranostics. 12:167–185. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mullinax JE, Hall M, Prabhakaran S, Weber J, Khushalani N, Eroglu Z, Brohl AS, Markowitz J, Royster E, Richards A, et al: Combination of ipilimumab and adoptive cell therapy with tumor-infiltrating lymphocytes for patients with metastatic melanoma. Front Oncol. 8:442018. View Article : Google Scholar : PubMed/NCBI | |
Oberg HH, Janitschke L, Sulaj V, Weimer J, Gonnermann D, Hedemann N, Arnold N, Kabelitz D, Peipp M, Bauerschlag D and Wesch D: Bispecific antibodies enhance tumor-infiltrating T cell cytotoxicity against autologous HER-2-expressing high-grade ovarian tumors. J Leukoc Biol. 107:1081–1095. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Cong Y, Jia M, He Q, Zhong H, Zhao Y, Li H, Yan M, You J, Liu J, et al: Targeting IL-21 to tumor-reactive T cells enhances memory T cell responses and anti-PD-1 antibody therapy. Nat Commun. 12:9512021. View Article : Google Scholar : PubMed/NCBI | |
Kazemi MH, Shokrollahi Barough M, Momeni-Varposhti Z, Ghanavatinejad A, Zarehzadeh Mehrabadi A, Sadeghi B and Falak R: Pentoxifylline changes the balance of immune cell population in breast tumor-infiltrating lymphocytes. Med Oncol. 40:1682023. View Article : Google Scholar : PubMed/NCBI |