|
1
|
Wasim S, Lee SY and Kim J: Complexities of
prostate cancer. Int J Mol Sci. 23:142572022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Khan MM, Sharma V and Serajuddin M:
Emerging role of miRNA in prostate cancer: A future era of
diagnostic and therapeutics. Gene. 888:1477612023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Chen N, Wang Z, Chen M, Ma Q, He Y, Wang
Y, Li X, Qiu M, Shi L, Zhu S, et al: Real-world effectiveness and
safety of goserelin 10.8-mg depot in Chinese patients with
localized or locally advanced prostate cancer. Cancer Biol Med.
20:1047–1059. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mamello S, Keamogetswe R, Paballo M,
Lemohang G, Ayodeji A and Samson M: Prostate cancer review:
Genetics, diagnosis, treatment options, and alternative approaches.
Molecules. 27:57302022. View Article : Google Scholar
|
|
5
|
Corti M, Lorenzetti S, Ubaldi A, Zilli R
and Marcoccia D: Endocrine disruptors and prostate cancer. Int J
Mol Sci. 23:12162022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Giri VN, Morgan TM, Morris DS, Berchuck
JE, Hyatt C and Taplin ME: Genetic testing in prostate cancer
management: Considerations informing primary care. CA Cancer J
Clin. 72:360–371. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Piombino C, Oltrecolli M, Tonni E, Pirola
M, Matranga R, Baldessari C, Pipitone S, Dominici M, Sabbatini R
and Vitale MG: De novo metastatic prostate cancer: Are we moving
toward a personalized treatment? Cancers (Basel). 15:49452023.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
McKay RR, Agarwal N, Matsubara N, Piulats
Rodriguez JM, Smith MR, Todenhöfer T, Zhang T, Balar AV, Schaverien
C, Sherwood S, et al: 1423TiP CYCLONE 3: A phase III, randomized,
double-blind, placebo-controlled study of abemaciclib in
combination with abiraterone plus prednisone in men with high-risk
metastatic hormone-sensitive prostate cancer (mHSPC). Ann Oncol.
33:S1195–S1196. 2022. View Article : Google Scholar
|
|
9
|
Rathi N, McFarland TR, Nussenzveig R,
Agarwal N and Swami U: Evolving role of immunotherapy in metastatic
castration refractory prostate cancer. Drugs. 81:191–206. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Desrosiers R, Friderici K and Rottman F:
Identification of methylated nucleo-sides in messenger RNA from
Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975.
1974. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zheng S, Han H and Lin S:
N6-methyladenosine (m6A) RNA modification in
tumor immunity. Cancer Biol Med. 19:385–397. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Liu ZX, Li LM, Sun HL and Liu SM: Link
between m6A modification and cancers. Front Bioeng Biotechnol.
6:892018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhou Y, Yang J, Tian Z, Zeng J and Shen W:
Research progress concerning m6A methylation and cancer.
Oncol Lett. 22:7752021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chen Y, Miao L, Lin H, Zhuo Z and He J:
The role of m6A modification in pediatric cancer. Biochim Biophys
Acta Rev Cancer. 1877:1886912022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Quan C, Belaydi O, Hu J, Li H, Yu A, Liu
P, Yi Z, Qiu D, Ren W, Ma H, et al: N6-Methyladenosine
in cancer immunotherapy: An undervalued therapeutic target. Front
Immunol. 12:6970262021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
De Silva F and Alcorn J: A tale of two
cancers: A current concise overview of breast and prostate cancer.
Cancers (Basel). 14:29542022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Schatten H: Brief overview of prostate
cancer statistics, grading, diagnosis and treatment strategies. Adv
Exp Med Biol. 1095:1–14. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Xia C, Dong X, Li H, Cao M, Sun D, He S,
Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China
and United States, 2022: Profiles, trends, and determinants. Chin
Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kench JG, Amin MB, Berney DM, Compérat EM,
Cree IA, Gill AJ, Hartmann A, Menon S, Moch H, Netto GJ, et al: WHO
Classification of Tumours Fifth edition: Evolving issues in the
classification, diagnosis, and prognostication of prostate cancer.
Histopathology. 81:447–458. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lotan TL, Toubaji A, Albadine R, Latour M,
Herawi M, Meeker AK, DeMarzo AM, Platz EA, Epstein JI, Netto GJ, et
al: TMPRSS2-ERG gene fusions are infrequent in prostatic ductal
adenocarcinomas. Mod Pathol. 22:359–365. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Gillard M, Lack J, Pontier A, Gandla D,
Hatcher D, Sowalsky AG, Rodriguez-Nieves J, Vander Griend D, Paner
G and VanderWeele D: Integrative genomic analysis of coincident
cancer foci implicates CTNNB1 and PTEN alterations in ductal
prostate cancer. Eur Urol Focus. 5:433–442. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Schweizer MT, Antonarakis ES, Bismar TA,
Guedes LB, Cheng HH, Tretiakova MS, Vakar-Lopez F, Klemfuss N,
Konnick EQ, Mostaghel EA, et al: Genomic characterization of
prostatic ductal adenocarcinoma identifies a high prevalence of DNA
repair gene mutations. JCO Precis Oncol. 3:PO.18.00327.
2019.PubMed/NCBI
|
|
24
|
Epstein JI, Egevad L, Amin MB, Delahunt B,
Srigley JR and Humphrey PA; Grading Committee, : The 2014
International Society of Urological Pathology (ISUP) consensus
Confer-ence on Gleason grading of prostatic carcinoma: Definition
of grading patterns and proposal for a new grading system. Am J
Surg Pathol. 40:244–252. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Cimadamore A, Scarpelli M, Raspollini MR,
Doria A, Galosi AB, Massari F, Di Nunno V, Cheng L, Lopez-Beltran A
and Montironi R: Prostate cancer pathology: What has changed in the
last 5 years. Urologia. 87:3–10. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Vlajnic T and Bubendorf L: Molecular
pathology of prostate cancer: A practical approach. Pathology.
53:36–43. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Rodrigues DN, Butler LM, Estelles DL and
de Bono JS: Molecular pathology and prostate cancer therapeutics:
From biology to bedside. J Pathol. 232:178–184. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Nevo A, Navaratnam A and Andrews P:
Prostate cancer and the role of biomarkers. Abdom Radiol (NY).
45:2120–2132. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Penghui Y, Le L, Xintao G, Sun T, Miao J,
Yuan X, Liu J, Wang Z and Liu B: Identification of RNA-binding
protein SNRPA1 for prognosis in prostate cancer. Aging (Albany NY).
13:2895–2911. 2021.
|
|
30
|
Johnson IR, Parkinson-Lawrence EJ, Keegan
H, Spillane CD, Barry-O'Crowley J, Watson WR, Selemidis S, Butler
LM, O'Leary JJ and Brooks DA: Endosomal gene expression: A new
indicator for prostate cancer patient prognosis? Oncotarget.
6:37919–37929. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Holt SK, Kolb S, Fu R, Horst R, Feng Z and
Stanford JL: Circulating levels of 25-hydroxyvitamin D and prostate
cancer prognosis. Cancer Epidemiol. 37:666–670. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Izumi K, Shigehara K, Nohara T, Narimoto
K, Kadono Y and Mizokami A: Both high and low serum total
testosterone levels indicate poor prognosis in patients with
prostate cancer. Anticancer Res. 37:5559–5564. 2017.PubMed/NCBI
|
|
33
|
De Nunzio C, Presicce F, Lombardo R,
Cancrini F, Petta S, Trucchi A, Gacci M, Cindolo L and Tubaro A:
Physical activity as a risk factor for prostate cancer diagnosis: A
prospective biopsy cohort analysis. BJU Int. 117:E29–E35. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Goris Gbenou MC, Peltier A, Schulman CC
and Velthoven R: Increased body mass index as a risk factor in
localized prostate cancer treated by radical prostatectomy. Urol
Oncol. 34:254.e1–e6. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Tan WP, Lin C, Chen M and Deane LA:
Periprostatic fat: A risk factor for prostate cancer? Urology.
98:107–112. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Choi JB, Myong JP, Lee Y, Kim I, Kim JH,
Hong SH and Ha US: Does increased body mass index lead to elevated
prostate cancer risk? It depends on waist circumference. BMC
Cancer. 20:5892020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Tangen CM, Schenk J, Till C, Goodman PJ,
Barrington W, Lucia MS and Thompson IM: Variations in prostate
biopsy recommendation and acceptance confound evaluation of risk
factors for prostate cancer: Examining race and BMI. Cancer
Epidemiol. 63:1016192019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Liu H, Wang Y, Xue T, Yang Z, Kan S, Hao
M, Gao Y, Wang D and Liu W: Roles of m6A modification in
oral cancer (Review). Int J Oncol. 62:52023. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Fang Z, Mei W, Qu C, Lu J, Shang L, Cao F
and Li F: Role of m6A writers, erasers and readers in cancer. Exp
Hematol Oncol. 11:452022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhu H, Jia X, Wang Y, Song Z, Wang N, Yang
Y and Shi X: M6A classification combined with tumor
microenvironment immune characteristics analysis of bladder cancer.
Front Oncol. 11:7142672021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zeng J, Zhang H, Tan Y, Wang Z, Li Y and
Yang X: Genetic alterations and functional networks of m6A RNA
methylation regulators in pancreatic cancer based on data mining. J
Transl Med. 19:3232021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Sun T, Wu R and Ming L: The role of m6A
RNA methylation in cancer. Biomed Pharmacother. 112:1086132019.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
An Y and Duan H: The role of m6A RNA
methylation in cancer metabolism. Mol Cancer. 21:142022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yang G, Sun Z and Zhang N: Reshaping the
role of m6A modification in cancer transcriptome: A review. Cancer
Cell Int. 20:3532020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Gu Z, Du Y, Zhao X and Wang C: Diagnostic,
therapeutic, and prognostic value of the m6A writer
complex in hepatocellular carcinoma. Front Cell Dev Biol.
10:8220112022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Su S, Li S, Deng T, Gao M, Yin Y, Wu B,
Peng C, Liu J, Ma J and Zhang K: Cryo-EM structures of human
m6A writer complexes. Cell Res. 32:982–994. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gu J, Zhan Y, Zhuo L, Zhang Q, Li G, Li Q,
Qi S, Zhu J, Lv Q, Shen Y, et al: Biological functions of
m6A methyltransferases. Cell Biosci. 11:152021.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Huang J and Yin P: Structural Insights
into N6-methyladenosine (m6A) modification in
the transcriptome. Genomics Proteomics Bioinformatics. 16:85–98.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Huang Q, Mo J, Liao Z, Chen X and Zhang B:
The RNA m6A writer WTAP in diseases: Structure, roles, and
mechanisms. Cell Death Dis. 13:8522022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Balacco DL and Matthias S: The
m6A Writer: Rise of a machine for growing tasks.
Biochemistry. 58:2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mathoux J, Henshall DC and Brennan GP:
Regulatory mechanisms of the RNA modification m6A and
significance in brain function in health and disease. Front Cell
Neurosci. 15:6719322021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhang W, Qian Y and Jia G: The detection
and functions of RNA modification m6A based on m6A writers and
erasers. J Biol Chem. 297:100973. 2021. View Article : Google Scholar
|
|
53
|
Li S and Cao L: Demethyltransferase FTO
alpha-ketoglutarate dependent dioxygenase (FTO) regulates the
proliferation, migration, invasion and tumor growth of prostate
cancer by modulating the expression of melanocortin 4 receptor
(MC4R). Bioengineered. 13:5598–5612. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhu K, Li Y and Xu Y: The FTO
m6A demethylase inhibits the invasion and migration of
prostate cancer cells by regulating total m6A levels.
Life Sci. 271:1191802021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zou L, Chen W, Zhou X, Yang T, Luo J, Long
Z, Wu J, Lv D, Mao X and Cen S: N6-methyladenosine demethylase FTO
suppressed prostate cancer progression by maintaining CLIC4 mRNA
stability. Cell Death Discov. 8:1842022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ding D, Liu G, Gao J and Cao M: Unveiling
the m6A methylation regulator links between prostate cancer and
periodontitis by transcriptomic analysis. Dis Markers.
2022:40300462022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ji G, Huang C, He S, Gong Y, Song G, Li X
and Zhou L: Comprehensive analysis of m6A regulators prognostic
value in prostate cancer. Aging (Albany NY). 12:14863–14884. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wu Q, Xie X, Huang Y, Meng S, Li Y, Wang H
and Hu Y: N6-methyladenosine RNA methylation regulators contribute
to the progression of prostate cancer. J Cancer. 12:682–692. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Dai XY, Shi L, Li Z, Yang HY, Wei JF and
Ding Q: Main N6-methyladenosine readers: YTH family proteins in
cancers. Front Oncol. 11:6353292021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Li J, Chen K, Dong X, Xu Y, Sun Q, Wang H,
Chen Z, Liu C, Liu R, Yang Z, et al: YTHDF1 promotes mRNA
degradation via YTHDF1-AGO2 interaction and phase separation. Cell
Prolif. 55:e131572022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zuyao C, Xiaolin Z, Min X and Jing Z: The
roles and mechanisms of the m6A reader protein YTHDF1 in tumor
biology and human diseases. Mol Ther Nucleic Acids. 26:1270–1279.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chen X, Zhou X and Wang X: m6A
binding protein YTHDF2 in cancer. Exp Hematol Oncol. 11:212022.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zaccara S and Jaffrey SR: A unified model
for the function of YTHDF proteins in regulating
m6A-modified mRNA. Cell. 181:1582–1595.e18. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu
PJ, Liu C and He C: YTHDF3 facilitates translation and decay of
N6-methyladenosine-modified RNA. Cell Res. 27:315–328.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Widagdo J, Anggono V and Wong JJL: The
multifaceted effects of YTHDC1-mediated nuclear m6A
recognition. Trends Genet. 38:325–332. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yan H, Zhang L, Cui X, Zheng S and Li R:
Roles and mechanisms of the m6A reader YTHDC1 in biological
processes and diseases. Cell Death Discov. 8:2372022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ma C, Liao S and Zhu Z: Crystal structure
of human YTHDC2 YTH domain. Biochem Biophys Res Commun.
518:678–684. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kretschmer J, Rao H, Hackert P, Sloan KE,
Höbartner C and Bohnsack MT: The m6A reader protein
YTHDC2 interacts with the small ribosomal subunit and the 5′-3′
exoribonuclease XRN1. RNA. 24:1339–1350. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Qin S, Liu G, Jin H, Chen X, He J, Xiao J,
Qin Y, Mao Y and Zhao L: The comprehensive expression and
functional analysis of m6A modification ‘readers’ in hepatocellular
carcinoma. Aging (Albany NY). 14:6269–6298. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Mo L, Meng L, Huang Z, Yi L, Yang N and Li
G: An analysis of the role of HnRNP C dysregulation in cancers.
Biomark Res. 10:192022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhou KI, Shi H, Lyu R, Wylder AC, Matuszek
Ż, Pan JN, He C, Parisien M and Pan T: Regulation of
Co-transcriptional Pre-mRNA Splicing by m6A through the
Low-Complexity Protein hnRNPG. Mol Cell. 76:70–81.e9. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wu B, Su S, Patil DP, Liu H, Gan J,
Jaffrey SR and Ma J: Molecular basis for the specific and
multivariant recognitions of RNA substrates by human hnRNP A2/B1.
Nat Commun. 9:4202018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Huang H, Weng H, Sun W, Qin X, Shi H, Wu
H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA
N6-methyladenosine by IGF2BP proteins enhances mRNA stability and
translation. Nat Cell Biol. 20:285–295. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ramesh-Kumar D and Guil S: The IGF2BP
family of RNA binding proteins links epitranscriptomics to cancer.
Semin Cancer Biol. 86:18–31. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Song H, Liu D, Wang L, Liu K, Chen C, Wang
L, Ren Y, Ju B, Zhong F, Jiang X, et al: Methyltransferase like 7B
is a potential therapeutic target for reversing EGFR-TKIs
resistance in lung adenocarcinoma. Mol Cancer. 21:432022.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang T, Liu Z, She Y, Deng J, Zhong Y,
Zhao M, Li S, Xie D, Sun X, Hu X and Chen C: A novel protein
encoded by circASK1 ameliorates gefitinib resistance in lung
adenocarcinoma by competitively activating ASK1-dependent
apoptosis. Cancer Letters. 520:321–331. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wu Q, Zhang H, Yang D, Min Q, Wang Y,
Zhang W and Zhan Q: The m6A-induced lncRNA CASC8 promotes
proliferation and chemoresistance via upregulation of hnRNPL in
esophageal squamous cell carcinoma. Int J Biol Sci. 18:4824–4836.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Huang CS, Zhu YQ, Xu QC, Chen S, Huang Y,
Zhao G, Ni X, Liu B, Zhao W and Yin XY: YTHDF2 promotes
intrahepatic cholangiocarcinoma progression and desensitises
cisplatin treatment by increasing CDKN1B mRNA degradation. Clin
Transl Med. 12:e8482022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cucciniello L, Gerratana L, Del Mastro L
and Puglisi F: Tailoring adjuvant endocrine therapy in early breast
cancer: When, how, and how long? Cancer Treat Rev. 110:1024452022.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Liu X, Gonzalez G, Dai X, Miao W, Yuan J,
Huang M, Bade D, Li L, Sun Y and Wang Y: Adenylate Kinase 4
modulates the resistance of breast cancer cells to tamoxifen
through an m6A-Based epitranscriptomic mechanism. Mol
Ther. 28:2593–2604. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Li F, Chen S, Yu J, Gao Z, Sun Z, Yi Y,
Long T, Zhang C, Li Y, Pan Y, et al: Interplay of m6 A
and histone modifications contributes to temozolomide resistance in
glioblastoma. Clin Transl Med. 11:e5532021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Li W, Ye K, Li X, Liu X, Peng M, Chen F,
Xiong W, Wang Y and Zhu L: YTHDC1 is downregulated by the YY1/HDAC2
complex and controls the sensitivity of ccRCC to sunitinib by
targeting the ANXA1-MAPK pathway. J Exp Clin Cancer Res.
41:2502022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Cotter KA, Gallon J, Uebersax N, Rubin P,
Meyer KD, Piscuoglio S, Jaffrey SR and Rubin MA: Mapping of m6A and
its regulatory targets in prostate cancer reveals a METTL3-Low
induction of therapy resistance. Mol Cancer Res. 19:1398–1411.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang SY and Zeng Y: Research progress of
m6A methylation in prostate cancer. Asian J Androl. 25:166–170.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Haigh DB, Woodcock CL, Lothion-Roy J,
Harris AE, Metzler VM, Persson JL, Robinson BD, Khani F, Alsaleem
M, Ntekim A, et al: The METTL3 RNA Methyltransferase regulates
transcriptional networks in prostate cancer. Cancers (Basel).
14:51482022. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Chen Y, Pan C, Wang X, Xu D, Ma Y, Hu J,
Chen P, Xiang Z, Rao Q and Han X: Silencing of METTL3 effectively
hinders invasion and metastasis of prostate cancer cells.
Theranostics. 11:7640–7657. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Cai J, Yang F, Zhan H, Situ J, Li W, Mao Y
and Luo Y: RNA m6A Methyltransferase METTL3 promotes the growth of
prostate cancer by regulating hedgehog pathway. Onco Targets Ther.
12:9143–9152. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ma XX, Cao ZG and Zhao SL: m6A
methyltransferase METTL3 promotes the progression of prostate
cancer via m6A-modified LEF1. Eur Rev Med Pharmacol Sci.
24:3565–3571. 2020.PubMed/NCBI
|
|
89
|
Wang D, Wang X, Huang B, Zhao Y, Tu W, Jin
X, Shao Y, Zhu Y and Lu G: METTL3 promotes prostate cancer
progression by regulating miR-182 maturation in m6A-dependent
manner. Andrologia. 54:1581–1591. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Mao Y, Li W, Weng Y, Hua B, Gu X, Lu C, Xu
B, Xu H and Wang Z: METTL3-Mediated m6A Modification of lncRNA
MALAT1 facilitates prostate cancer growth by activation of PI3K/AKT
signaling. Cell Transplant. 31:96368972211229972022. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yuan Y, Du Y, Wang L and Liu X: The M6A
methyltransferase METTL3 promotes the development and progression
of prostate carcinoma via mediating MYC methylation. J Cancer.
11:3588–3595. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Honggui M, Facai Z, Quliang Z and Jianquan
H: METTL3-mediated m6A modification of KIF3C-mRNA promotes prostate
cancer progression and is negatively regulated by miR-320d. Aging
(Albany NY). 13:22332–22344. 2021.PubMed/NCBI
|
|
93
|
Jia G, Wang X, Wu W, Zhang Y, Chen S, Zhao
J, Zhao W, Li W, Sun X and Han B: LXA4 enhances prostate cancer
progression by facilitating M2 macrophage polarization via
inhibition of METTL3. Int Immunopharmacol. 107:1085862022.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wu LS, Qian JY, Wang M and Yang H:
Identifying the role of Wilms tumor 1 associated protein in cancer
prediction using integrative genomic analyses. Mol Med Rep.
14:2823–2831. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Kong Z, Lu Y, Wan X, Luo J, Li D, Huang Y,
Wang C, Li Y and Xu Y: Comprehensive characterization of
Androgen-responsive circRNAs in prostate cancer. Life (Basel).
11:10962021.PubMed/NCBI
|
|
96
|
Su H, Wang Y and Li H: RNA m6A methylation
regulators Multi-Omics analysis in prostate cancer. Front Genet.
12:7680412021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Salgado-Montilla JL, Rodriguez-Caban JL,
Sanchez-Garcia J, Sanchez-Ortiz R and Irizarry-Ramirez M: Impact of
FTO SNPs rs9930506 and rs9939609 in prostate cancer severity in a
cohort of Puerto Rican men. Arch Cancer Res. 5:1482017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lewis SJ, Murad A, Chen L, Davey Smith G,
Donovan J, Palmer T, Hamdy F, Neal D, Lane JA, Davis M, et al:
Associations between an obesity related genetic variant (FTO
rs9939609) and prostate cancer risk. PLoS One. 5:e134852010.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhao J, Huang X, Yang M, Li M and Zheng J:
Association between the FTOrs8050136 polymorphism and cancer risk:
A meta-analysis. Fam Cancer. 15:145–153. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhao S, Geybels MS, Leonardson A, Rubicz
R, Kolb S, Yan Q, Klotzle B, Bibikova M, Hurtado-Coll A, Troyer D,
et al: Epigenome-wide tumor DNA methylation profiling identifies
novel prognostic biomarkers of metastatic-lethal progression in men
diagnosed with clinically localized prostate cancer. Clin Cancer
Res. 23:311–319. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Li J, Xie H, Ying Y, Chen H, Yan H, He L,
Xu M, Xu X, Liang Z, Liu B, et al: YTHDF2 mediates the mRNA
degradation of the tumor suppressors to induce AKT phosphorylation
in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer.
19:1522020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Du C, Lv C, Feng Y and Yu S: Activation of
the KDM5A/miRNA-495/YTHDF2/m6A-MOB3B axis facilitates prostate
cancer progression. J Exp Clin Cancer Res. 39:2232020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Li J, Meng S, Xu M, Wang S, He L, Xu X,
Wang X and Xie L: Downregulation of N6-methyladenosine binding
YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by
elevating N6-methyladenosine levels. Oncotarget. 9:3752–3764. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wang Y, Chen J, Gao WQ and Yang R: METTL14
promotes prostate tumorigenesis by inhibiting THBS1 via an
m6A-YTHDF2-dependent mechanism. Cell Death Discov. 8:1432022.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Liu Z, Zhong J, Zeng J, Duan X, Lu J, Sun
X, Liu Q, Liang Y, Lin Z, Zhong W, et al: Characterization of the
m6A-Associated tumor immune microenvironment in prostate cancer to
aid immunotherapy. Front Immunol. 12:7351702021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Barros-Silva D, Lobo J, Guimarães-Teixeira
C, Carneiro I, Oliveira J, Martens-Uzunova ES, Henrique R and
Jerónimo C: VIRMA-Dependent N6-Methyladenosine modifications
regulate the expression of long Non-coding RNAs CCAT1 and CCAT2 in
prostate cancer. Cancers (Basel). 12:7712020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Li P, Shi Y, Gao D, Xu H, Zou Y, Wang Z
and Li W: ELK1-mediated YTHDF1 drives prostate cancer progression
by facilitating the translation of Polo-like kinase 1 in an m6A
dependent manner. Int J Biol Sci. 18:6145–6162. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Jiang M, Lu Y, Duan D, Wang H, Man G, Kang
C, Abulimiti K and Li Y: Systematic investigation of mRNA
N6-Methyladenosine machinery in primary prostate cancer. Disease
Markers. 2020:88334382020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Liu B, Jiang HY, Yuan T, Luo J, Zhou WD,
Jiang QQ and Wu D: Enzalutamide-Induced Upregulation of PCAT6
promotes prostate cancer neuroendocrine differentiation by
regulating miR-326/HNRNPA2B1 axis. Front Onco. 11:6500542021.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zheng Y, Qi F, Li L, Yu B, Cheng Y, Ge M,
Qin C and Li X: LncNAP1L6 activates MMP pathway by stabilizing the
m6A-modified NAP1L2 to promote malignant progression in prostate
cancer. Cancer Gene Ther. 30:209–218. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Lang C, Yin C, Lin K, Li Y, Yang Q, Wu Z,
Du H, Ren D, Dai Y and Peng X: m6A modification of lncRNA PCAT6
promotes bone metastasis in prostate cancer through
IGF2BP2-mediated IGF1R mRNA stabilization. Clin Transl Med.
11:e4262021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Yu YZ, Lv DJ, Wang C, Song XL, Xie T, Wang
T, Li ZM, Guo JD, Fu DJ, Li KJ, et al: Hsa_circ_0003258 promotes
prostate cancer metastasis by complexing with IGF2BP3 and sponging
miR-653-5p. Mol Cancer. 21:122022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Han Z, Yi X, Li J, Zhang T, Liao D, You J
and Ai J: RNA m6A modification in prostate cancer: A new weapon for
its diagnosis and therapy. Biochim Biophys Acta Rev Cancer.
1878:1889612023. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Altschuler J, Stockert JA and Kyprianou N:
Non-Coding RNAs set a new phenotypic frontier in prostate cancer
metastasis and resistance. Int J Mol Sci. 22:21002021. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Alahdal M, Perera RA, Moschovas MC, Patel
V and Perera RJ: Current advances of liquid biopsies in prostate
cancer: Molecular biomarkers. Mol Ther Oncolytics. 30:27–38. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ruiz C, Alborelli I, Manzo M, Calgua B,
Keller EB, Vuaroqueaux V, Quagliata L, Rentsch CA, Spagnoli GC,
Diener PA, et al: Critical evaluation of transcripts and long
noncoding RNA expression levels in prostate cancer following
radical prostatectomy. Pathobiology. 90:400–408. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Heyn GS, Corrêa LH and Magalhães KG: The
impact of adipose Tissue-derived miRNAs in metabolic syndrome,
obesity, and cancer. Front Endocrinol (Lausanne). 11:5638162020.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Li X, Liu B, Wang S, Li J and Ge X:
MiR-141-3p promotes malignant progression in prostate cancer
through AlkB homolog 5-mediated m6A modification of
protein arginine methyltransferase 6. Chin J Physiol. 66:43–51.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Sun M, Shen Y, Jia G, Deng Z, Shi F, Jing
Y and Xia S: Activation of the HNRNPA2B1/miR-93-5p/FRMD6 axis
facilitates prostate cancer progression in an m6A-dependent manner.
J Cancer. 14:1242–1256. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Wen S, Wei Y, Zen C, Xiong W, Niu Y and
Zhao Y: Long non-coding RNA NEAT1 promotes bone metastasis of
prostate cancer through N6-methyladenosine. Mol Cancer. 19:1712020.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Yang Z, Luo Y, Zhang F and Ma L:
Exosome-derived lncRNA A1BG-AS1 attenuates the progression of
prostate cancer depending on ZC3H13-mediated m6A modification. Cell
Division. 19:1712024. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Ding L, Wang R, Zheng Q, Shen D, Wang H,
Lu Z, Luo W, Xie H, Ren L, Jiang M, et al: circPDE5A regulates
prostate cancer metastasis via controlling WTAP-dependent
N6-methyladenisine methylation of EIF3C mRNA. J Exp Clin Cancer
Res. 41:1872022. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin
D, Liu J and Sun Z: The role of N6-methyladenosine (m6A)
modification in the regulation of circRNAs. Mol Cancer. 19:1052020.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Luo L, Li P, Xie Q, Wu Y, Qin F, Liao D,
Zeng K and Wang K: n6-methyladenosine-modified circular RNA family
with sequence similarity 126, member A affects cholesterol
synthesis and malignant progression of prostate cancer cells by
targeting microRNA-505-3p to mediate calnexin. J Cancer.
15:966–980. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Kong Z, Lu Y, Yang Y, Chang K, Lin Y,
Huang Y, Wang C, Zhang L, Xu W, Zhao S and Li Y: m6A-Mediated
biogenesis of circDDIT4 inhibits prostate cancer progression by
sequestrating ELAVL1/HuR. Mol Cancer Res. 21:1342–1355. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Zhong C, Long Z, Yang T, Wang S, Zhong W,
Hu F, Teoh JY, Lu J and Mao X: M6A-modified circRBM33 promotes
prostate cancer progression via PDHA1-mediated mitochondrial
respiration regulation and presents a potential target for ARSI
therapy. Int J Biol Sci. 19:1543–1563. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Zhou X, Zhu H, Luo C, Yan Z, Zheng G, Zou
X, Zou J and Zhang G: The role of RNA modification in urological
cancers: Mechanisms and clinical potential. Discov Oncol.
14:2352023. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Zhao Y, Hu X, Yu H, Sun H, Zhang L and
Shao C: The FTO mediated N6-methyladenosine modification of DDIT4
regulation with tumorigenesis and metastasis in prostate cancer.
Research (Wash D C). 7:03132024.PubMed/NCBI
|
|
129
|
Zhang S, Lv C, Niu Y, Li C, Li X, Shang Y,
Zhang Y, Zhang Y, Zhang Y and Zeng Y: RBM3 suppresses stemness
remodeling of prostate cancer in bone microenvironment by
modulating N6-methyladenosine on CTNNB1 mRNA. Cell Death Dis.
14:912023. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Bhattarai DP and Aguilo F: m6A RNA
immunoprecipitation followed by High-Throughput sequencing to map
N6-Methyladenosine. Methods Mol Biol. 2404:355–362. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Lu J, Chen J, Lin Z, Liu Q, Zhong C, Cai
Z, Jia Z, Zhong W, Liang Y and Cai C: A prognostic signature
consisting of N6-methyladenosine modified mRNAs demonstrates
clinical potential in prediction of biochemical recurrence and
guidance on precision therapy in prostate cancer. Transl Oncol.
33:1016702023. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Liang Y, Yin W, Cai Z, Luo H, Liu Q, Zhong
C, Chen J, Lin Z, Huang Y, Liang Z, et al: N6-methyladenosine
modified lncRNAs signature for stratification of biochemical
recurrence in prostate cancer. Hum Genet. Sep 27–2023.doi:
10.1007/s00439-023-02603-8 (Epub ahead of print). View Article : Google Scholar
|
|
133
|
Azhati B, Reheman A, Dilixiati D and
Rexiati M: FTO-stabilized miR-139-5p targets ZNF217 to suppress
prostate cancer cell malignancies by inactivating the PI3K/Akt/mTOR
signal pathway. Arch Biochem Biophys. 741:1096042023. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Zhou X, Chai K, Zhu H, Luo C, Zou X, Zou J
and Zhang G: The role of the methyltransferase METTL3 in prostate
cancer: A potential therapeutic target. BMC Cancer. 24:82024.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Ye X, Wang R, Yu X, Wang Z, Hu H and Zhang
H: m6A/m1A/m5C/m7G-related methylation modification patterns and
immune characterization in prostate cancer. Front Pharmacol.
13:10307662022. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Zhao Y, Sun H, Zheng J and Shao C:
Analysis of RNA m6A methylation regulators and tumour immune cell
infiltration characterization in prostate cancer. Artif Cells
Nanomed Biotechnol. 49:407–435. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Zhao Y, Wen S, Li H, Pan CW, Wei Y, Huang
T, Li Z, Yang Y, Fan S and Zhang Y: Enhancer RNA promotes
resistance to radiotherapy in bone-metastatic prostate cancer by
m6A modification. Theranostics. 13:596–610. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Lan Q, Liu PY, Bell JL, Wang JY,
Hüttelmaier S, Zhang XD, Zhang L and Liu T: The emerging roles of
RNA m6A methylation and demethylation as critical regulators of
tumorigenesis, drug sensitivity, and resistance. Cancer Res.
81:3431–3440. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Zhu W, Zhao R, Guan X and Wang X: The
emerging roles and mechanism of N6-methyladenosine (m6A)
modifications in urologic tumours progression. Front Pharmacol.
14:11924952023. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Chen Y, Wu R, Chen W, Liu Y, Liao X, Zeng
B, Guo G, Lou F, Xiang Y, Wang Y and Wang X: Curcumin prevents
obesity by targeting TRAF4-induced ubiquitylation in m6A-dependent
manner. EMBO Rep. 22:e521462021. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Choi YH, Han DH, Kim SW, Kim MJ, Sung HH,
Jeon HG, Jeong BC, Seo SI, Jeon SS, Lee HM and Choi HY: A
randomized, double-blind, placebo-controlled trial to evaluate the
role of curcumin in prostate cancer patients with intermittent
androgen deprivation. Prostate. 79:614–621. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Yuan S, He SH, Li LY, Xi S, Weng H, Zhang
JH, Wang DQ, Guo MM, Zhang H, Wang SY, et al: A potassium-chloride
co-transporter promotes tumor progression and castration resistance
of prostate cancer through m6A reader YTHDC1. Cell Death
Dis. 14:72023. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Tian Y, Liu Z, Wang J, Li L, Wang F, Zhu Z
and Wang X: Nanomedicine for combination urologic cancer
immunotherapy. Pharmaceutics. 15:5462023. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Barbezan AB, Rosero WAA, Vieira DP, Rigo
MEZ, da Silva GD, Rodrigues AA, de Almeida LF, da Silva FFA, Rivera
AG, da Silva NG, et al: Radioactive gold nanoparticles coated with
BSA: A promising approach for prostate cancer treatment.
Nanotheranostics. 8:112–126. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Li S, Ma Y, Ma C, Shi L, Li F and Chang L:
NIR–triggerable self-assembly multifunctional nanocarriers to
enhance the tumor penetration and photothermal therapy efficiency
for castration-resistant prostate cancer. Discover Nano. 18:462023.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Liu P, Wu Y, Xu X, Fan X, Sun C, Chen X,
Xia J, Bai S, Qu L, Lu H, et al: Microwave triggered
multifunctional nanoplatform for targeted photothermal-chemotherapy
in castration-resistant prostate cancer. Nano Res. 16:9688–9700.
2023. View Article : Google Scholar
|
|
147
|
Swami U, McFarland TR, Nussenzveig R and
Agarwal N: Advanced prostate cancer: Treatment advances and future
directions. Trends Cancer. 6:702–715. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Nie Q, Wu X, Huang Y, Guo T, Kuang J and
Du C: RNA N6-methyladenosine-modified-binding protein YTHDF1
promotes prostate cancer progression by regulating androgen
function-related gene TRIM68. Eur J Med Res. 28:5522023. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Gao R, Ye M, Liu B, Wei M, Ma D and Dong
K: m6A Modification: A Double-Edged sword in tumor development.
Front Oncol. 11:6793672021. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Xu P and Ge R: Roles and drug development
of METTL3 (methyltransferase-like 3) in anti-tumor therapy. Eur J
Med Chem. 230:1141182022. View Article : Google Scholar : PubMed/NCBI
|