Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
June-2024 Volume 51 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2024 Volume 51 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of N6‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review)

  • Authors:
    • Junjie Pan
    • Fei Tong
    • Ning Ren
    • Lanqi Ren
    • Yibei Yang
    • Feng Gao
    • Qiaoping Xu
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China, Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China, Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China, Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
    Copyright: © Pan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 88
    |
    Published online on: May 13, 2024
       https://doi.org/10.3892/or.2024.8747
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Prostate cancer (PCa) affects males of all racial and ethnic groups, and leads to higher rates of mortality in those belonging to a lower socioeconomic status due to the late detection of the disease. PCa affects middle‑aged males between the ages of 45 and 60 years, and is the highest cause of cancer‑associated mortality in Western countries. As the most abundant and common mRNA modification in higher eukaryotes, N6‑methyladenosine (m6A) is widely distributed in mammalian cells and influences various aspects of mRNA metabolism. Recent studies have found that abnormal expression levels of various m6A regulators significantly affect the development and progression of various types of cancer, including PCa. The present review discusses the influence of m6A regulatory factors on the pathogenesis and progression of PCa through mRNA modification based on the current state of research on m6A methylation modification in PCa. It is considered that the treatment of PCa with micro‑molecular drugs that target the epigenetics of the m6A regulator to correct abnormal m6A modifications is a direction for future research into current diagnostic and therapeutic approaches for PCa.
View Figures

Figure 1

Figure 2

View References

1 

Wasim S, Lee SY and Kim J: Complexities of prostate cancer. Int J Mol Sci. 23:142572022. View Article : Google Scholar : PubMed/NCBI

2 

Khan MM, Sharma V and Serajuddin M: Emerging role of miRNA in prostate cancer: A future era of diagnostic and therapeutics. Gene. 888:1477612023. View Article : Google Scholar : PubMed/NCBI

3 

Chen N, Wang Z, Chen M, Ma Q, He Y, Wang Y, Li X, Qiu M, Shi L, Zhu S, et al: Real-world effectiveness and safety of goserelin 10.8-mg depot in Chinese patients with localized or locally advanced prostate cancer. Cancer Biol Med. 20:1047–1059. 2024. View Article : Google Scholar : PubMed/NCBI

4 

Mamello S, Keamogetswe R, Paballo M, Lemohang G, Ayodeji A and Samson M: Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules. 27:57302022. View Article : Google Scholar

5 

Corti M, Lorenzetti S, Ubaldi A, Zilli R and Marcoccia D: Endocrine disruptors and prostate cancer. Int J Mol Sci. 23:12162022. View Article : Google Scholar : PubMed/NCBI

6 

Giri VN, Morgan TM, Morris DS, Berchuck JE, Hyatt C and Taplin ME: Genetic testing in prostate cancer management: Considerations informing primary care. CA Cancer J Clin. 72:360–371. 2022. View Article : Google Scholar : PubMed/NCBI

7 

Piombino C, Oltrecolli M, Tonni E, Pirola M, Matranga R, Baldessari C, Pipitone S, Dominici M, Sabbatini R and Vitale MG: De novo metastatic prostate cancer: Are we moving toward a personalized treatment? Cancers (Basel). 15:49452023. View Article : Google Scholar : PubMed/NCBI

8 

McKay RR, Agarwal N, Matsubara N, Piulats Rodriguez JM, Smith MR, Todenhöfer T, Zhang T, Balar AV, Schaverien C, Sherwood S, et al: 1423TiP CYCLONE 3: A phase III, randomized, double-blind, placebo-controlled study of abemaciclib in combination with abiraterone plus prednisone in men with high-risk metastatic hormone-sensitive prostate cancer (mHSPC). Ann Oncol. 33:S1195–S1196. 2022. View Article : Google Scholar

9 

Rathi N, McFarland TR, Nussenzveig R, Agarwal N and Swami U: Evolving role of immunotherapy in metastatic castration refractory prostate cancer. Drugs. 81:191–206. 2021. View Article : Google Scholar : PubMed/NCBI

10 

Desrosiers R, Friderici K and Rottman F: Identification of methylated nucleo-sides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975. 1974. View Article : Google Scholar : PubMed/NCBI

11 

Zheng S, Han H and Lin S: N6-methyladenosine (m6A) RNA modification in tumor immunity. Cancer Biol Med. 19:385–397. 2022. View Article : Google Scholar : PubMed/NCBI

12 

Liu ZX, Li LM, Sun HL and Liu SM: Link between m6A modification and cancers. Front Bioeng Biotechnol. 6:892018. View Article : Google Scholar : PubMed/NCBI

13 

Zhou Y, Yang J, Tian Z, Zeng J and Shen W: Research progress concerning m6A methylation and cancer. Oncol Lett. 22:7752021. View Article : Google Scholar : PubMed/NCBI

14 

Chen Y, Miao L, Lin H, Zhuo Z and He J: The role of m6A modification in pediatric cancer. Biochim Biophys Acta Rev Cancer. 1877:1886912022. View Article : Google Scholar : PubMed/NCBI

15 

Quan C, Belaydi O, Hu J, Li H, Yu A, Liu P, Yi Z, Qiu D, Ren W, Ma H, et al: N6-Methyladenosine in cancer immunotherapy: An undervalued therapeutic target. Front Immunol. 12:6970262021. View Article : Google Scholar : PubMed/NCBI

16 

De Silva F and Alcorn J: A tale of two cancers: A current concise overview of breast and prostate cancer. Cancers (Basel). 14:29542022. View Article : Google Scholar : PubMed/NCBI

17 

Schatten H: Brief overview of prostate cancer statistics, grading, diagnosis and treatment strategies. Adv Exp Med Biol. 1095:1–14. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI

19 

Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI

20 

Kench JG, Amin MB, Berney DM, Compérat EM, Cree IA, Gill AJ, Hartmann A, Menon S, Moch H, Netto GJ, et al: WHO Classification of Tumours Fifth edition: Evolving issues in the classification, diagnosis, and prognostication of prostate cancer. Histopathology. 81:447–458. 2022. View Article : Google Scholar : PubMed/NCBI

21 

Lotan TL, Toubaji A, Albadine R, Latour M, Herawi M, Meeker AK, DeMarzo AM, Platz EA, Epstein JI, Netto GJ, et al: TMPRSS2-ERG gene fusions are infrequent in prostatic ductal adenocarcinomas. Mod Pathol. 22:359–365. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Gillard M, Lack J, Pontier A, Gandla D, Hatcher D, Sowalsky AG, Rodriguez-Nieves J, Vander Griend D, Paner G and VanderWeele D: Integrative genomic analysis of coincident cancer foci implicates CTNNB1 and PTEN alterations in ductal prostate cancer. Eur Urol Focus. 5:433–442. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Schweizer MT, Antonarakis ES, Bismar TA, Guedes LB, Cheng HH, Tretiakova MS, Vakar-Lopez F, Klemfuss N, Konnick EQ, Mostaghel EA, et al: Genomic characterization of prostatic ductal adenocarcinoma identifies a high prevalence of DNA repair gene mutations. JCO Precis Oncol. 3:PO.18.00327. 2019.PubMed/NCBI

24 

Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR and Humphrey PA; Grading Committee, : The 2014 International Society of Urological Pathology (ISUP) consensus Confer-ence on Gleason grading of prostatic carcinoma: Definition of grading patterns and proposal for a new grading system. Am J Surg Pathol. 40:244–252. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Cimadamore A, Scarpelli M, Raspollini MR, Doria A, Galosi AB, Massari F, Di Nunno V, Cheng L, Lopez-Beltran A and Montironi R: Prostate cancer pathology: What has changed in the last 5 years. Urologia. 87:3–10. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Vlajnic T and Bubendorf L: Molecular pathology of prostate cancer: A practical approach. Pathology. 53:36–43. 2021. View Article : Google Scholar : PubMed/NCBI

27 

Rodrigues DN, Butler LM, Estelles DL and de Bono JS: Molecular pathology and prostate cancer therapeutics: From biology to bedside. J Pathol. 232:178–184. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Nevo A, Navaratnam A and Andrews P: Prostate cancer and the role of biomarkers. Abdom Radiol (NY). 45:2120–2132. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Penghui Y, Le L, Xintao G, Sun T, Miao J, Yuan X, Liu J, Wang Z and Liu B: Identification of RNA-binding protein SNRPA1 for prognosis in prostate cancer. Aging (Albany NY). 13:2895–2911. 2021.

30 

Johnson IR, Parkinson-Lawrence EJ, Keegan H, Spillane CD, Barry-O'Crowley J, Watson WR, Selemidis S, Butler LM, O'Leary JJ and Brooks DA: Endosomal gene expression: A new indicator for prostate cancer patient prognosis? Oncotarget. 6:37919–37929. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Holt SK, Kolb S, Fu R, Horst R, Feng Z and Stanford JL: Circulating levels of 25-hydroxyvitamin D and prostate cancer prognosis. Cancer Epidemiol. 37:666–670. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Izumi K, Shigehara K, Nohara T, Narimoto K, Kadono Y and Mizokami A: Both high and low serum total testosterone levels indicate poor prognosis in patients with prostate cancer. Anticancer Res. 37:5559–5564. 2017.PubMed/NCBI

33 

De Nunzio C, Presicce F, Lombardo R, Cancrini F, Petta S, Trucchi A, Gacci M, Cindolo L and Tubaro A: Physical activity as a risk factor for prostate cancer diagnosis: A prospective biopsy cohort analysis. BJU Int. 117:E29–E35. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Goris Gbenou MC, Peltier A, Schulman CC and Velthoven R: Increased body mass index as a risk factor in localized prostate cancer treated by radical prostatectomy. Urol Oncol. 34:254.e1–e6. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Tan WP, Lin C, Chen M and Deane LA: Periprostatic fat: A risk factor for prostate cancer? Urology. 98:107–112. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Choi JB, Myong JP, Lee Y, Kim I, Kim JH, Hong SH and Ha US: Does increased body mass index lead to elevated prostate cancer risk? It depends on waist circumference. BMC Cancer. 20:5892020. View Article : Google Scholar : PubMed/NCBI

37 

Tangen CM, Schenk J, Till C, Goodman PJ, Barrington W, Lucia MS and Thompson IM: Variations in prostate biopsy recommendation and acceptance confound evaluation of risk factors for prostate cancer: Examining race and BMI. Cancer Epidemiol. 63:1016192019. View Article : Google Scholar : PubMed/NCBI

38 

Liu H, Wang Y, Xue T, Yang Z, Kan S, Hao M, Gao Y, Wang D and Liu W: Roles of m6A modification in oral cancer (Review). Int J Oncol. 62:52023. View Article : Google Scholar : PubMed/NCBI

39 

Fang Z, Mei W, Qu C, Lu J, Shang L, Cao F and Li F: Role of m6A writers, erasers and readers in cancer. Exp Hematol Oncol. 11:452022. View Article : Google Scholar : PubMed/NCBI

40 

Zhu H, Jia X, Wang Y, Song Z, Wang N, Yang Y and Shi X: M6A classification combined with tumor microenvironment immune characteristics analysis of bladder cancer. Front Oncol. 11:7142672021. View Article : Google Scholar : PubMed/NCBI

41 

Zeng J, Zhang H, Tan Y, Wang Z, Li Y and Yang X: Genetic alterations and functional networks of m6A RNA methylation regulators in pancreatic cancer based on data mining. J Transl Med. 19:3232021. View Article : Google Scholar : PubMed/NCBI

42 

Sun T, Wu R and Ming L: The role of m6A RNA methylation in cancer. Biomed Pharmacother. 112:1086132019. View Article : Google Scholar : PubMed/NCBI

43 

An Y and Duan H: The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 21:142022. View Article : Google Scholar : PubMed/NCBI

44 

Yang G, Sun Z and Zhang N: Reshaping the role of m6A modification in cancer transcriptome: A review. Cancer Cell Int. 20:3532020. View Article : Google Scholar : PubMed/NCBI

45 

Gu Z, Du Y, Zhao X and Wang C: Diagnostic, therapeutic, and prognostic value of the m6A writer complex in hepatocellular carcinoma. Front Cell Dev Biol. 10:8220112022. View Article : Google Scholar : PubMed/NCBI

46 

Su S, Li S, Deng T, Gao M, Yin Y, Wu B, Peng C, Liu J, Ma J and Zhang K: Cryo-EM structures of human m6A writer complexes. Cell Res. 32:982–994. 2022. View Article : Google Scholar : PubMed/NCBI

47 

Gu J, Zhan Y, Zhuo L, Zhang Q, Li G, Li Q, Qi S, Zhu J, Lv Q, Shen Y, et al: Biological functions of m6A methyltransferases. Cell Biosci. 11:152021. View Article : Google Scholar : PubMed/NCBI

48 

Huang J and Yin P: Structural Insights into N6-methyladenosine (m6A) modification in the transcriptome. Genomics Proteomics Bioinformatics. 16:85–98. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Huang Q, Mo J, Liao Z, Chen X and Zhang B: The RNA m6A writer WTAP in diseases: Structure, roles, and mechanisms. Cell Death Dis. 13:8522022. View Article : Google Scholar : PubMed/NCBI

50 

Balacco DL and Matthias S: The m6A Writer: Rise of a machine for growing tasks. Biochemistry. 58:2019. View Article : Google Scholar : PubMed/NCBI

51 

Mathoux J, Henshall DC and Brennan GP: Regulatory mechanisms of the RNA modification m6A and significance in brain function in health and disease. Front Cell Neurosci. 15:6719322021. View Article : Google Scholar : PubMed/NCBI

52 

Zhang W, Qian Y and Jia G: The detection and functions of RNA modification m6A based on m6A writers and erasers. J Biol Chem. 297:100973. 2021. View Article : Google Scholar

53 

Li S and Cao L: Demethyltransferase FTO alpha-ketoglutarate dependent dioxygenase (FTO) regulates the proliferation, migration, invasion and tumor growth of prostate cancer by modulating the expression of melanocortin 4 receptor (MC4R). Bioengineered. 13:5598–5612. 2022. View Article : Google Scholar : PubMed/NCBI

54 

Zhu K, Li Y and Xu Y: The FTO m6A demethylase inhibits the invasion and migration of prostate cancer cells by regulating total m6A levels. Life Sci. 271:1191802021. View Article : Google Scholar : PubMed/NCBI

55 

Zou L, Chen W, Zhou X, Yang T, Luo J, Long Z, Wu J, Lv D, Mao X and Cen S: N6-methyladenosine demethylase FTO suppressed prostate cancer progression by maintaining CLIC4 mRNA stability. Cell Death Discov. 8:1842022. View Article : Google Scholar : PubMed/NCBI

56 

Ding D, Liu G, Gao J and Cao M: Unveiling the m6A methylation regulator links between prostate cancer and periodontitis by transcriptomic analysis. Dis Markers. 2022:40300462022. View Article : Google Scholar : PubMed/NCBI

57 

Ji G, Huang C, He S, Gong Y, Song G, Li X and Zhou L: Comprehensive analysis of m6A regulators prognostic value in prostate cancer. Aging (Albany NY). 12:14863–14884. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Wu Q, Xie X, Huang Y, Meng S, Li Y, Wang H and Hu Y: N6-methyladenosine RNA methylation regulators contribute to the progression of prostate cancer. J Cancer. 12:682–692. 2021. View Article : Google Scholar : PubMed/NCBI

59 

Dai XY, Shi L, Li Z, Yang HY, Wei JF and Ding Q: Main N6-methyladenosine readers: YTH family proteins in cancers. Front Oncol. 11:6353292021. View Article : Google Scholar : PubMed/NCBI

60 

Li J, Chen K, Dong X, Xu Y, Sun Q, Wang H, Chen Z, Liu C, Liu R, Yang Z, et al: YTHDF1 promotes mRNA degradation via YTHDF1-AGO2 interaction and phase separation. Cell Prolif. 55:e131572022. View Article : Google Scholar : PubMed/NCBI

61 

Zuyao C, Xiaolin Z, Min X and Jing Z: The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. Mol Ther Nucleic Acids. 26:1270–1279. 2021. View Article : Google Scholar : PubMed/NCBI

62 

Chen X, Zhou X and Wang X: m6A binding protein YTHDF2 in cancer. Exp Hematol Oncol. 11:212022. View Article : Google Scholar : PubMed/NCBI

63 

Zaccara S and Jaffrey SR: A unified model for the function of YTHDF proteins in regulating m6A-modified mRNA. Cell. 181:1582–1595.e18. 2020. View Article : Google Scholar : PubMed/NCBI

64 

Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C and He C: YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27:315–328. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Widagdo J, Anggono V and Wong JJL: The multifaceted effects of YTHDC1-mediated nuclear m6A recognition. Trends Genet. 38:325–332. 2022. View Article : Google Scholar : PubMed/NCBI

66 

Yan H, Zhang L, Cui X, Zheng S and Li R: Roles and mechanisms of the m6A reader YTHDC1 in biological processes and diseases. Cell Death Discov. 8:2372022. View Article : Google Scholar : PubMed/NCBI

67 

Ma C, Liao S and Zhu Z: Crystal structure of human YTHDC2 YTH domain. Biochem Biophys Res Commun. 518:678–684. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Kretschmer J, Rao H, Hackert P, Sloan KE, Höbartner C and Bohnsack MT: The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′-3′ exoribonuclease XRN1. RNA. 24:1339–1350. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Qin S, Liu G, Jin H, Chen X, He J, Xiao J, Qin Y, Mao Y and Zhao L: The comprehensive expression and functional analysis of m6A modification ‘readers’ in hepatocellular carcinoma. Aging (Albany NY). 14:6269–6298. 2022. View Article : Google Scholar : PubMed/NCBI

70 

Mo L, Meng L, Huang Z, Yi L, Yang N and Li G: An analysis of the role of HnRNP C dysregulation in cancers. Biomark Res. 10:192022. View Article : Google Scholar : PubMed/NCBI

71 

Zhou KI, Shi H, Lyu R, Wylder AC, Matuszek Ż, Pan JN, He C, Parisien M and Pan T: Regulation of Co-transcriptional Pre-mRNA Splicing by m6A through the Low-Complexity Protein hnRNPG. Mol Cell. 76:70–81.e9. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Wu B, Su S, Patil DP, Liu H, Gan J, Jaffrey SR and Ma J: Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat Commun. 9:4202018. View Article : Google Scholar : PubMed/NCBI

73 

Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20:285–295. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Ramesh-Kumar D and Guil S: The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer. Semin Cancer Biol. 86:18–31. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Song H, Liu D, Wang L, Liu K, Chen C, Wang L, Ren Y, Ju B, Zhong F, Jiang X, et al: Methyltransferase like 7B is a potential therapeutic target for reversing EGFR-TKIs resistance in lung adenocarcinoma. Mol Cancer. 21:432022. View Article : Google Scholar : PubMed/NCBI

76 

Wang T, Liu Z, She Y, Deng J, Zhong Y, Zhao M, Li S, Xie D, Sun X, Hu X and Chen C: A novel protein encoded by circASK1 ameliorates gefitinib resistance in lung adenocarcinoma by competitively activating ASK1-dependent apoptosis. Cancer Letters. 520:321–331. 2021. View Article : Google Scholar : PubMed/NCBI

77 

Wu Q, Zhang H, Yang D, Min Q, Wang Y, Zhang W and Zhan Q: The m6A-induced lncRNA CASC8 promotes proliferation and chemoresistance via upregulation of hnRNPL in esophageal squamous cell carcinoma. Int J Biol Sci. 18:4824–4836. 2022. View Article : Google Scholar : PubMed/NCBI

78 

Huang CS, Zhu YQ, Xu QC, Chen S, Huang Y, Zhao G, Ni X, Liu B, Zhao W and Yin XY: YTHDF2 promotes intrahepatic cholangiocarcinoma progression and desensitises cisplatin treatment by increasing CDKN1B mRNA degradation. Clin Transl Med. 12:e8482022. View Article : Google Scholar : PubMed/NCBI

79 

Cucciniello L, Gerratana L, Del Mastro L and Puglisi F: Tailoring adjuvant endocrine therapy in early breast cancer: When, how, and how long? Cancer Treat Rev. 110:1024452022. View Article : Google Scholar : PubMed/NCBI

80 

Liu X, Gonzalez G, Dai X, Miao W, Yuan J, Huang M, Bade D, Li L, Sun Y and Wang Y: Adenylate Kinase 4 modulates the resistance of breast cancer cells to tamoxifen through an m6A-Based epitranscriptomic mechanism. Mol Ther. 28:2593–2604. 2020. View Article : Google Scholar : PubMed/NCBI

81 

Li F, Chen S, Yu J, Gao Z, Sun Z, Yi Y, Long T, Zhang C, Li Y, Pan Y, et al: Interplay of m6 A and histone modifications contributes to temozolomide resistance in glioblastoma. Clin Transl Med. 11:e5532021. View Article : Google Scholar : PubMed/NCBI

82 

Li W, Ye K, Li X, Liu X, Peng M, Chen F, Xiong W, Wang Y and Zhu L: YTHDC1 is downregulated by the YY1/HDAC2 complex and controls the sensitivity of ccRCC to sunitinib by targeting the ANXA1-MAPK pathway. J Exp Clin Cancer Res. 41:2502022. View Article : Google Scholar : PubMed/NCBI

83 

Cotter KA, Gallon J, Uebersax N, Rubin P, Meyer KD, Piscuoglio S, Jaffrey SR and Rubin MA: Mapping of m6A and its regulatory targets in prostate cancer reveals a METTL3-Low induction of therapy resistance. Mol Cancer Res. 19:1398–1411. 2021. View Article : Google Scholar : PubMed/NCBI

84 

Zhang SY and Zeng Y: Research progress of m6A methylation in prostate cancer. Asian J Androl. 25:166–170. 2023. View Article : Google Scholar : PubMed/NCBI

85 

Haigh DB, Woodcock CL, Lothion-Roy J, Harris AE, Metzler VM, Persson JL, Robinson BD, Khani F, Alsaleem M, Ntekim A, et al: The METTL3 RNA Methyltransferase regulates transcriptional networks in prostate cancer. Cancers (Basel). 14:51482022. View Article : Google Scholar : PubMed/NCBI

86 

Chen Y, Pan C, Wang X, Xu D, Ma Y, Hu J, Chen P, Xiang Z, Rao Q and Han X: Silencing of METTL3 effectively hinders invasion and metastasis of prostate cancer cells. Theranostics. 11:7640–7657. 2021. View Article : Google Scholar : PubMed/NCBI

87 

Cai J, Yang F, Zhan H, Situ J, Li W, Mao Y and Luo Y: RNA m6A Methyltransferase METTL3 promotes the growth of prostate cancer by regulating hedgehog pathway. Onco Targets Ther. 12:9143–9152. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Ma XX, Cao ZG and Zhao SL: m6A methyltransferase METTL3 promotes the progression of prostate cancer via m6A-modified LEF1. Eur Rev Med Pharmacol Sci. 24:3565–3571. 2020.PubMed/NCBI

89 

Wang D, Wang X, Huang B, Zhao Y, Tu W, Jin X, Shao Y, Zhu Y and Lu G: METTL3 promotes prostate cancer progression by regulating miR-182 maturation in m6A-dependent manner. Andrologia. 54:1581–1591. 2022. View Article : Google Scholar : PubMed/NCBI

90 

Mao Y, Li W, Weng Y, Hua B, Gu X, Lu C, Xu B, Xu H and Wang Z: METTL3-Mediated m6A Modification of lncRNA MALAT1 facilitates prostate cancer growth by activation of PI3K/AKT signaling. Cell Transplant. 31:96368972211229972022. View Article : Google Scholar : PubMed/NCBI

91 

Yuan Y, Du Y, Wang L and Liu X: The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation. J Cancer. 11:3588–3595. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Honggui M, Facai Z, Quliang Z and Jianquan H: METTL3-mediated m6A modification of KIF3C-mRNA promotes prostate cancer progression and is negatively regulated by miR-320d. Aging (Albany NY). 13:22332–22344. 2021.PubMed/NCBI

93 

Jia G, Wang X, Wu W, Zhang Y, Chen S, Zhao J, Zhao W, Li W, Sun X and Han B: LXA4 enhances prostate cancer progression by facilitating M2 macrophage polarization via inhibition of METTL3. Int Immunopharmacol. 107:1085862022. View Article : Google Scholar : PubMed/NCBI

94 

Wu LS, Qian JY, Wang M and Yang H: Identifying the role of Wilms tumor 1 associated protein in cancer prediction using integrative genomic analyses. Mol Med Rep. 14:2823–2831. 2016. View Article : Google Scholar : PubMed/NCBI

95 

Kong Z, Lu Y, Wan X, Luo J, Li D, Huang Y, Wang C, Li Y and Xu Y: Comprehensive characterization of Androgen-responsive circRNAs in prostate cancer. Life (Basel). 11:10962021.PubMed/NCBI

96 

Su H, Wang Y and Li H: RNA m6A methylation regulators Multi-Omics analysis in prostate cancer. Front Genet. 12:7680412021. View Article : Google Scholar : PubMed/NCBI

97 

Salgado-Montilla JL, Rodriguez-Caban JL, Sanchez-Garcia J, Sanchez-Ortiz R and Irizarry-Ramirez M: Impact of FTO SNPs rs9930506 and rs9939609 in prostate cancer severity in a cohort of Puerto Rican men. Arch Cancer Res. 5:1482017. View Article : Google Scholar : PubMed/NCBI

98 

Lewis SJ, Murad A, Chen L, Davey Smith G, Donovan J, Palmer T, Hamdy F, Neal D, Lane JA, Davis M, et al: Associations between an obesity related genetic variant (FTO rs9939609) and prostate cancer risk. PLoS One. 5:e134852010. View Article : Google Scholar : PubMed/NCBI

99 

Zhao J, Huang X, Yang M, Li M and Zheng J: Association between the FTOrs8050136 polymorphism and cancer risk: A meta-analysis. Fam Cancer. 15:145–153. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Zhao S, Geybels MS, Leonardson A, Rubicz R, Kolb S, Yan Q, Klotzle B, Bibikova M, Hurtado-Coll A, Troyer D, et al: Epigenome-wide tumor DNA methylation profiling identifies novel prognostic biomarkers of metastatic-lethal progression in men diagnosed with clinically localized prostate cancer. Clin Cancer Res. 23:311–319. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Li J, Xie H, Ying Y, Chen H, Yan H, He L, Xu M, Xu X, Liang Z, Liu B, et al: YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer. 19:1522020. View Article : Google Scholar : PubMed/NCBI

102 

Du C, Lv C, Feng Y and Yu S: Activation of the KDM5A/miRNA-495/YTHDF2/m6A-MOB3B axis facilitates prostate cancer progression. J Exp Clin Cancer Res. 39:2232020. View Article : Google Scholar : PubMed/NCBI

103 

Li J, Meng S, Xu M, Wang S, He L, Xu X, Wang X and Xie L: Downregulation of N6-methyladenosine binding YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by elevating N6-methyladenosine levels. Oncotarget. 9:3752–3764. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Wang Y, Chen J, Gao WQ and Yang R: METTL14 promotes prostate tumorigenesis by inhibiting THBS1 via an m6A-YTHDF2-dependent mechanism. Cell Death Discov. 8:1432022. View Article : Google Scholar : PubMed/NCBI

105 

Liu Z, Zhong J, Zeng J, Duan X, Lu J, Sun X, Liu Q, Liang Y, Lin Z, Zhong W, et al: Characterization of the m6A-Associated tumor immune microenvironment in prostate cancer to aid immunotherapy. Front Immunol. 12:7351702021. View Article : Google Scholar : PubMed/NCBI

106 

Barros-Silva D, Lobo J, Guimarães-Teixeira C, Carneiro I, Oliveira J, Martens-Uzunova ES, Henrique R and Jerónimo C: VIRMA-Dependent N6-Methyladenosine modifications regulate the expression of long Non-coding RNAs CCAT1 and CCAT2 in prostate cancer. Cancers (Basel). 12:7712020. View Article : Google Scholar : PubMed/NCBI

107 

Li P, Shi Y, Gao D, Xu H, Zou Y, Wang Z and Li W: ELK1-mediated YTHDF1 drives prostate cancer progression by facilitating the translation of Polo-like kinase 1 in an m6A dependent manner. Int J Biol Sci. 18:6145–6162. 2022. View Article : Google Scholar : PubMed/NCBI

108 

Jiang M, Lu Y, Duan D, Wang H, Man G, Kang C, Abulimiti K and Li Y: Systematic investigation of mRNA N6-Methyladenosine machinery in primary prostate cancer. Disease Markers. 2020:88334382020. View Article : Google Scholar : PubMed/NCBI

109 

Liu B, Jiang HY, Yuan T, Luo J, Zhou WD, Jiang QQ and Wu D: Enzalutamide-Induced Upregulation of PCAT6 promotes prostate cancer neuroendocrine differentiation by regulating miR-326/HNRNPA2B1 axis. Front Onco. 11:6500542021. View Article : Google Scholar : PubMed/NCBI

110 

Zheng Y, Qi F, Li L, Yu B, Cheng Y, Ge M, Qin C and Li X: LncNAP1L6 activates MMP pathway by stabilizing the m6A-modified NAP1L2 to promote malignant progression in prostate cancer. Cancer Gene Ther. 30:209–218. 2022. View Article : Google Scholar : PubMed/NCBI

111 

Lang C, Yin C, Lin K, Li Y, Yang Q, Wu Z, Du H, Ren D, Dai Y and Peng X: m6A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization. Clin Transl Med. 11:e4262021. View Article : Google Scholar : PubMed/NCBI

112 

Yu YZ, Lv DJ, Wang C, Song XL, Xie T, Wang T, Li ZM, Guo JD, Fu DJ, Li KJ, et al: Hsa_circ_0003258 promotes prostate cancer metastasis by complexing with IGF2BP3 and sponging miR-653-5p. Mol Cancer. 21:122022. View Article : Google Scholar : PubMed/NCBI

113 

Han Z, Yi X, Li J, Zhang T, Liao D, You J and Ai J: RNA m6A modification in prostate cancer: A new weapon for its diagnosis and therapy. Biochim Biophys Acta Rev Cancer. 1878:1889612023. View Article : Google Scholar : PubMed/NCBI

114 

Altschuler J, Stockert JA and Kyprianou N: Non-Coding RNAs set a new phenotypic frontier in prostate cancer metastasis and resistance. Int J Mol Sci. 22:21002021. View Article : Google Scholar : PubMed/NCBI

115 

Alahdal M, Perera RA, Moschovas MC, Patel V and Perera RJ: Current advances of liquid biopsies in prostate cancer: Molecular biomarkers. Mol Ther Oncolytics. 30:27–38. 2023. View Article : Google Scholar : PubMed/NCBI

116 

Ruiz C, Alborelli I, Manzo M, Calgua B, Keller EB, Vuaroqueaux V, Quagliata L, Rentsch CA, Spagnoli GC, Diener PA, et al: Critical evaluation of transcripts and long noncoding RNA expression levels in prostate cancer following radical prostatectomy. Pathobiology. 90:400–408. 2023. View Article : Google Scholar : PubMed/NCBI

117 

Heyn GS, Corrêa LH and Magalhães KG: The impact of adipose Tissue-derived miRNAs in metabolic syndrome, obesity, and cancer. Front Endocrinol (Lausanne). 11:5638162020. View Article : Google Scholar : PubMed/NCBI

118 

Li X, Liu B, Wang S, Li J and Ge X: MiR-141-3p promotes malignant progression in prostate cancer through AlkB homolog 5-mediated m6A modification of protein arginine methyltransferase 6. Chin J Physiol. 66:43–51. 2023. View Article : Google Scholar : PubMed/NCBI

119 

Sun M, Shen Y, Jia G, Deng Z, Shi F, Jing Y and Xia S: Activation of the HNRNPA2B1/miR-93-5p/FRMD6 axis facilitates prostate cancer progression in an m6A-dependent manner. J Cancer. 14:1242–1256. 2023. View Article : Google Scholar : PubMed/NCBI

120 

Wen S, Wei Y, Zen C, Xiong W, Niu Y and Zhao Y: Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Mol Cancer. 19:1712020. View Article : Google Scholar : PubMed/NCBI

121 

Yang Z, Luo Y, Zhang F and Ma L: Exosome-derived lncRNA A1BG-AS1 attenuates the progression of prostate cancer depending on ZC3H13-mediated m6A modification. Cell Division. 19:1712024. View Article : Google Scholar : PubMed/NCBI

122 

Ding L, Wang R, Zheng Q, Shen D, Wang H, Lu Z, Luo W, Xie H, Ren L, Jiang M, et al: circPDE5A regulates prostate cancer metastasis via controlling WTAP-dependent N6-methyladenisine methylation of EIF3C mRNA. J Exp Clin Cancer Res. 41:1872022. View Article : Google Scholar : PubMed/NCBI

123 

Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin D, Liu J and Sun Z: The role of N6-methyladenosine (m6A) modification in the regulation of circRNAs. Mol Cancer. 19:1052020. View Article : Google Scholar : PubMed/NCBI

124 

Luo L, Li P, Xie Q, Wu Y, Qin F, Liao D, Zeng K and Wang K: n6-methyladenosine-modified circular RNA family with sequence similarity 126, member A affects cholesterol synthesis and malignant progression of prostate cancer cells by targeting microRNA-505-3p to mediate calnexin. J Cancer. 15:966–980. 2024. View Article : Google Scholar : PubMed/NCBI

125 

Kong Z, Lu Y, Yang Y, Chang K, Lin Y, Huang Y, Wang C, Zhang L, Xu W, Zhao S and Li Y: m6A-Mediated biogenesis of circDDIT4 inhibits prostate cancer progression by sequestrating ELAVL1/HuR. Mol Cancer Res. 21:1342–1355. 2023. View Article : Google Scholar : PubMed/NCBI

126 

Zhong C, Long Z, Yang T, Wang S, Zhong W, Hu F, Teoh JY, Lu J and Mao X: M6A-modified circRBM33 promotes prostate cancer progression via PDHA1-mediated mitochondrial respiration regulation and presents a potential target for ARSI therapy. Int J Biol Sci. 19:1543–1563. 2023. View Article : Google Scholar : PubMed/NCBI

127 

Zhou X, Zhu H, Luo C, Yan Z, Zheng G, Zou X, Zou J and Zhang G: The role of RNA modification in urological cancers: Mechanisms and clinical potential. Discov Oncol. 14:2352023. View Article : Google Scholar : PubMed/NCBI

128 

Zhao Y, Hu X, Yu H, Sun H, Zhang L and Shao C: The FTO mediated N6-methyladenosine modification of DDIT4 regulation with tumorigenesis and metastasis in prostate cancer. Research (Wash D C). 7:03132024.PubMed/NCBI

129 

Zhang S, Lv C, Niu Y, Li C, Li X, Shang Y, Zhang Y, Zhang Y, Zhang Y and Zeng Y: RBM3 suppresses stemness remodeling of prostate cancer in bone microenvironment by modulating N6-methyladenosine on CTNNB1 mRNA. Cell Death Dis. 14:912023. View Article : Google Scholar : PubMed/NCBI

130 

Bhattarai DP and Aguilo F: m6A RNA immunoprecipitation followed by High-Throughput sequencing to map N6-Methyladenosine. Methods Mol Biol. 2404:355–362. 2022. View Article : Google Scholar : PubMed/NCBI

131 

Lu J, Chen J, Lin Z, Liu Q, Zhong C, Cai Z, Jia Z, Zhong W, Liang Y and Cai C: A prognostic signature consisting of N6-methyladenosine modified mRNAs demonstrates clinical potential in prediction of biochemical recurrence and guidance on precision therapy in prostate cancer. Transl Oncol. 33:1016702023. View Article : Google Scholar : PubMed/NCBI

132 

Liang Y, Yin W, Cai Z, Luo H, Liu Q, Zhong C, Chen J, Lin Z, Huang Y, Liang Z, et al: N6-methyladenosine modified lncRNAs signature for stratification of biochemical recurrence in prostate cancer. Hum Genet. Sep 27–2023.doi: 10.1007/s00439-023-02603-8 (Epub ahead of print). View Article : Google Scholar

133 

Azhati B, Reheman A, Dilixiati D and Rexiati M: FTO-stabilized miR-139-5p targets ZNF217 to suppress prostate cancer cell malignancies by inactivating the PI3K/Akt/mTOR signal pathway. Arch Biochem Biophys. 741:1096042023. View Article : Google Scholar : PubMed/NCBI

134 

Zhou X, Chai K, Zhu H, Luo C, Zou X, Zou J and Zhang G: The role of the methyltransferase METTL3 in prostate cancer: A potential therapeutic target. BMC Cancer. 24:82024. View Article : Google Scholar : PubMed/NCBI

135 

Ye X, Wang R, Yu X, Wang Z, Hu H and Zhang H: m6A/m1A/m5C/m7G-related methylation modification patterns and immune characterization in prostate cancer. Front Pharmacol. 13:10307662022. View Article : Google Scholar : PubMed/NCBI

136 

Zhao Y, Sun H, Zheng J and Shao C: Analysis of RNA m6A methylation regulators and tumour immune cell infiltration characterization in prostate cancer. Artif Cells Nanomed Biotechnol. 49:407–435. 2021. View Article : Google Scholar : PubMed/NCBI

137 

Zhao Y, Wen S, Li H, Pan CW, Wei Y, Huang T, Li Z, Yang Y, Fan S and Zhang Y: Enhancer RNA promotes resistance to radiotherapy in bone-metastatic prostate cancer by m6A modification. Theranostics. 13:596–610. 2023. View Article : Google Scholar : PubMed/NCBI

138 

Lan Q, Liu PY, Bell JL, Wang JY, Hüttelmaier S, Zhang XD, Zhang L and Liu T: The emerging roles of RNA m6A methylation and demethylation as critical regulators of tumorigenesis, drug sensitivity, and resistance. Cancer Res. 81:3431–3440. 2021. View Article : Google Scholar : PubMed/NCBI

139 

Zhu W, Zhao R, Guan X and Wang X: The emerging roles and mechanism of N6-methyladenosine (m6A) modifications in urologic tumours progression. Front Pharmacol. 14:11924952023. View Article : Google Scholar : PubMed/NCBI

140 

Chen Y, Wu R, Chen W, Liu Y, Liao X, Zeng B, Guo G, Lou F, Xiang Y, Wang Y and Wang X: Curcumin prevents obesity by targeting TRAF4-induced ubiquitylation in m6A-dependent manner. EMBO Rep. 22:e521462021. View Article : Google Scholar : PubMed/NCBI

141 

Choi YH, Han DH, Kim SW, Kim MJ, Sung HH, Jeon HG, Jeong BC, Seo SI, Jeon SS, Lee HM and Choi HY: A randomized, double-blind, placebo-controlled trial to evaluate the role of curcumin in prostate cancer patients with intermittent androgen deprivation. Prostate. 79:614–621. 2019. View Article : Google Scholar : PubMed/NCBI

142 

Yuan S, He SH, Li LY, Xi S, Weng H, Zhang JH, Wang DQ, Guo MM, Zhang H, Wang SY, et al: A potassium-chloride co-transporter promotes tumor progression and castration resistance of prostate cancer through m6A reader YTHDC1. Cell Death Dis. 14:72023. View Article : Google Scholar : PubMed/NCBI

143 

Tian Y, Liu Z, Wang J, Li L, Wang F, Zhu Z and Wang X: Nanomedicine for combination urologic cancer immunotherapy. Pharmaceutics. 15:5462023. View Article : Google Scholar : PubMed/NCBI

144 

Barbezan AB, Rosero WAA, Vieira DP, Rigo MEZ, da Silva GD, Rodrigues AA, de Almeida LF, da Silva FFA, Rivera AG, da Silva NG, et al: Radioactive gold nanoparticles coated with BSA: A promising approach for prostate cancer treatment. Nanotheranostics. 8:112–126. 2024. View Article : Google Scholar : PubMed/NCBI

145 

Li S, Ma Y, Ma C, Shi L, Li F and Chang L: NIR–triggerable self-assembly multifunctional nanocarriers to enhance the tumor penetration and photothermal therapy efficiency for castration-resistant prostate cancer. Discover Nano. 18:462023. View Article : Google Scholar : PubMed/NCBI

146 

Liu P, Wu Y, Xu X, Fan X, Sun C, Chen X, Xia J, Bai S, Qu L, Lu H, et al: Microwave triggered multifunctional nanoplatform for targeted photothermal-chemotherapy in castration-resistant prostate cancer. Nano Res. 16:9688–9700. 2023. View Article : Google Scholar

147 

Swami U, McFarland TR, Nussenzveig R and Agarwal N: Advanced prostate cancer: Treatment advances and future directions. Trends Cancer. 6:702–715. 2020. View Article : Google Scholar : PubMed/NCBI

148 

Nie Q, Wu X, Huang Y, Guo T, Kuang J and Du C: RNA N6-methyladenosine-modified-binding protein YTHDF1 promotes prostate cancer progression by regulating androgen function-related gene TRIM68. Eur J Med Res. 28:5522023. View Article : Google Scholar : PubMed/NCBI

149 

Gao R, Ye M, Liu B, Wei M, Ma D and Dong K: m6A Modification: A Double-Edged sword in tumor development. Front Oncol. 11:6793672021. View Article : Google Scholar : PubMed/NCBI

150 

Xu P and Ge R: Roles and drug development of METTL3 (methyltransferase-like 3) in anti-tumor therapy. Eur J Med Chem. 230:1141182022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Pan J, Tong F, Ren N, Ren L, Yang Y, Gao F and Xu Q: Role of N<sup>6</sup>‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review). Oncol Rep 51: 88, 2024.
APA
Pan, J., Tong, F., Ren, N., Ren, L., Yang, Y., Gao, F., & Xu, Q. (2024). Role of N<sup>6</sup>‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review). Oncology Reports, 51, 88. https://doi.org/10.3892/or.2024.8747
MLA
Pan, J., Tong, F., Ren, N., Ren, L., Yang, Y., Gao, F., Xu, Q."Role of N<sup>6</sup>‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review)". Oncology Reports 51.6 (2024): 88.
Chicago
Pan, J., Tong, F., Ren, N., Ren, L., Yang, Y., Gao, F., Xu, Q."Role of N<sup>6</sup>‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review)". Oncology Reports 51, no. 6 (2024): 88. https://doi.org/10.3892/or.2024.8747
Copy and paste a formatted citation
x
Spandidos Publications style
Pan J, Tong F, Ren N, Ren L, Yang Y, Gao F and Xu Q: Role of N<sup>6</sup>‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review). Oncol Rep 51: 88, 2024.
APA
Pan, J., Tong, F., Ren, N., Ren, L., Yang, Y., Gao, F., & Xu, Q. (2024). Role of N<sup>6</sup>‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review). Oncology Reports, 51, 88. https://doi.org/10.3892/or.2024.8747
MLA
Pan, J., Tong, F., Ren, N., Ren, L., Yang, Y., Gao, F., Xu, Q."Role of N<sup>6</sup>‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review)". Oncology Reports 51.6 (2024): 88.
Chicago
Pan, J., Tong, F., Ren, N., Ren, L., Yang, Y., Gao, F., Xu, Q."Role of N<sup>6</sup>‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review)". Oncology Reports 51, no. 6 (2024): 88. https://doi.org/10.3892/or.2024.8747
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team